分享:
分享到微信朋友圈
X
综述
影像学评估肝脏储备功能的研究进展
张益铭 郭顺林

Cite this article as: ZHANG Y M, GUO S L. Research progress in imaging evaluation of liver reserve function[J]. Chin J Magn Reson Imaging, 2025, 16(10): 184-190, 207.本文引用格式:张益铭, 郭顺林. 影像学评估肝脏储备功能的研究进展[J]. 磁共振成像, 2025, 16(10): 184-190, 207. DOI:10.12015/issn.1674-8034.2025.10.029.


[摘要] 肝脏储备功能是肝脏在承受损伤或负荷时维持生理功能的能力,其准确评估对于制订个体化治疗方案、降低术后并发症及提高患者生存率具有重要意义。目前,传统临床评估方法(如Child-Pugh评分)存在单一、主观性强等局限性,难以全面反映肝脏的实际储备能力。近年来,医学影像技术在评估肝脏储备功能方面取得显著进展,不同成像模态各具优势与局限。例如,超声成像具备实时动态观察的能力,但空间分辨率有限;计算机断层扫描(computed tomography, CT)提供详细的解剖结构信息,但辐射剂量较高;MRI凭借优越的软组织对比度和多样化的功能成像序列显著提高评估精度,尤其是多模态MRI可为肝脏微循环和纤维化评估提供更详尽的信息,但成本较高。尽管已有部分综述对影像评估肝功能进行了总结,但多数仍集中于较早的技术进展,缺乏对融合成像、人工智能(artificial intelligence, AI)辅助分析等新兴多模态影像技术在肝脏储备功能中应用的系统评述与跨模态比较,内容覆盖也相对单一。因此,本综述将重点围绕近三年来的研究进展,从多角度对比超声、CT、MRI及AI等技术的优势与局限性,并重点探讨多模态MRI与AI技术在肝脏储备功能评估中的创新应用价值,以期为临床实践提供更为精准与集成化的影像学依据。
[Abstract] Liver reserve function refers to the capacity of the liver to maintain its physiological functions under stress or injury, the accurate assessment of which is critical for developing individualized treatment strategies, reducing postoperative complications, and improving patient survival. Conventional clinical evaluation methods, such as the Child-Pugh score, are limited by their singularity and subjectivity, failing to comprehensively reflect the actual functional reserve of the liver. In recent years, medical imaging technologies have demonstrated significant advancements in the evaluation of liver reserve function, with various modalities offering distinct advantages and limitations. For instance, ultrasound imaging allows real-time dynamic observation but suffers from limited spatial resolution. Computed tomography (CT) provides detailed anatomical information but involves considerable radiation exposure. Magnetic resonance imaging (MRI), with its superior soft-tissue contrast and diverse functional sequences, particularly multimodal MRI, has markedly improved assessment accuracy by offering detailed insights into liver microcirculation and fibrosis, albeit at a higher cost. Although several reviews have summarized imaging-based liver function assessment, most focus on earlier technological developments and lack a systematic discussion and cross-modality comparison of emerging multimodal imaging techniques, such as fusion imaging and artificial intelligence (AI)-assisted analysis, in the context of liver reserve function. Coverage remains relatively narrow in scope. Therefore, this review aims to systematically evaluate and compare the strengths and limitations of ultrasound, CT, MRI, and AI-based methodologies, with emphasis on advances over the past three years. We will highlight innovative applications of multimodal MRI and AI technologies in assessing liver reserve function, intending to provide more precise and integrated imaging-based evidence for clinical practice.
[关键词] 肝脏储备功能;影像学技术;磁共振成像;计算机断层扫描;超声;人工智能
[Keywords] liver reserve function;imaging techniques;magnetic resonance imaging;computed tomography;ultrasound;artificial intelligence

张益铭 1   郭顺林 1, 2*  

1 兰州大学第一临床医学院,兰州 730030

2 兰州大学第一医院放射科,兰州 730030

通信作者:郭顺林,E-mail:guoshl@lzu.edu.cn

作者贡献声明:郭顺林拟定本综述的写作思路,并对稿件重要内容进行了修改;张益铭设计、起草和撰写稿件,获取、分析并解释本综述的参考文献;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-07-14
接受日期:2025-10-10
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.10.029
本文引用格式:张益铭, 郭顺林. 影像学评估肝脏储备功能的研究进展[J]. 磁共振成像, 2025, 16(10): 184-190, 207. DOI:10.12015/issn.1674-8034.2025.10.029.

