分享:
分享到微信朋友圈
X
综述
多模态心脏磁共振在冠状动脉旁路移植术后左心室重构评估中的研究进展
班超 钱昕毓 牛瑞龙 葛丽红

Cite this article as: BAN C, QIAN X Y, NIU R L, et al. Research progress of multimodal cardiac magnetic resonance in the evaluation of left ventricular remodeling after coronary artery bypass grafting[J]. Chin J Magn Reson Imaging, 2025, 16(10): 157-163.本文引用格式:班超, 钱昕毓, 牛瑞龙, 等. 多模态心脏磁共振在冠状动脉旁路移植术后左心室重构评估中的研究进展[J]. 磁共振成像, 2025, 16(10): 157-163. DOI:10.12015/issn.1674-8034.2025.10.025.


[摘要] 冠状动脉旁路移植术(coronary artery bypass grafting, CABG)是治疗严重冠状动脉疾病的重要外科干预手段,而术后左心室重构对患者的长期预后具有深远影响,尤其涉及左心室功能演变和心肌纤维化进展。近年来,随着多模态心脏磁共振(cardiac magnetic resonance, CMR)成像技术凭借无创性、高分辨率以及多参数定量评估能力,已成为CABG术后左心室重构机制及预后的重要工具。本文系统综述了多模态CMR技术在术后评估中的应用价值,重点探讨了定量心肌灌注、晚期钆增强、心脏磁共振特征追踪技术、T1/T2 mapping及氧合敏感CMR等技术在术后心肌功能恢复、纤维化程度评估及预后预测中的最新研究进展,并对当前多模态CMR各技术在CABG术后评估研究中存在的局限性及互补性进行总结,提出未来需围绕技术标准化优化、大样本多中心验证及与临床治疗决策深度结合等方向展开研究。本综述旨在为多模态CMR技术在CABG术后临床评估中的规范应用提供参考,助力提升CABG术后患者个体化诊疗及长期预后管理水平。
[Abstract] Coronary artery bypass grafting (CABG) is an important surgical intervention for treating severe coronary artery disease. Postoperative left ventricular remodeling has a profound impact on patients' long-term prognosis, especially regarding the evolution of left ventricular function and the progression of myocardial fibrosis. In recent years, multimodal cardiac magnetic resonance (CMR) has emerged as a crucial tool for studying the mechanisms and prognosis of left ventricular remodeling after CABG, thanks to its non-invasiveness, high resolution, and ability for multi-parameter quantitative assessment. This article systematically reviews the application value of multimodal CMR techniques in postoperative evaluation, focusing on the latest research progress of quantitative myocardial perfusion, late gadolinium enhancement, cardiac magnetic resonance feature tracking, T1/T2 mapping, and oxygen-sensitive cardiovascular magnetic resonance in assessing postoperative myocardial function recovery, fibrosis degree, and predicting prognosis.It also summarizes the limitations and complementarity of current multimodal CMR technology in the research on post-CABG evaluation, and proposes that future research should focus on the optimization of technical standardization, large-sample multicenter verification, and in-depth integration with clinical treatment decisions. This review aims to provide a reference for the standardized application of multimodal CMR techniques in the clinical evaluation of post-CABG patients, and contribute to improving the individualized diagnosis and treatment as well as long-term prognosis management of post-CABG patients.
[关键词] 冠状动脉旁路移植术;左心室重构;氧合敏感心血管磁共振;磁共振成像
[Keywords] coronary artery bypass grafting;left ventricular remodeling;oxygen-sensitive cardiovascular magnetic resonance;magnetic resonance imaging

班超    钱昕毓    牛瑞龙    葛丽红 *  

内蒙古医科大学附属医院影像诊断科,呼和浩特 010050

通信作者:葛丽红,E-mail:Lchest@126.com

作者贡献声明:葛丽红设计本研究方案,对稿件重要内容进行了修改;班超起草和撰写稿件,获取、分析和解释本研究文献;钱昕毓、牛瑞龙获取、分析和解释本研究部分文献,对稿件重要内容进行了修改;班超获得了内蒙古自治区卫生健康科技计划项目的资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 内蒙古自治区卫生健康科技计划项目 202202154
收稿日期:2025-07-29
接受日期:2025-09-30
中图分类号:R445.2  R541.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.10.025
本文引用格式:班超, 钱昕毓, 牛瑞龙, 等. 多模态心脏磁共振在冠状动脉旁路移植术后左心室重构评估中的研究进展[J]. 磁共振成像, 2025, 16(10): 157-163. DOI:10.12015/issn.1674-8034.2025.10.025.

0 引言

       冠状动脉疾病(coronary artery disease,CAD)作为全球心血管疾病致死的首要病因之一,其引发的心肌缺血会逐步导致左心室功能衰退,严重时可进展为心力衰竭,显著降低患者生活质量并缩短生存期,据世界卫生组织统计,全球CAD的发病率为320~410例/10万人[1]。CABG是血运重建的重要手段,其治疗目标不仅是改善心肌供血,更在于通过长期保护心脏功能,优化患者远期预后[2]。但临床中部分患者术后会出现进行性左心室重构,该病理过程与心肌微循环障碍、间质纤维化及心室几何形态改变密切相关[3],是导致术后心功能恶化、远期不良事件发生的关键诱因。传统评估手段如超声心动图在精确捕捉术后心肌结构与功能变化方面存在局限性,难以全面提供重构相关的病理生理信息[4],无法满足术后精确监测需求。CMR技术在评估慢性心肌梗死(chronic myocardial infarction, CMI)后左心室重构及其潜在不良后果方面发挥着关键作用,尤其是T1/T2 mapping成像和心肌应变成像等新兴的CMR定量生物标志物,为早期心肌功能预测、风险评估提供了新的技术手段和临床视角,能增强对术后心肌功能恢复的监测能力,为个性化治疗策略的制定奠定了科学依据。现有部分综述已探讨CMR技术在心血管疾病中的应用,但研究视角与深度仍存在明显局限,已有研究[5]明确了CMR技术在慢性心力衰竭中的评估价值,未覆盖CABG术后这一特定场景,部分研究[6, 7]仅分析单模态CMR在心肌缺血中的应用,缺乏对多模态CMR技术的系统整合分析,也未深入探讨技术应用的局限性与改进方向,难以全面支撑临床实践与后续研究需求,因此亟需一篇全面梳理技术、深挖局限并提可行改进策略的综述提供支撑。

       本综述系统梳理多模态CMR技术在CABG术后评估中的研究进展,通过整合心脏解剖形态、整体及局部心功能和心肌组织特征等多维信息,明确指出当前研究在技术整合、临床转化等方面的局限性,探讨了CMR多模态成像在CABG术前后心功能变化中的应用,旨在推动CABG术后诊疗向“精准化、个体化”方向发展,最终提升患者长期生存质量,为冠心病(coronary heart disease, CHD)患者提供更为精准的诊疗策略。

1 CABG的临床价值与术后评估挑战

       在复杂冠状动脉病变(如左主干病变、多支血管病变)的临床治疗中,血运重建方案的选择直接影响患者预后[8, 9],而CABG与经皮冠状动脉介入(percutaneous coronary intervention, PCI)是目前临床最核心的两大血运重建技术[10, 11, 12]。CABG与经皮冠状动脉介入(percutaneous coronary intervention, PCI)治疗相比,CABG在多支血管病变患者中通常具有更好的长期预后,尤其是在糖尿病患者中[13, 14]。研究表明,拒绝或不符合CABG标准的多血管CAD患者在接受PCI后,心血管不良事件的发生率显著升高[15, 16]。在复杂多支血管病变患者中,CABG的成本效益优于PCI,尤其在资源有限时,既能提高患者的生活质量,又能节省医疗资源[17]。基于SYNTAX试验中1800名随机患者的数据[18],左心室射血分数(left ventricular ejection fraction, LVEF)是决定复杂冠状动脉疾病患者血运重建策略的关键因素。LVEF较低的患者,CABG比PCI更安全;LVEF较高的患者,两种治疗方式中的安全性相似。对于伴有心肌瘢痕的CAD患者[19],术前左心室心肌瘢痕的程度与术后心功能改善密切相关,术前心肌瘢痕较多的患者,其术后心功能改善的概率较低。尽管PCI技术的不断发展且在复杂冠状动脉病变患者中的应用日益增加,但从长期预后来看,部分患者仍更适合选择CABG。SYNTAX Ⅱ研究[20]显示现代PCI技术在三支血管病变患者中的长期预后有所改善,但CABG在长期生存率和主要心血管事件发生率方面更具优势。然而,微血管功能障碍与局部灌注不良,可能会对CABG术后心肌功能的有效恢复产生制约作用。未来研究应重点通过定量灌注成像技术和更精准的术前评估手段来优化CABG的治疗效果,明确术后高风险患者的管理策略。对CABG术后心肌功能的恢复评估,对提高患者的长期预后至关重要。

2 多模态CMR技术在CABG术后评估中的价值与应用进展

       作为无创的心脏结构与功能评估工具,CMR近年来在心血管疾病的诊断、预后评估和风险分层中取得了显著进展[21]。多模态CMR技术通过整合多种成像序列,为CABG术后心脏结构和功能变化提供了前所未有的评估深度。

2.1 CMR电影成像在CABG术后评估中的应用进展

       CABG术后患者心脏功能的恢复情况,是临床评估手术疗效、预测患者远期预后的核心指标[22]。部分患者在术后可能出现心功能不全,表现为左心室收缩和舒张功能障碍,严重影响患者的生活质量与长期生存率[23]。稳态自由进动(steady-state free precession, SSFP)电影序列以其优异的软组织对比和时空分辨率,成为评估心脏结构和功能的参考标准[24]。在CABG术后随访中,动态电影成像不仅能检测整体心功能变化,还能通过节段性室壁运动分析评估血运重建后的局部心肌功能恢复情况,为临床预后判断提供客观依据[25]

       综上,CMR电影成像虽能精确评估CABG术后整体及局部心功能,且可早期识别亚临床心室功能异常,能够在患者出现明显临床症状前,精确识别出细微的心功能改变,为早期评估CABG术后左心室功能恢复潜力、及时调整干预方案提供了可靠依据,为CABG术后疗效与预后判断提供关键依据,但其局限性亦较明确:仅依靠电影成像技术,无法鉴别心肌损伤的性质,即其究竟是心肌瘢痕导致的不可逆损伤,还是微循环障碍引发的可逆性缺血。未来研究可联合钆对比剂延迟增强成像等技术,以明确心肌损伤性质。

2.2 CMR心肌灌注在CABG术后评估中的应用进展

       CABG术后部分患者虽然实现解剖血运重建,但仍存在心肌微循环障碍,导致心肌缺血持续存在,成为左心室重构进展的潜在诱因。这可能与固有冠状动脉慢性总闭塞有关,也可能是由于对比剂通过桥血管达到的时间延迟等因素造成,使得CMR心肌灌注成像的解释变得复杂。CMR心肌灌注定量分析已成为评估CABG术后心肌微循环状态的重要工具,其提供的功能学参数对预后预测具有独特价值[26]。与传统冠状动脉造影仅评估心外膜血管不同,CMR灌注成像可无创量化心肌血流量(myocardial blood flow, MBF)和心肌灌注储备(myocardial perfusion reserve, MPR),从而揭示冠状动脉微血管功能障碍(coronary microvascular dysfunction, CMD)这一影响术后恢复的关键因素。一项研究表明,定量心肌灌注成像对于既往CABG术后患者的风险评估具有显著作用[27]。研究发现,术后MBF和MPR的下降与较高的死亡率和主要心血管不良事件(major adverse cardiovascular events, MACE)风险相关[28],且定量MBF和MPR的额外预后价值优于传统的影像标志物,对于CABG术后患者的风险评估具有重要意义[29, 30]。一项纳入1049例冠状动脉疾病患者的多中心研究进一步验证,MBF和MPR的变化与死亡率和MACE密切相关,尤其是MPR对死亡的预测能力更强[31]。定量心肌灌注成像在检测冠状动脉微血管功能障碍及预测未来不良心血管事件方面的临床价值具有重要意义,为血运重建治疗策略提供了支持[32]。然而,该技术也存在一定的局限性,它无法区分障碍区域是否存在心肌瘢痕,这在一定程度上限制了对心肌损伤情况的全面评估。未来的研究可结合其他成像技术,如CMR电影成像及钆对比剂延迟强化成像等,优势互补,以实现对心肌瘢痕的鉴别,更全面地评估心肌状态。