0 引言

       肝细胞癌(hepatocellular carcinoma, HCC)是全球第六大常见恶性肿瘤及第三大癌症致死原因[1]。对多数不适于肝移植的患者,手术切除是延长生存的主要手段。然而,肝切除术后肝衰竭(post-hepatectomy liver failure, PHLF)是导致围手术期死亡的主要原因。肝脏储备功能是肝脏在承受损伤或负荷时维持生理功能的能力,其精准评估直接关系到HCC治疗决策与术后死亡率控制[2]。传统评估方法如Child-Pugh评分和吲哚菁绿(indocyanine green, ICG)清除试验具有一定主观性,且难以全面反映肝功能区域性差异,部分Child-Pugh A级患者术后仍发生PHLF[3]。此外,慢性肝病患者的肝功能常呈区域性不均一分布[4]。因此,开发更客观、全面的肝功能评估手段成为当前的迫切临床需求。

       影像学技术可通过同步获取功能与解剖信息,为术前预测安全残余肝体积提供不可替代的价值[5]。近年来,多参数MRI、人工智能(artificial intelligence, AI)等技术不断更新,显著提高了肝脏储备功能评估的精度与个体化水平。尽管已有综述对影像学评估肝功能进行探讨,但随着多模态融合成像、AI辅助技术等方面的快速迭代,现有综述仍缺乏对这些新进展及时、系统性的比较与整合。本综述旨在系统梳理近年来影像学在评估肝脏储备功能方面的最新进展,重点阐明多参数MRI和AI等技术在预测HCC患者术后风险中的核心作用。研究表明[6],MRI通过肝胆期特异性成像评估肝细胞摄取功能,显著提升了PHLF预测准确性。本文通过系统分析该领域当前的研究进展与技术挑战,旨在为临床实践提供更新的循证依据,从而促进影像评估策略的进一步优化与个体化治疗水平的提升。

1 计算机断层扫描

       基于计算机断层扫描(computed tomography, CT)的无创肝功能评估技术迅速发展,其在方法学与验证方面取得多项突破:首先,在多期相参数预测中,CT衍生的碘洗脱率与吲哚菁绿15分钟清除率(ICG-R15)呈负相关,预测严重肝功能障碍(ICG-R15≥20%)时曲线下面积(area under the curve, AUC)达0.845,优于细胞外体积分数(extracellular volume fraction, ECV,AUC=0.719)及肝脾体积参数。多变量分析确立碘洗脱率及肝脾体积参数为独立预测因子,且其联合模型效能显著提升(AUC=0.924)[7],提示未来无创评估在发展多参数、多模态的整合策略方面的重要性。双能CT定量分析的价值定位研究进一步揭示了平衡期ECV虽与肝纤维化相关性弱,但与ALBI分级显著相关,且等级间差异显著,明确其核心价值在于肝功能评估而非纤维化诊断[8]。这对于指导临床医生正确解读和利用ECV结果至关重要。其次,光谱CT和双层光谱CT提供了先进的后处理能力,包括与纤维化分期和肝功能相关的肝实质碘密度和ECV的量化[9]。这些技术提高了图像质量,减少了辐射剂量,并提供了新的诊断信息,例如更好地分期纤维化和预测高阶段疾病[10]。此外,CT灌注成像(CT perfusion imaging, CTP)定量评估肝脏微循环和血流动力学,提供肝动脉灌注、门静脉灌注、血流量、血容量和肝灌注指数等参数。这些参数与已建立的肝功能测试相关(如ICG-R15、Child-Pugh 评分),可以区分正常、纤维化和肝硬化肝状态[11]。CTP对于术前评估、预测手术耐受性和监测经导管动脉化疗栓塞术等干预措施后的变化非常有价值[12]。研究一致表明,随着肝脏病变的恶化,血流量、血容量和门静脉灌注降低,而肝灌注指数增加,反映出储备功能受损[13]

       然而,现有技术仍存在诸多局限,包括静态参数缺陷(如ECV无法反映动态血流)、功能评估存在盲区(难量化肝细胞代谢活性)、临床验证不足及技术异质性(结果依赖特定协议、受病因/设备影响)。未来需结合其他指标或优化模型以突破瓶颈。

2 核医学成像

       传统影像学方法在功能评估、早期诊断及分子显像方面存在局限,核医学通过以下技术多维突破弥补不足:(1)分子显像剂开发方面,正电子发射断层成像(positron emission tomography, PET)尤其是基于新型放射性示踪剂的策略,为肝功能的无创评估提供了有力工具,如:[68Ga]Ga-NODAGA-NonaLysan展现出高亲和力与优异肝摄取率,但半乳糖替换为GalNAc后脱靶效应显著增强(肺/骨摄取上升),原因尚不明[14],提示分子结构的细微修饰可能对体内分布产生不可预测的重大影响;[68Ga]Ga-BP-IDA成功实现GMP标准化合成(纯度≥95%),注射15分钟快速显影胆道,精准鉴别肝癌低摄取区(肿瘤SUVmax 7.8 vs. 正常肝组织33.2)[15]。基于此类示踪剂的动态PET可提供多种定量指标(如分布体积、功能肝比),这些指标可用于评估区域肝功能储备,且其评估结果与肝损伤和功能的生化标志物具有相关性。(2)功能量化策略优化方面,MII等[16]研究表明,联合mALBI、ICG-R15与99mTc-GSA闪烁显像参数LHL15可增强PHLF预测精度;但需注意,当ICG-R15≥20%时,其与LHL15的负相关性显著减弱,此时应以LHL15为核心评估指标。为严重肝功能障碍患者明确了核心功能评估指标的选择依据。(3)临床应用方面,动态[99mTc]Tc-mebrofenin SPECT/CT中,肝功能滤过率临界值2.72%/min/m2预测效能突出(AUC=0.947)[17],为安全肝切除提供了高精度的功能阈值;肝胆闪烁显像(hepatobiliary scintigraphy, HBS)揭示肝硬化患者放疗后功能代偿率仅2%[18],且功能不足时PHLF风险达17%(严格阈值8.5%/min可降至7%/min)[19];SPECT功能肝体积(中位数1117 cc)显著小于CT解剖体积(中位数1584 cc),提示阶梯剂量约束可突破传统700 cc体积限制[20],支持基于功能的个体化放疗剂量优化;栓塞术后功能增益(FLR-F中位149%)的预测效能优异(AUC=0.789,临界值150%时敏感度100%),且功能增长速率(8%/周)远超体积变化(2.1%/周)[21],证实功能恢复是预测手术安全性的更敏感、更快速指标,对指导二期手术时机具有关键意义。