2.3 CMR 晚期钆增强成像技术在CABG术后评估中的应用进展

       CABG术后心肌存活性评估是判断心功能能否逆转的关键,需要明确梗死心肌区域是否存在存活心肌,这对于判断患者心脏功能恢复潜力及制定后续治疗策略至关重要。因为存活心肌(如冬眠心肌和钝抑心肌)在血运重建后功能可能恢复,而坏死心肌形成的瘢痕组织则无法恢复功能。晚期钆增强(late gadolinium enhancement, LGE)成像技术作为无创性评估心肌瘢痕的金标准[33]。在CABG患者的术前评估和术后随访中具有重要临床价值。该技术通过钆对比剂在坏死或纤维化心肌组织中的特征性滞留,能够精确区分梗死心肌、存活心肌和正常心肌组织,为临床决策提供关键依据。研究表明,术前大量心肌瘢痕与CABG术后较差的心脏功能结果相关,对术后患者预后预测至关重要[34]。一项针对57名缺血性心肌病患者研究显示,术前大量心肌瘢痕与CABG术后较差的心脏功能结果相关,强调了心肌瘢痕作为患者术后恢复和长期预后预测因素的重要性[35]。对LVEF低于35%的CAD患者进行评估,左房容积指数(left atrial volume index, LAVi)与LGE百分比的结合具有较好的预测价值[36]。随着影像技术的发展,LGE的应用领域不断扩展。另一项基于影像组学的深度学习方法显著提高了对微血管阻塞的检出率[37]。LGE成像在识别心肌梗死、纤维化及微血管阻塞方面效果显著,能有效用于突发性心脏骤停的风险分层、缺血性心肌病的血运重建决策及心肌炎和肥厚型心肌病的评估。作为预测心脏疾病进展的工具,LGE为临床实践提供了强有力的支持,应更多地整合到常规诊疗流程中[38]。此外,对312名健康耐力运动员的研究表明,具有缺血性LGE的个体(可能存在未发现的心肌梗死)猝死风险较高,这进一步证明了LGE在检测隐性心肌瘢痕中的重要性[39]。未来,随着3D LGE、黑血LGE等新序列的发展,以及人工智能辅助分析技术的应用,LGE在临床实践中的价值将得到进一步提升。建议在条件允许的医疗中心,将LGE检查纳入CABG患者的常规评估流程,以实现更精准的个体化治疗。该技术仍存在明显的局限性:LGE清晰界定了“不可逆损伤区域”,但无法评估瘢痕周围存活心肌的功能状态,需要进一步捕捉瘢痕周围存活心肌的早期功能异常情况。未来的研究可以推动LEG与CMR电影成像、心肌灌注成像的多模态联合应用,全面掌握瘢痕及周围存活心肌状态,为血运重建决策提供更完整的依据。

2.4 心脏磁共振特征追踪技术在CABG术后评估中的应用进展

       CABG术后患者的心脏功能会发生一系列变化,传统的CMR成像技术虽能提供LVEF等宏观心功能参数,但对早期心功能损害的敏感性有限。而心脏磁共振特征追踪技术(cardiac magnetic resonance feature tracking, CMR-FT)技术通过分析心肌组织像素的时空运动,可精确量化心肌形变[40]。它能测量多个方向的心肌应变(包括径向、环向和纵向应变),以反映心肌在不同应力状态下的形变情况[41]。该技术具有无创性、无需额外成像序列及后处理相对简单的优点,已广泛应用于评估心肌梗死、心肌病和糖尿病患者的心功能损害[42]

2.4.1 CMR-FT的基本原理和应用

       CMR-FT技术通过捕捉并追踪CMR影像中的心肌解剖特征点,定量评估心肌的位移和变形。应变分析进细分为全局纵向应变(global longitudinal strain, GLS)、全局环向应变(global circumferential strain, GCS)和全局径向应变(global radial strain, GRS)。这些参数的定量分析能够准确反映心脏功能的变化,尤其是在收缩功能异常时,如心肌瘢痕、缺血或电传导延迟[43]。一项研究纳入54名健康志愿者和36名LVEF在30%~50%之间的冠心病患者,所有患者在CABG术前后分别接受CMR扫描,用以测量左心室的扭转角和旋转速度。结果显示,CABG术后心脏扭转显著改善,尽管EF未显著变化,但扭转作为心功能的敏感指标,显示出比传统指标更高的敏感度[44]。另一项研究包括45名健康志愿者和45名急性ST段抬高型心肌梗死(acute ST-segment elevation myocardial infarction, STEMI)患者,患者在接受初次PCI后分别于48小时、3个月和6个月接受了3次CMR扫描。分析心脏的短轴图像得出左心室扭转、基底部旋转和心尖部旋转的数据,并比较EF和每搏输出量(stroke volume, SV)的变化。结果表明,左心室扭转能够反映STEMI患者在再血管化治疗后的早期心功能改善,而LVEF和SV等传统指标未能显示显著变化[45]。传统的CMR成像技术能够提供LVEF等宏观心功能参数,但其对早期心功能损害的敏感性有限[46]。CMR-FT技术能够更敏感地检测到CABG术后早期心功能的异常变化,为临床提供更准确的评估,有助于及时调整治疗策略,改善患者预后。多项研究显示,CMR-FT在评估糖尿病、冠心病、心肌梗死及心力衰竭患者的左心室形变方面具有显著优势[47, 48]。CMR-FT不仅能独立于LVEF和LGE-CMR,还能够作为心血管不良事件的预后标志[49]。研究表明,CMR-FT技术在分析双心室形变方面具有较高的可靠性和重复性,可应用于动物模型和小规模临床研究,进一步提升疾病的早期诊断和治疗效果。一项对115名患者的研究表明,CMR-FT参数能够有效评估冠状动脉微血管功能障碍(coronary microvascular dysfunction, CMD)患者的左心室舒张功能,提示CMD可能是射血分数保留型心力衰竭(heart failure with preserved ejection fraction, HFpEF)的前兆[50]

2.4.2 CMR-FT技术的前景

       CMR-FT技术能量化心肌的局部变形能力,为心力衰竭患者提供详细的预后信息。在CABG术后,应变成像技术能够评估心肌收缩功能的恢复情况,并预测心功能的长期改善。研究对105例STEMI患者,通过对比CMR-FT和超声二维斑点追踪技术,发现CMR-FT在心内膜应变的评估上表现出良好的一致性和可靠性,为临床提供了一种可行的评估手段[51]。对92例CMI患者和40例健康对照的研究,证实了左心室应变参数能够检测HFpEF-CMI患者的早期心功能不全,并对区分HFpEF和CMI后的非心力衰竭患者具有潜在价值[52]。有研究通过CMR-FT对冠心病患者左心室扭转进行量化,发现CABG后心肌扭转和旋转情况较术前显著改善,而传统的心功能指标射血分数未显示明显变化,表明CMR-FT得出的左心室扭转对低射血分数患者CABG术后心功能变化敏感,在临床心功能评估方面具有潜力。CMR-FT技术能够敏感地评估心肌在各个方向上的变形情况,为检测早期亚临床心肌功能障碍提供了重要手段,但CMR-FT无法明确功能异常的病因。

2.5 T1/T2 mapping与ECV检测在CABG术后评估中的应用进展

       CABG术后心肌可能发生纤维化,影响心脏功能。T1 mapping通过量化心肌质子纵向弛豫时间,可敏感反映心肌细胞内外环境变化,可检测CABG术后心肌细胞的微结构变化,即使在无明显心肌梗死或水肿的情况下,仍可提供准确的结构评估。在此基础上,结合钆类对比剂可以得出心肌细胞外间隙容积(extracellular volume, ECV),能进一步量化心肌纤维化的程度。CABG术后可能出现心肌水肿,影响正常心脏功能。T2 mapping则通过测量横向弛豫时间,广泛用于检测如心肌炎等炎症性疾病,其反映心肌水含量增加的能力,使其成为早期诊断心肌水肿的关键工具,为CABG术后心肌水肿的早期诊断提供了有力工具。CMR技术中的T1/T2 mapping作为无创性心肌组织特性定量评估工具,近年来在心血管疾病的诊断、风险分层及预后评估中展现出显著临床价值,它突破传统LGE-CMR技术对局灶性病变的局限,为弥漫性心肌病变的精准评估提供了新方法。有研究证明,肥厚型心肌病患者ECV每增加1%,心源性猝死风险上升11%[53]。急性心肌梗死(acute myocardial infarction, AMI)患者中,T1 mapping在CAD患者风险分层和预后评估中的显著优势,研究表明,T1 mapping可检测CABG术后心肌的微结构变化,即使在无明显心肌梗死或水肿的情况下,仍可提供准确的结构评估[54],在CABG后ECV降低>3%与LVEF改善呈显著相关[55, 56]。T2 mapping识别急性心肌水肿早于肌钙蛋白升高,其敏感度分别为92%、78%[57],在急性心肌损伤的早期诊断中敏感性突出,能够全面表征心肌细胞内外环境的变化[58],当心肌含水量增加时(例如炎症或缺血导致的急性损伤),T2值会升高。研究显示,在首次再灌注的AMI患者中,ECV和LGE梗死面积是术后6个月内左心室重构的最佳预测指标,且ECV标测在预测左心室重构方面优于非对比映射CMR和T1 mapping、T2 mapping[59]。一项有175例多中心研究证实,ECV在区分功能性及解剖性左心室室壁瘤方面优于LEG-CMR,首次通过急性期ECV定量证实细胞外基质扩张是左心室室壁瘤形成的核心病理基础,其超越传统LGE的鉴别能力为室壁瘤精准分型提供了新工具[60],对早期干预高危患者、预防心室重构具有重要意义。它能敏感地检测冠状动脉微血管功能障碍,尤其在预测次要不良事件(如心律失常和心功能恶化)方面表现突出。尽管与主要心脏不良事件的关联性并不显著,但其对早期识别微循环缺陷及心肌纤维化具有重要临床意义,可帮助医生优化治疗策略,改善长期预后。一项包含474名患者的研究中,发现ECV与GLS联合评估预测全因死亡或心力衰竭的准确率提升了37%[61]。综上,CMR中的T1/T2 mapping技术通过精准量化心肌纤维化、水肿等病理改变,不仅为心血管疾病的早期诊断和病情监测提供了客观依据,更在风险预测、治疗策略优化及长期预后改善中发挥关键作用,推动了心血管疾病诊疗向“组织病理级”精准化迈进,为个体化干预提供了重要靶点和科学支持。未来研究可探索这些技术与其他CMR技术的联合应用模式,构建更加全面、准确的CABG术后心肌综合评估体系,为临床治疗提供更针对性的治疗。

2.6 氧合敏感CMR在CABG术后评估中的应用进展

       CABG术后患者冠状动脉微血管功能异常,影响心肌氧供和血供,进而影响心脏功能和患者预后。氧合敏感CMR(oxygen-sensitive CMR, OS-CMR)是通过检测组织中脱氧血红蛋白的顺磁性效应,无创量化心肌组织氧合状态的动态变化[62]。其关键在于通过呼吸操控(如过度换气和屏气)或药物应激来诱导血管反应,捕捉心肌氧合水平的变化[63]。目前尚无关于OS-CMR与CABG术后的相关研究,然而CABG术后可能存在心肌氧合异常、微血管功能障碍等问题,OS-CMR有可能用于评估冠状动脉旁路移植术后心肌的氧合状态及微血管功能,为术后的病情监测和治疗方案调整提供依据。OS-CMR在心血管疾病的早期筛查和监测中具有广泛应用,尤其在鉴别缺血性心肌病和非缺血性心肌病中展现出显著优势。它能检测微小的氧合变化,特别是在早期心肌缺血中表现出高敏感度[64]。研究显示,通过呼吸操控结合OS-CMR,能够有效检测CAD患者的心肌氧合缺陷,尤其是在冠状动脉狭窄区域,可显著揭示氧合水平的下降,且无需使用药物扩张剂或对比剂,展现出其良好的临床应用前景。此外,OS-CMR还被用于心脏移植后的血管病变监测,通过无创方式评估移植心脏的冠状动脉功能,及早发现移植心脏血管病变[65]。OS-CMR可实现心血管风险早期预警[66],研究表明,OS-CMR可用于评估那些无冠状动脉狭窄但表现出心血管症状的患者,尤其是微血管功能障碍的患者。OS-CMR能够检测这些患者的区域性心肌氧合下降,即使他们的冠状动脉未显示出明显狭窄[67]。这为解释这些患者的临床症状提供了新的视角,也为未来的临床应用提供了潜力。