       然而,核医学技术存在适用边界:99mTc-GSA可预警隐匿肝损伤[22],却在门静脉栓塞术后高估功能储备,且预测效能低于CT体积法(AUC:0.630 vs. 0.709)[23];HBS通用阈值(2.7%/min/m2)虽可识别高危患者,但健康肝脏中体积-功能的强相关性(r=0.72)在受损肝中显著减弱,警示需避免单一指标依赖[24]。因此,未来需聚焦多模态整合与标准化验证,发展动态功能监测。

3 超声成像

       常规超声通过灰阶成像观察肝脏形态(如表面结节、回声不均),血流动力学(如门静脉流速、阻力指数)间接反映肝功能,但主观性强、量化能力弱。近年来,超声弹性成像技术,特别是二维剪切波弹性成像(2-dimensional shear wave elastography, 2D-SWE),具有实时二维引导、高成功率及良好可重复性等优势[25],能直观融合弹性图与常规超声图像以精确定位感兴趣区,并克服厚皮下脂肪或腹水干扰[26]。HU等[27]荟萃分析证实了其高效能(诊断敏感度与特异度均88%)。其核心价值在于量化肝脏硬度(liver stiffness, LS),该指标是反映肝纤维化程度和功能储备的关键生物标志物[28]

       在肝硬化诊断与肝功能评估中,LS临界值10.6 kPa可高效识别肝硬化(AUC=0.874),并对ICG-R15正常患者的肝功能损害具有预警价值[29],为早期识别亚临床肝功能损害提供了关键工具。其次,术后动态监测LS变化及脾脏大小可精准识别PHLF高危患者,LS变化率截断值0.05提示风险显著增加[30],凸显了术后动态监测对风险预警的重要性。此外,多参数联合模型提升术前预测精度,CHENG等[31]联合LS与脾脏面积,设定了肝大、小切除术组PHLF的临界值(大切除:LS=10.34 kPa/SPA=33.7 cm2;小切除:LS=13.48 kPa/SPA=43.2 cm²),提供了更具临床操作性的分层阈值;LONG等[32]整合残余肝体积比、LS>9.5 kPa、Child-Pugh分级及门脉高压,在四队列验证中预测PHLF的AUC达0.845~0.915,其优势在于同时纳入解剖切除范围与功能储备异质性,构建了更全面的预测框架。在肝移植领域,2D-SWE衍生的肝动脉阻力指数监测对早期移植物功能恢复具有预警价值(高阻力促进恢复,低阻力延缓恢复),其机制与门脉阻力正常化的血流动力学逆转密切相关[33],为移植肝功能监测提供了新的血流动力学视角。然而,2D-SWE目前尚无法测量组织刚度,依赖应变弹性成像的评估存在临床限制[34];且LS值易受炎症活动度干扰,需结合病因特异性校准。未来需通过多中心研究确立肝纤维化动态监测标准,并探索LS在门脉高压及肝癌风险分层中的纵向预测价值。