       OS-CMR的主要优势在于其无创性、无辐射性、无需造影剂或药物应激,且对微血管功能具有高敏感性[68]。研究还显示,随着年龄增长,能够通过OS-CMR检测到健康老龄化过程中心肌氧合储备的整体下降,这为研究老年人群的心血管健康提供了重要的生理见解。OS-CMR不仅能够帮助建立老年人群的参考标准,还能为心血管疾病的早期诊断和治疗提供有力支持[69]。对于CABG术后患者,OS-CMR在评估CABG术后炎症反应方面也具有潜力,炎症是CABG术后心肌重构和预后不良的重要因素,OS-CMR能够识别心肌内的氧合水平变化,有助于早期发现炎症并制订相应的治疗策略。OS-CMR能更早识别传统灌注成像难以捕捉的心肌微循环氧合异常,检测局部心肌氧储备不足,进一步完善了从“解剖-血流-氧合-功能”的全链条评估。未来研究可开展OS-CMR在CABG术后评估的临床研究,探索其在检测术后心肌氧合异常、微血管功能障碍方面的效能,结合其他CMR技术,如电影成像、心肌灌注成像和LGE成像,构建多模态评估体系。

3 小结与展望

       综上,多模态CMR各技术在CABG术后左心室重构评估中存在单独应用的局限性,需相互补充形成完整评估体系:电影成像可监测宏观心功能,但无法区分心功能异常是心肌瘢痕还是微循环障碍所致;定量心肌灌注成像能检测微血管功能障碍、辅助血运重建策略制订,但无法识别障碍区域是否存在心肌瘢痕;LGE可精确界定不可逆瘢痕区域,却难以评估瘢痕周围存活心肌的功能状态;CMR-FT能敏感捕捉早期亚临床心肌功能异常,却无法明确功能异常的病因;T1/T2 mapping技术则可突破LGE局限,实现弥漫性心肌病变的精确量化,弥补了弥漫性病理改变的评估空白。此外,OS-CMR凭借无需注射对比剂、直接监测心肌氧合状态的动态变化,成为多模态CMR评估体系的重要补充,可进一步完善心肌组织成分评估维度为早期预后预测与个体化治疗方案制订提供更全面的影像学依据。多模态CMR已为CABG术后管理带来核心范式转变:其一,实现评估维度从解剖结构评估向心肌功能与病理状态评估的跨越,更贴合术后心肌修复与心功能恢复的核心需求;其二,推动评估尺度从宏观心功能监测向微观病理量化的延伸,可早期捕捉传统检查难以识别的亚临床病变。其三,促成评估目标从晚期器质性病变诊断向早期预后风险预测的升级,为术后干预窗口前移提供关键依据。

[1]
TIMMIS A, KAZAKIEWICZ D, TOWNSEND N, et al. Global epidemiology of acute coronary syndromes[J]. Nat Rev Cardiol, 2023, 20(11): 778-788. DOI: 10.1038/s41569-023-00884-0.
[2]
ZHU Y P, ZHANG W, DIMAGLI A, et al. Antiplatelet therapy after coronary artery bypass surgery: five year follow-up of randomised DACAB trial[J/OL]. BMJ, 2024, 385: e075707 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38862179/. DOI: 10.1136/bmj-2023-075707.
[3]
WANG H, ZHANG B, WU W C, et al. Change of left ventricular geometric pattern in patients with preserved ejection fraction undergoing coronary artery bypass grafting[J]. J Cardiovasc Transl Res, 2022, 15(6): 1444-1454. DOI: 10.1007/s12265-022-10249-6.
[4]
ZOZOMOVÁ-LIHOVÁ J, ŠLENKER M, ŠINGLIAROVÁ B, et al. Multiple hybrid zones involving four Cardamine species and their triploid progeny: watching allopolyploid speciation in action?[J/OL]. New Phytol, 2025 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/40974214/. DOI: 10.1111/nph.70575.
[5]
PEZZINI S, DAUS F, GALLI G, et al. Cardiac magnetic resonance in heart failure: diagnostic and prognostic assessments[J/OL]. J Cardiovasc Dev Dis, 2025, 12(6): 200 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/40558635/. DOI: 10.3390/jcdd12060200.
[6]
MELONI A, NUGARA C, DE LUCA A, et al. Absence of long-term incremental prognostic value of inducible wall motion abnormalities on dipyridamole stress CMR in patients with suspected or known coronary artery disease[J]. Eur Radiol, 2025, 35(3): 1687-1696. DOI: 10.1007/s00330-024-11229-x.
[7]
RADJENOVIC A, CHRISTODOULOU A G. Editorial: Simultaneous multiparametric and multidimensional cardiovascular magnetic resonance imaging[J/OL]. Front Cardiovasc Med, 2023, 10: 1205994 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/37342436/. DOI: 10.3389/fcvm.2023.1205994.
[8]
EMAMZADEHASHEMI K R, KHANGHAH A G, AZIZI A, et al. Quality of life and activities of daily living one year after Coronary Artery Bypass Graft (CABG) surgery: a cross-sectional study[J/OL]. J Cardiothorac Surg, 2024, 19(1): 367 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38915074/. DOI: 10.1186/s13019-024-02848-y.
[9]
LAWTON J S, TAMIS-HOLLAND J E, BANGALORE S, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2022, 79(2): 197-215. DOI: 10.1016/j.jacc.2021.09.005.
[10]
KARIM M ALI. A systematic review and meta-analysis of percutaneous coronary intervention (PCI) and coronary bypass grafting (CABG) outcomes in indigenous vs. non-indigenous australians[J/OL]. Cureus, 2024 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38741877/. DOI: 10.7759/cureus.58172.
[11]
CREA F. Percutaneous coronary intervention vs. coronary artery bypass graft: the Saga continues[J]. Eur Heart J, 2022, 43(13): 1273-1276. DOI: 10.1093/eurheartj/ehac118.
[12]
HWEIDI I M, ZYTOON A M, HAYAJNEH A A, et al. The effect of intraoperative glycemic control on surgical site infections among diabetic patients undergoing coronary artery bypass graft (CABG) surgery[J/OL]. Heliyon, 2021, 7(12): e08529 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/34926859/. DOI: 10.1016/j.heliyon.2021.e08529.
[13]
KOSHY A, GIUSTINO G, SARTOTI S, et al. Outcomes following percutaneous coronary intervention (PCI) in patients with multivessel coronary artery disease declining or non-eligible for coronary artery bypass graft surgery (CABG)[J/OL]. Heart Lung Circ, 2023, 32: S443 [2025-07-28]. https://www.heartlungcirc.org/article/S1443-9506(23)03940-9/fulltext. DOI: 10.1016/j.hlc.2023.06.674.
[14]
DUAN L W, LEE M S, DOCTOR J N, et al. Addressing unmeasured confounding bias with a prior knowledge guided approach: coronary artery bypass grafting (CABG) versus percutaneous coronary intervention (PCI) in patients with stable ischemic heart disease[J]. Health Serv Outcomes Res Methodol, 2023, 23(1): 59-79. DOI: 10.1007/s10742-022-00282-y.
[15]
FAKHRZAD N, BAROUNI M, GOUDARZI R, et al. Cost-effectiveness analysis of coronary arteries bypass grafting (CABG) and percutaneous coronary intervention (PCI) through drug stent in Iran: a comparative study[J/OL]. Cost Eff Resour Alloc, 2023, 21(1): 16 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/36793078/. DOI: 10.1186/s12962-023-00426-y.
[16]
SERRUYS P, MASUDA S, NINOMIYA K, et al. TCT-104 impact of left ventricular ejection fraction (EF) on 10-year mortality after percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG): is CABG safer than PCI in all patients with reduced EF?[J/OL]. J Am Coll Cardiol, 2022, 80(12): B42-B43 [2025-07-28] https://www.jacc.org/doi/10.1016/j.jacc.2022.08.126. DOI: 10.1016/j.jacc.2022.08.126.
[17]
FU W, ZHAO Y, ZHANG K, et al. Retrospective, observational analysis of cardiac function associated with global preoperative myocardial scar in patients with ischemic cardiomyopathy after coronary artery bypass grafting[J]. J Thorac Dis, 2022, 14(11): 4319-4328. DOI: 10.21037/jtd-22-846.
[18]
BANNING A P, SERRUYS P, DE MARIA G L, et al. Five-year outcomes after state-of-the-art percutaneous coronary revascularization in patients with de novo three-vessel disease: final results of the SYNTAX II study[J]. Eur Heart J, 2022, 43(13): 1307-1316. DOI: 10.1093/eurheartj/ehab703.
[19]
NTINOPOULOS V, PAPADOPOULOS N, ODAVIC D, et al. Ejection fraction recovery after coronary artery bypass grafting for ischemic cardiomyopathy[J]. Thorac Cardiovasc Surg, 2022, 70(7): 544-548. DOI: 10.1055/s-0041-1736246.
[20]
班超, 马雪英, 王坚, 等. 基于MRI对冠状动脉旁路移植术前后心脏功能改变的对比研究[J]. 磁共振成像, 2023, 14(3): 95-99, 116. DOI: 10.12015/issn.1674-8034.2023.03.016.
BAN C, MA X Y, WANG J, et al. Comparative study of cardiac function changes before and after coronary artery bypass grafting based on MRI[J]. Chin J Magn Reson Imag, 2023, 14(3): 95-99, 116. DOI: 10.12015/issn.1674-8034.2023.03.016.
[21]
唐韵, 赵世华. 2022 SCMR心血管磁共振检查报告指南解读[J]. 磁共振成像, 2022, 13(11): 42-47, 52. DOI: 10.12015/issn.1674-8034.2022.11.008.
TANG Y, ZHAO S H. The interpretation of 2022 Society for Cardiovascular Magnetic Resonance(SCMR) guidelines for reporting cardiovascular magnetic resonance examinations[J]. Chin J Magn Reson Imag, 2022, 13(11): 42-47, 52. DOI: 10.12015/issn.1674-8034.2022.11.008.
[22]
RAMAN S V, MARKL M, PATEL A R, et al. 30-minute CMR for common clinical indications: a Society for Cardiovascular Magnetic Resonance white paper[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 13 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35232470/. DOI: 10.1186/s12968-022-00844-6.
[23]
GAROT J, PEZEL T. What if a patient has CAD? go to CMR![J]. Arch Cardiovasc Dis, 2021, 114(12): 765-767. DOI: 10.1016/j.acvd.2021.10.002.
[24]
ASSUNCAO-JR A N, ROCHITTE C E, KWONG R Y, et al. Bone marrow cells improve coronary flow reserve in ischemic nonrevascularized myocardium: a MiHeart/IHD quantitative perfusion CMR substudy[J]. JACC Cardiovasc Imaging, 2022, 15(5): 812-824. DOI: 10.1016/j.jcmg.2021.12.011.