4 多参数MRI

4.1 基于钆塞酸二钠的增强MRI

       钆塞酸二钠(gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid, Gd-EOB-DTPA)作为肝细胞特异性对比剂,约50%通过有机阴离子转运蛋白摄取并排泄至胆道,为无创肝功能量化奠定分子基础[35]。在动态功能评估方面,多时间点(注射后1、3、10、15分钟)采集拟合的肝脾信号强度比增加率与传统肝功能参数显著相关(r>0.7),突破单时间点评估局限[36],结合肝功能分层个体化延迟策略(正常肝10分钟、轻损15分钟、重损30分钟),显著提升检测效率[37]。同时,全肝T1 mapping直方图分析实现体素级功能量化,肝胆期T1弛豫时间第95百分位数被证实为PHLF的独立预测因子,其标准差诊断效能优异(AUC=0.785,敏感度92.3%),优于ICG-R15[38],但普适性尚需大样本验证。肝细胞摄取率(hepatocyte uptake index, HUI)与T1值形成互补:增强后T1值对低功能组敏感(区分正常与ALBI 1~3级AUC=0.93),而HUI对高级别功能损伤识别突出(识别ALBI 3级AUC=0.94)[39]。值得注意的是,T1弛豫时间降低率在1.5 T与3 T扫描仪间高度一致,其线性回归斜率接近1(y=1.02xR²=0.54,P=0.029)[40],为跨中心肝纤维化评估提供可能。其次,动态增强MRI去卷积生成的体素级肝提取分数图定位误差≤0.003,且随肝功能恶化呈阶梯式下降(正常肝0.32→Child A级0.12→B/C级0.08)[41];细胞内增强技术通过抑制细胞外信号,将Child-Pugh分级诊断AUC提升至0.81(敏感度80%)[42]。此外,临床效率优化方面,功能性肝脏影像评分(functional liver imaging score, FLIS)基于肝胆期三项视觉参数(实质增强、胆道排泄、门静脉征)实现快速分层:FLIS≥5是预测ALBI 1级的最佳标准(AUC=0.917),FLIS≤3区分ALBI 3级效能卓越(AUC=0.994)[43],且注射后5~15分钟时相诊断稳定性高(预测ICG-R15≤10%的AUC=0.838,Child-Pugh A级的AUC=0.806),观察者一致性优异(ICC=0.937~0.978)[44];然而,需指出的是,ERYURUK等[45]研究表明相对增强指数预测ALBI分级效能优于FLIS(ALBI 1级的AUC:0.948~0.952 vs. 0.928;3级的AUC:0.993~0.996 vs. 0.966),但Child C级患者因门静脉分流可能导致相对增强指数相关性减弱[46]

       在肝切除术风险分层方面,基于Gd-EOB-DTPA的功能参数衍生出了一系列临床预测模型。残余肝功能模型整合了功能性肝体积信息,预测PHLF准确率79%(优于ICG的70%),其临界值分层(>17,10~17,<10)为临床决策提供了实用标准[47];HUI体积比通过量化功能性的术后再生潜力,成功突破了传统仅依赖解剖残肝体积评估手术风险的局限[48]。动态增强MRI衍生的肝细胞摄取率(如k₁图)揭示了传统灌注参数在严重肝损伤(如失代偿期,r=0.095)时的失效,其复合指标k₁VL通过整合细胞水平的功能与体积信息,为规避肝毒性风险提供了更精准的评估维度[49]。此外,多中心标准化进程也支撑着这些基于Gd-EOB-DTPA的参数的临床转化。如基于ALBI评分的线性预测器所建立的协调方程[h-HUI=HUI×(Slope2/-1.425)×0.955],有效消除了不同MRI场强和系统对HUI定量结果的影响[50],解决了多中心研究中数据可比性的关键瓶颈,为大规模临床推广奠定了基础。

       尽管Gd-EOB-DTPA增强MRI为无创评估肝储备功能提供了重要手段,但其应用仍存在多个方面的局限性。在技术层面,部分定量参数缺乏标准化,易受扫描设备和方案差异的影响,导致结果变异大、跨中心比较困难,且复杂的后处理流程限制了临床常规使用。在生物学层面,肝病异质性可能导致局部功能评估偏差。在临床应用方面,目前缺乏判断功能异常的统一临界值,多数研究样本量小、设计为回顾性,证据强度受限[51]。此外,该检查成本较高、可及性不如常规肝功能检验,也制约了其广泛使用。

4.2 其他多参数MRI评估技术

4.2.1 磁共振弹性成像

       磁共振弹性成像(magnetic resonance elastography, MRE)作为无创评估肝脏生物力学特性的技术,在肝功能量化与风险预测领域价值显著,其应用潜力已在多种肝脏疾病研究中得到验证。在布加综合征(budd-chiari syndrome, BCS)的评估中,MRE测量的LS被证实是监测肝功能的敏感指标。一项针对43例BCS患者的研究显示,不同Child-Pugh分级患者的基线LS存在显著差异(A级:5.67±1.15 kPa,B级:6.31±1.13 kPa,C级:8.27±2.22 kPa),且LS与凝血酶原时间、总胆红素水平呈正相关[52]。更重要的是,治疗后患者的LS显著下降,其变化幅度与肝静脉压力梯度变化呈显著正相关,有力支持了LS作为BCS疗效动态监测标志物的潜力。其次,在HCC功能储备评估领域,创新的层析弹性成像技术通过同步量化反映组织硬度的剪切波速度(c)和表征粘弹性/流体性的损耗角(φ),提供了更全面的肝脏力学信息。LIN等[53]的研究表明,肝脏c值和φ值均与ICG-R15呈正相关,且在肝纤维化F1~2期仅φ值与ICG-R15相关,在F3~4期则c值与φ值均相关。c值和φ值在预测ICG-R15≥14%方面效能优异,最佳截断值分别为2.04 m/s和0.79 rad,且c值的预测效能(AUC=0.892)显著高于φ值(AUC=0.779),为HCC患者术前功能储备评估开辟了更精细的力学维度,尤其在不同纤维化阶段显示出参数互补性。然而,该技术仍存在截断值差异等局限性(如不同病因肝病的最佳截断值尚未统一)[54],未来需通过多中心研究优化标准化方案。