[25]
SERAPHIM A, DOWSING B, RATHOD K S, et al. Quantitative myocardial perfusion predicts outcomes in patients with prior surgical revascularization[J]. J Am Coll Cardiol, 2022, 79(12): 1141-1151. DOI: 10.1016/j.jacc.2021.12.037.
[26]
ASSANTE R, ZAMPELLA E, D'ANTONIO A, et al. Impact on cardiovascular outcome of coronary revascularization-induced changes in ischemic perfusion defect and myocardial flow reserve[J]. Eur J Nucl Med Mol Imaging, 2024, 51(6): 1612-1621. DOI: 10.1007/s00259-023-06588-4.
[27]
ZHU E J, ZHANG C, WANG S W, et al. The association between myocardial scar and the response of moderate ischemic mitral regurgitation to isolated coronary artery bypass grafting[J/OL]. Ann Transl Med, 2021, 9(16): 1328 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/34532465/. DOI: 10.21037/atm-21-3622.
[28]
PEZEL T, HOVASSE T, LEFÈVRE T, et al. Prognostic value of stress CMR in symptomatic patients with coronary stenosis on CCTA[J]. JACC Cardiovasc Imaging, 2022, 15(8): 1408-1422. DOI: 10.1016/j.jcmg.2022.03.008.
[29]
KNOTT K D, SERAPHIM A, AUGUSTO J B, et al. The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping[J]. Circulation, 2020, 141(16): 1282-1291. DOI: 10.1161/CIRCULATIONAHA.119.044666.
[30]
SAKUMA H, ISHIDA M. Advances in myocardial perfusion MR imaging: physiological implications, the importance of quantitative analysis, and impact on patient care in coronary artery disease[J]. Magn Reson Med Sci, 2022, 21(1): 195-211. DOI: 10.2463/mrms.rev.2021-0033.
[31]
KWONG R Y, CARDOSO R, JEROSCH-HEROLD M. Quantitative CMR perfusion in patients after CABG: emerging and promising evidence[J]. J Am Coll Cardiol, 2022, 79(12): 1152-1154. DOI: 10.1016/j.jacc.2022.01.025.
[32]
HAAF P, SEGEROTH M, BADERTSCHER P, et al. CMR 2-43 CMR LGE for assessment of accuracy of the ECG criteria of the fourth universal definition of myocardial infarction[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100125 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00116-9/fulltext. DOI: 10.1016/j.jocmr.2024.100125.
[33]
ARJOMANDI RAD A, TSERIOTI E, MAGOULIOTIS D E, et al. Assessment of myocardial viability in ischemic cardiomyopathy with reduced left ventricular function undergoing coronary artery bypass grafting[J/OL]. Clin Cardiol, 2024, 47(7): e24307 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38953367/. DOI: 10.1002/clc.24307.
[34]
CHEN W, LI S, ZHAO Y, et al. Prognostic value of left atrial volume and late gadolinium enhancement on cardiac magnetic resonance imaging in patients with coronary artery disease and severe left ventricular dysfunction underwent CABG[J]. Acad Radiol, 2024, 31(7): 2695-2703. DOI: 10.1016/j.acra.2024.03.034.
[35]
SANTINHA J, CORREIA T. CMR 2-58 RAMI: radiomics for LGE assessment of myocardial infarction and microvascular obstruction[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100140 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00131-5/fulltext. DOI: 10.1016/j.jocmr.2024.100140.
[36]
GONÇALVES T, PEZEL T, GAROT P, et al. CMR 2-76 prognostic impact of the extent, location, and pattern of late gadolinium enhancement (LGE) in dilated cardiomyopathy (DCM) and isolated left ventricular dilation patients[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100158 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00149-2/fulltext. DOI: 10.1016/j.jocmr.2024.100158.
[37]
UNGER A, TOUPIN S, GAROT P, et al. CMR 3-84 icm-lge-score: 5-years risk score to predict all-cause death using LGE features in ischemic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100188 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00179-0/fulltext. DOI: 10.1016/j.jocmr.2024.100188.
[38]
LUND G K, LEPTIN S, RAGAB H, et al. Prognostic relevance of ischemic late gadolinium enhancement in apparently healthy endurance athletes: a follow-up study over 5 years[J/OL]. Sports Med Open, 2024, 10(1): 13 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38282168/. DOI: 10.1186/s40798-024-00680-1.
[39]
KONG H H, CAO J X, TIAN J F, et al. Evaluation of left ventricular diastolic function in patients with coronary microvascular dysfunction via cardiovascular magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2023, 13(10): 7281-7293. DOI: 10.21037/qims-23-47.
[40]
FUKAMACHI D, YAMADA A, OHGAKU A, et al. Protective effect of the Impella on the left ventricular function after acute broad anterior wall ST elevation myocardial infarctions with cardiogenic shock: cardiovascular magnetic resonance imaging strain analysis[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 201 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35484492/. DOI: 10.1186/s12872-022-02632-7.
[41]
LI X M, YAN W F, SHI K, et al. The worsening effect of paroxysmal atrial fibrillation on left ventricular function and deformation in type 2 diabetes mellitus patients: a 3.0 T cardiovascular magnetic resonance feature tracking study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 90 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/38448890/. DOI: 10.1186/s12933-024-02176-4.
[42]
KIHLBERG J, GUPTA V, HARALDSSON H, et al. Clinical validation of three cardiovascular magnetic resonance techniques to measure strain and torsion in patients with suspected coronary artery disease[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 83 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/33280612/. DOI: 10.1186/s12968-020-00684-2.
[43]
CHENG N, CHENG L Q, WANG R, et al. The improvement of torsion assessed by cardiovascular magnetic resonance feature tracking after coronary artery bypass grafting: a sensitive index of cardiac function[J/OL]. Heart Surg Forum, 2017, 20(1): E026-E031 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/28263147/. DOI: 10.1532/hsf.1655.
[44]
SHAABAN M, TANTAWY S, ELKAFRAWY F, et al. Kiosk 1R-TB-02 the role of ventricular torsion in the assessment of left ventricle functional recovery following acute ST segment elevation myocardial infarction: a cardiac magnetic resonance feature tracking study[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100382 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00373-9/fulltext. DOI: 10.1016/j.jocmr.2024.100382.
[45]
FISCHER K, OBRIST S J, ERNE S A, et al. Feature tracking myocardial strain incrementally improves prognostication in myocarditis beyond traditional CMR imaging features[J]. JACC Cardiovasc Imaging, 2020, 13(9): 1891-1901. DOI: 10.1016/j.jcmg.2020.04.025.
[46]
BATOUTY N M, TAWFIK A M, SOBH D M, et al. Global and regional cardiac magnetic resonance feature tracking left ventricular strain analysis in assessing early myocardial disease in β thalassemia major patients[J/OL]. J Cardiovasc Imaging, 2024, 32(1): 18 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/39095928/. DOI: 10.1186/s44348-024-00026-1.
[47]