4.2.2 其他MRI技术与参数

       除Gd-EOB-DTPA相关评估方法外,其他MRI参数和技术也在肝功能和肝病分期评估中展现出重要价值。研究表明,铁校正的T1(cT1)图谱对肝纤维化和炎症敏感,与组织学结果相关,可用于监测疾病进展和治疗反应,但其区分各纤维化阶段的能力可能有限,需进一步验证,且易受铁和脂肪含量的影响[55]。弥散加权成像和体素内非相干运动提供弥散系数、假扩散系数和灌注分数等参数,能够反映肝病的微观结构和灌注变化,但容易受到运动伪影和技术变异性的影响,对于分期晚期纤维化来说不太稳健[56]。此外,MR指纹识别和多反转技术能够在单次扫描中同时获取多个参数[如T1、T2、T2*、质子密度脂肪分数(proton density fat fraction, PDFF)],提供快速、可重复和全面的多参数肝脏图谱,且数据具有较强的重复性及重现性(ICC>0.72),为无创肝脏储备功能评估提供了巨大的前景[57, 58]。然而,它们的临床应用受到技术复杂、需进一步验证以及晚期肝病中潜在混杂因素的限制[59]

       综上,多参数MRI为评估肝功能提供了一种全面且无创的方法,能够同时检测脂肪变性、铁沉积、纤维化和炎症等多种病理变化。与传统肝活检相比,多参数MRI具备全器官覆盖能力,降低了采样误差,并可重复用于监测疾病进展或治疗反应,且无需电离辐射。同时,该技术提供多个定量生物标志物,如用于脂肪定量的PDFF、评估铁含量的T2*、反映纤维炎症的cT1以及衡量硬度的MRE,这些指标与组织学和临床结局具有高度相关性,诊断准确性优良。然而,多参数MRI也面临一些挑战,包括依赖专业后处理软件与分析人员、在广泛人群及不同疾病阶段中仍需进一步验证、成本较高及可及性有限,以及易受运动、铁过载和磁场不均匀等因素干扰而导致伪影或测量偏差。尽管如此,多参数MRI仍代表了一种前景广阔的肝病评估工具,在不断完善中有望成为临床常规实践的重要组成部分。

5 光学成像技术

       光声成像技术,包括光声断层扫描(photoacoustic tomography, PAT)和常规光声成像(photoacoustic imaging, PAI),凭借其无创性与多尺度评估能力,正成为肝功能量化领域的新兴工具。关键对比剂ICG因肝脏特异性代谢及近红外波段强吸收峰(吸收波长800 nm),成为连接光声信号与肝功能评估的桥梁。基础研究系统证实了其可靠性:体外实验显示ICG溶液的光声信号强度与浓度呈高度线性关系,为定量分析奠定物理基础[60];动物模型中,PAT测量的ICG动力学参数与侵入性方法高度一致,且在兔肝纤维化模型中成功区分正常组(ICG清除率<21.6%)与纤维化组(ICG清除率>62.0%)[61];人体验证则进一步证实PAI测量ICG清除率与金标准分光光度法高度相关,清除速率常数和半衰期差异无统计学意义,标志其临床转化可行性[62]

       在疾病模型中,光声成像技术展现出多维度、高精度的评估能力,其应用可分为以下几个层面:首先,在无创功能与结构同步评估方面,光声成像通过监测ICG清除动力学有效揭示肝脏功能储备损伤,同时利用胶原特异性光声信号定量肝纤维化程度,为同步评估纤维化严重度和功能储备提供了新型双模态工具[63]。多光谱光声层析成像则通过930 nm脂质特征峰实现无创脂肪定量,其信号强度与脂质含量呈强正相关,对中重度脂肪变性的预测效能优异(AUC>0.99),为非酒精性脂肪性肝病的精准量化提供了新方法;同时,该技术追踪ICG清除动力学可敏感反映肝排泄功能障碍[64],实现了对该疾病进展的功能动态监控。其次,在揭示微循环与代谢空间异质性方面,该技术展现出独特价值。例如,在酒精性肝病模型中,结合双波长光谱解混技术,首次发现肝终末区ICG清除较中央区延迟106.9秒,清晰揭示了微循环障碍的空间异质性;该技术还成功验证了还原型谷胱甘肽对肝功能的修复效果(提升43%)[65],展示了其在药效评价中的应用潜力。更进一步,为突破动态可视化瓶颈,整合了活体荧光成像、激光斑点灌注成像及探针共聚焦激光显微内窥镜的创新性多模态平台,成功对慢性酒精性肝损伤小鼠模型实现了综合动态评估,灵敏捕捉了模型组与对照组在微循环与组织结构上的显著差异,实现了肝功能的多维度时空表征[66]。此外,在多模态融合与深部成像方面,光声/超声等双模态系统通过协同成像提升了深部组织检出率。研究证明,在肝纤维化模型中,光声信号频率谱的偏移(0.5 MHz至1.5 MHz)与纤维结节大小(600 μm)直接相关,且与组织病理学评分高度吻合[67],奠定了其在深部组织纤维化定量评估中的价值。