GEORGE K, GORCILOV J, HECKER T, et al. Gender differences in the evolution of echocardiographic HFpEF characteristics through age deciles: is menopause an inflection point?[J/OL]. Eur Heart J, 2024, 45(Supplement_1): ehae666.783 [2025-07-28]. https://academic.oup.com/eurheartj/article/45/Supplement_1/ehae666.783/7839161?login=false. DOI: 10.1093/eurheartj/ehae666.783.
[48]
FISCHER K, OBRIST S J, ERNE S A, et al. Feature tracking myocardial strain incrementally improves prognostication in myocarditis beyond traditional CMR imaging features[J]. JACC Cardiovasc Imaging, 2020, 13(9): 1891-1901. DOI: 10.1016/j.jcmg.2020.04.025.
[49]
HAO X Y, WU J, ZHU L N, et al. Evaluation of myocardial strain in patients with subclinical hypertrophic cardiomyopathy and subclinical Hypertensive Heart Disease using Cardiac magnetic resonance feature tracking[J]. Int J Cardiovasc Imaging, 2023, 39(11): 2237-2246. DOI: 10.1007/s10554-023-02930-x.
[50]
WANG C F, WANG L L, YIN J, et al. Direct comparison of coronary microvascular obstruction evaluation using CMR feature tracking and layer-specific speckle tracking echocardiography in STEMI patients[J]. Int J Cardiovasc Imaging, 2024, 40(2): 237-247. DOI: 10.1007/s10554-023-02998-5.
[51]
LI H, ZHENG Y, PENG X, et al. Heart failure with preserved ejection fraction in post myocardial infarction patients: a myocardial magnetic resonance (MR) tissue tracking study[J]. Quant Imaging Med Surg, 2023, 13(3): 1723-1739. DOI: 10.21037/qims-22-793.
[52]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[53]
DALLAZEN A R, REZENDE P C, HUEB W, et al. Myocardial microstructure assessed by T1 mapping after on-pump and off-pump coronary artery bypass grafting[J]. J Thorac Dis, 2023, 15(6): 3208-3217. DOI: 10.21037/jtd-23-101.
[54]
DALLAZEN A R, HUEB W, REZENDE P C, et al. P1832Myocardial injury assessed by T1 mapping after on-pump and off-pump coronary artery bypass grafting. a pre-specified analysis of mass V trial[J/OL]. Eur Heart J, 2019, 40(Supplement_1): ehz748.0584 [2025-07-28]. https://academic.oup.com/eurheartj/article-abstract/40/Supplement_1/ehz748.0584/5598163?login=false. DOI: 10.1093/eurheartj/ehz748.0584.
[55]
DALLAZEN A R, BOROS G A B, RIBAS F F, et al. Myocardial injury assessed by t1 mapping after on-pump and off-pump coronary artery bypass grafting: a pre-specified analysis of mass v trial[J/OL]. J Am Coll Cardiol, 2019, 73(9): 179 [2025-07-28]. https://www.jacc.org/doi/10.1016/S0735-1097%2819%2930787-9. DOI: 10.1016/S0735-1097(19)30787-9.
[56]
VERMES E, PANTALÉON C, AUVET A, et al. Cardiovascular magnetic resonance in heart transplant patients: diagnostic value of quantitative tissue markers: T2 mapping and extracellular volume fraction, for acute rejection diagnosis[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 59 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/30153847/. DOI: 10.1186/s12968-018-0480-9.
[57]
DE LUCA G, PALMISANO A, CAMPOCHIARO C, et al. Cardiac magnetic resonance in systemic sclerosis myocarditis: the value of T2 mapping to detect myocardial inflammation[J]. Rheumatology (Oxford), 2022, 61(11): 4409-4419. DOI: 10.1093/rheumatology/keac098.
[58]
CHEN H, ERLEY J, MUELLERLEILE K, et al. Contrast-enhanced cardiac MRI is superior to non-contrast mapping to predict left ventricular remodeling at 6 months after acute myocardial infarction[J]. Eur Radiol, 2024, 34(3): 1863-1874. DOI: 10.1007/s00330-023-10100-9.
[59]
CHEN B H, WU C W, AN D A, et al. Myocardial extracellular volume quantified by cardiac magnetic resonance predicts left ventricular aneurysm following acute myocardial infarction[J]. Eur Radiol, 2023, 33(1): 283-293. DOI: 10.1007/s00330-022-08995-x.
[60]
SENO A, ANTIOCHOS P, LICHTENFELD H, et al. Prognostic value of T1 mapping and feature tracking by cardiac magnetic resonance in patients with signs and symptoms suspecting heart failure and No clinical evidence of coronary artery disease[J/OL]. J Am Heart Assoc, 2022, 11(2): e020981 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35023344/. DOI: 10.1161/JAHA.121.020981.
[61]
PLASA G, HILLIER E, LUU J, et al. Automated data transformation and feature extraction for oxygenation-sensitive cardiovascular magnetic resonance images[J]. J Cardiovasc Transl Res, 2024, 17(3): 705-715. DOI: 10.1007/s12265-023-10474-7.
[62]
LINDSAY K, HILLIER E, LUU J, et al. Kiosk 11R-TA-08 the breathing-induced myocardial oxygenation reserve as a marker for vascular function in metabolic syndrome[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100301 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00292-8/fulltext. DOI: 10.1016/j.jocmr.2024.100301.
[63]
FISCHER K, GUENSCH D P, JUNG B, et al. Insights into myocardial oxygenation and cardiovascular magnetic resonance tissue biomarkers in heart failure with preserved ejection fraction[J/OL]. Circ Heart Fail, 2022, 15(4): e008903 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/35038887/. DOI: 10.1161/circheartfailure.121.008903.
[64]
FISCHER K, YAMAJI K, LUESCHER S, et al. Feasibility of cardiovascular magnetic resonance to detect oxygenation deficits in patients with multi-vessel coronary artery disease triggered by breathing maneuvers[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 31 [2025-07-28]. https://pubmed.ncbi.nlm.nih.gov/29730991/. DOI: 10.1186/s12968-018-0446-y.
[65]
SUGIYAMA T, KANAJI Y, HOSHINO M, et al. Prognostic value of integrated assessment of cardiac magnetic resonance-derived global coronary flow reserve and cardiopulmonary exercise testing-derived peak oxygen consumption in patients with acute myocardial infarction[J]. Circ Rep, 2024, 6(7): 255-262. DOI: 10.1253/circrep.CR-24-0044.
[66]
WEBERLING L, SEITZ S, SALATZKI J, et al. Kiosk 1R-TB-03 safety and outcome of patients with left ventricular thrombus undergoing dobutamine or adenosine stress cardiac magnetic resonance imaging[J/OL]. J Cardiovasc Magn Reson, 2024, 26: 100383 [2025-07-28]. https://www.journalofcmr.com/article/S1097-6647(24)00374-0/fulltext. DOI: 10.1016/j.jocmr.2024.100383.
[67]
HILLIER E, FRIEDRICH M G. The potential of oxygenation-sensitive CMR in heart failure[J]. Curr Heart Fail Rep, 2021, 18(5): 304-314. DOI: 10.1007/s11897-021-00525-y.
[68]
VAN HEESWIJK R B, HULLIN R. Oxygen-sensitive magnetic resonance imaging: a noninvasive step forward for diagnosing vasculopathy in the cardiac allograft[J]. Transplantation, 2021, 105(8): 1664-1665. DOI: 10.1097/tp.0000000000003420.
[69]
PLASA G, HILLIER E, LUU J, et al. Machine learning based analysis of oxygenation-sensitive cmr images in patients with suspected coronary artery stenosis[J/OL]. J Am Coll Cardiol, 2023, 81(8): 1407 [2025-07-28]. https://www.jacc.org/doi/10.1016/S0735-1097%2823%2901851-X. DOI: 10.1016/S0735-1097(23)01851-X.

上一篇 心血管影像在肿瘤心脏病学中的应用及研究进展
下一篇 基于CMR的影像组学在心脏疾病中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2