       然而,该技术仍面临挑战。其主要局限在于成像深度,虽可通过浅表血管扫描部分规避,但深部病灶的信号衰减仍可达40%[68]。未来仍需着力开发新型混合成像平台,并通过优化图像配准算法、提升高频激光技术来增强穿透能力,推动其从基础研究向临床应用的全面转化。

6 基于AI与跨组学模型的整合性评估

       传统的影像学评估多依赖于单一模态的定量参数或医师的半定量评分,存在信息利用不全面、主观性强等局限。AI技术,特别是机器学习与深度学习,正通过挖掘影像深层特征并与临床信息融合,构建跨组学预测模型,从根本上重塑肝脏储备功能的评估范式,为实现个体化、精准化的术前预测提供强大工具。

       AI在肝脏功能评估中的应用首先体现在对单一影像模态的深度挖掘。例如,HUANG等[69]开发了一种基于CT图像的智能分类模型,该模型采用多尺度Gabor滤波器和非局部二值模式(NLBP)分别提取肝脏的局部方向和长程纹理特征(共236维),最终通过支持向量机分类器实现了肝功能的分级,其二元与三元分类准确率分别达到75.9%和64.0%,证明了仅利用常规平扫CT图像即可实现一定准确性的自动化功能评估。在MRI领域,基于Gd-EOB-DTPA增强扫描的肝胆期图像,AI技术能实现像素级的肝功能定量。RÍO BÁRTULOS等[70]开发的MELIF评分系统,通过AI算法自动化处理图像,其诊断整体肝功能(AUC=0.80)及肝硬化(AUC=0.83)的效能均优于传统的ALBI评分,实现了以空间分辨率精确定量肝功能的能力。

       然而,AI的真正价值远不止于替代人工测量,更在于其整合多模态、多组学信息以构建更高精度预测模型的能力。ZHU等[71]的研究直接比较了基于CT和MRI影像组学特征构建的多种机器学习模型(包括XGBoost、随机森林等)预测ICG-R15的效能。结果显示,MRI模型整体性能更优,在预测ICG-R15≥10%和≥30%时,XGBoost模型的AUC分别高达0.917和0.961;CT模型表现稍逊但依然可观(AUC最高为0.938)。该研究充分证明了不同影像模态均可为AI提供有效信息,且MRI在功能评估方面具有内在优势。此外,更进一步的研究致力于构建临床-影像跨组学模型,将影像的深度特征与临床指标深度融合,以最大化预测价值。HUANG等[72]提出的LRFNet深度学习模型创新性地改进了DenseNet架构,同时输入患者的CT图像和Child-Pugh评分等临床数据,实现了Child-Pugh等级的自动分类(平均AUC=0.774),其效能显著优于传统临床分级方法。

       尽管前景广阔,当前AI评估模型迈向临床常规应用仍面临若干挑战。主要包括:(1)数据依赖性与质量,大规模、高质量、多中心的标注数据集是模型训练与验证的基础;(2)模型可解释性,部分复杂模型使临床医生难以理解和信任其预测逻辑;(3)泛化能力,在一个数据集上表现优异的模型,在不同机构、不同扫描设备采集的数据上性能可能下降;(4)标准化缺失,影像组学特征提取、模型构建与验证流程尚未统一。未来,AI研究应聚焦于开发可解释性强、鲁棒性高的融合模型,通过前瞻性多中心研究验证其效能,并最终将AI模型作为决策支持系统无缝集成到临床工作流中。

7 小结与展望

       当前影像学技术正推动肝脏储备功能评估向多模态融合、动态量化和智能化决策方向发展:CT通过碘洗脱率(Iodine Washout Rate, IWR)结合智能分类模型实现功能化分级;核医学借助新型探针动态量化残余肝滤过率;Gd-EOB-DTPA增强MRI则以T1 mapping直方图分析、HUI和FLIS评分等为核心,突破解剖结构局限,实现体素级别的功能预测;SWE和MRE则分别通过联合LS与脾脏面积建模分析,以及层析参数分析,为肝衰竭提供早期预警;同时,光声成像实现ICG清除动力学无创监测,AI驱动诊断流程自动化,共同促进评估体系向无创化与智能化升级。

       展望未来,一些技术方向具有较好发展潜力。例如,多频MRE可通过同时获取肝组织硬度与粘弹性参数,更敏感地识别早期纤维化与功能变化;AI进一步与多模态影像融合,有望提升肝储备个体化预测的稳健性与可解释性。同时,也应预见并关注影像技术在实际应用中可能存在的问题,如新型生物标记物的验证不足、不同设备与协议导致的测量差异,以及AI模型在临床泛化中的不确定性等,这些问题仍需通过大规模、多中心研究持续推进解决。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
PRABOWO E, SUSILANINGSIH N, SUHARTI C, et al. Predictors for 30-day mortality in hepatocellular carcinoma patients undergoing liver resection[J/OL]. Narra J, 2024, 4(3): e1001 [2025-09-13] https://pubmed.ncbi.nlm.nih.gov/39816077/. DOI: 10.52225/narra.v4i3.1001.
[3]
WU P C, GUO L Z, YU S, et al. Noninvasive assessment of liver function reserve with fluorescent dosimetry of indocyanine green[J]. Biomed Opt Express, 2022, 13(4): 1995-2005. DOI: 10.1364/BOE.446749.
[4]
NISHIO T, TAURA K, KOYAMA Y, et al. Current status of preoperative risk assessment for posthepatectomy liver failure in patients with hepatocellular carcinoma[J]. Ann Gastroenterol Surg, 2023, 7(6): 871-886. DOI: 10.1002/ags3.12692.
[5]
BOUBADDI M, MARICHEZ A, ADAM J P, et al. Comprehensive review of future liver remnant (FLR) assessment and hypertrophy techniques before major hepatectomy: how to assess and manage the FLR[J]. Ann Surg Oncol, 2024, 31(13): 9205-9220. DOI: 10.1245/s10434-024-16108-9.
[6]
YU Q J, LUO Y C, ZUO Z W, et al. Utility of gadoxetate disodium-enhanced magnetic resonance imaging in evaluating liver failure risk after major hepatic resection[J]. Quant Imaging Med Surg, 2024, 14(5): 3731-3743. DOI: 10.21037/qims-23-1504.
[7]
NAGAYAMA Y, HOKAMURA M, TAGUCHI N, et al. Liver function estimation using multiphase hepatic CT: diagnostic performance of iodine-uptake and volumetric parameters[J]. Eur Radiol, 2025, 35(9): 5781-5791. DOI: 10.1007/s00330-025-11497-1.
[8]
ALRAISH R, WICHA S G, FREY O R, et al. Liver function, quantified by the LiMAx test, as a predictor for the clinical outcome of critically ill patients treated with linezolid[J]. Technol Health Care, 2022, 30(2): 309-321. DOI: 10.3233/THC-191847.
[9]
MAJEED N F, BRASCHI AMIRFARZAN M, WALD C, et al. Spectral detector CT applications in advanced liver imaging[J/OL]. Br J Radiol, 2021, 94(1123): 20201290 [2025-09-13]. https://pubmed.ncbi.nlm.nih.gov/34048285/. DOI: 10.1259/bjr.20201290.
[10]
MORITA K, NISHIE A, USHIJIMA Y, et al. Noninvasive assessment of liver fibrosis by dual-layer spectral detector CT[J/OL]. Eur J Radiol, 2021, 136: 109575 [2025-09-13]. https://pubmed.ncbi.nlm.nih.gov/33548853/. DOI: 10.1016/j.ejrad.2021.109575.
[11]
RONOT M, LEPORQ B, VAN BEERS B E, et al. CT and MR perfusion techniques to assess diffuse liver disease[J]. Abdom Radiol (NY), 2020, 45(11): 3496-3506. DOI: 10.1007/s00261-019-02338-z.
[12]
马振波, 谢元忠. 全肝容积 CT 灌注成像对乙型肝炎、乙型肝炎肝硬化肝储备功能评价的研究[J]. 中华解剖与临床杂志, 2016, 21(2): 115-119. DOI: 10.3760/cma.j.issn.2095-7041.2016.02.005.
MA Z B, XIE Y Z. Evaluation of liver reserve function using whole-liver volume computed tomography perfusion imaging in patients with hepatitis B and liver cirrhosis[J]. Chin J Anat Clin, 2016, 21(2): 115-119. DOI: 10.3760/cma.j.issn.2095-7041.2016.02.005.
[13]
廖锦元, 黎宁钦, 苏文. 肝纤维化CT灌注成像评价肝功能储备[J]. 中华实验外科杂志, 2016, 33(10): 2320-2323. DOI: 10.3760/cma.j.issn.1001-9030.2016.10.021.
LIAO J Y, LI N Q, SU W. CT perfusion parameters evaluate the liver reserve function of hepatic fibrosis-an experimental research[J]. Chin J Exp Surg, 2016, 33(10): 2320-2323. DOI: 10.3760/cma.j.issn.1001-9030.2016.10.021.
[14]
ZIERKE M A, RANGGER C, SAMADIKHAH K, et al. 68Ga-labeled glycopeptides as effective tools for liver function imaging[J]. Mol Pharm, 2025, 22(3): 1677-1685. DOI: 10.1021/acs.molpharmaceut.4c01453.
[15]
WERNER A, FREESMEYER M, KÜHNEL C, et al. Liver PET reloaded: automated synthesis of [68Ga] Ga-BP-IDA for positron imaging of the hepatobiliary function and first clinical experience[J/OL]. Diagnostics (Basel), 2023, 13(6): 1144 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36980451/. DOI: 10.3390/diagnostics13061144.
[16]
MII S, TAKAHARA T, SHIBASAKI S, et al. 99mTc-GSA scintigraphy and modified albumin-bilirubin score can be complementary to ICG for predicting posthepatectomy liver failure[J/OL]. BMC Surg, 2024, 24(1): 342 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39482649/. DOI: 10.1186/s12893-024-02624-8.
[17]
BAKOS A, LIBOR L, URBÁN S, et al. Dynamic [99mTc] Tc-mebrofenin SPECT/CT in preoperative planning of liver resection: A prospective study[J/OL]. Sci Rep, 2024, 14(1): 30305 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39638819/. DOI: 10.1038/s41598-024-81331-z.
[18]
REINDERS M T M, SMITS M J L, VAN ERPECUM K, et al. Hepatobiliary scintigraphy and liver function changes in patients with hepatocellular carcinoma treated with 166Ho-radioembolization: HBS in HCC treated with holmium-166[J/OL]. EJNMMI Res, 2025, 15(1): 2 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39786516/. DOI: 10.1186/s13550-025-01196-9.
[19]
OLTHOF P B, ARNTZ P, TRUANT S, et al. Hepatobiliary scintigraphy to predict postoperative liver failure after major liver resection; a multicenter cohort study in 547 patients[J]. HPB (Oxford), 2023, 25(4): 417-424. DOI: 10.1016/j.hpb.2022.12.005.
[20]
CHANG E, WONG F C L, CHASEN B A, et al. Phase I trial of single-photon emission computed tomography-guided liver-directed radiotherapy for patients with low functional liver volume[J/OL]. JNCI Cancer Spectr, 2024, 8(3): pkae037 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/38730548/. DOI: 10.1093/jncics/pkae037.
[21]
SMET H, MARTIN D, ULDRY E, et al. Tc-99m mebrofenin hepatobiliary scintigraphy to assess future liver remnant function before major liver surgery[J]. J Surg Oncol, 2023, 128(8): 1312-1319. DOI: 10.1002/jso.27426.
[22]
NESSIPKHAN A, KUDO T. Discordance between clinical parameters and 99mTc-GSA scintigraphy in predicting liver dysfunction: a case report[J/OL]. Radiology Case, 2024, 18(7) [2025-07-11]. https://www.radiologycases.com/index.php/radiologycases/article/view/5403. DOI: 10.3941/jrcr.5403.
[23]
YAO S Y, TAURA K, YOH T, et al. Nonsuperiority of technetium-99m-galactosyl human serum albumin scintigraphy over conventional volumetry for assessing the future liver remnant in patients undergoing hepatectomy after portal vein embolization[J]. Surgery, 2023, 173(2): 435-441. DOI: 10.1016/j.surg.2022.10.005.
[24]
ARNTZ P J W, DEROOSE C M, MARCUS C, et al. Joint EANM/SNMMI/IHPBA procedure guideline for [99mTc] Tc-mebrofenin hepatobiliary scintigraphy SPECT/CT in the quantitative assessment of the future liver remnant function[J]. HPB (Oxford), 2023, 25(10): 1131-1144. DOI: 10.1016/j.hpb.2023.06.001.
[25]
薛立云, 付甜甜, 丁红, 等. 二维剪切波弹性成像对原发性肝细胞癌切除术后肝衰竭的预测价值[J]. 中华医学杂志, 2020, 100(39): 3075-3080. DOI: 10.3760/cma.j.cn112137-20200228-00506.
XUE L Y, FU T T, DING H, et al. Predictive value of two-dimentional shear wave elastography in posthepatoectomy liver failure[J]. Natl Med J China, 2020, 100(39): 3075-3080. DOI: 10.3760/cma.j.cn112137-20200228-00506.
[26]
陈菲艳, 郝霁萍. 二维剪切波弹性成像在慢性乙型肝炎中的应用进展[J]. 临床医学进展, 2023, 13(1): 226-231. DOI: 10.12677/ACM.2023.131035.
CHEN F Y, HAO J P. Application of two-dimensional real-time shear wave elastography in chronic hepatitis[J]. Adv Clin Med, 2023, 13(1): 226-231. DOI: 10.12677/ACM.2023.131035.
[27]
HU B J, HUANG Z P, HUANG L Y. Application of two-dimensional shear wave elastography in evaluating liver reserve function in patients with liver cancer[J]. J Clin Ultrasound, 2025, 53(7): 1565-1573. DOI: 10.1002/jcu.24015.
[28]
XIE L T, YAN C H, ZHAO Q Y, et al. Quantitative and noninvasive assessment of chronic liver diseases using two-dimensional shear wave elastography[J]. World J Gastroenterol, 2018, 24(9): 957-970. DOI: 10.3748/wjg.v24.i9.957.
[29]
LONG H Y, XU W X, ZHONG X, et al. Feasibility of liver stiffness measured using two-dimensional shear wave elastography in assessing preoperative liver function for patients with hepatocellular carcinoma[J]. Abdom Radiol (NY), 2022, 47(2): 664-671. DOI: 10.1007/s00261-021-03374-4.
[30]
XU S, ZHANG T, HE B B, et al. Application of ultrasound elastography and splenic size in predicting post-hepatectomy liver failure: Unveiling new clinical perspectives[J/OL]. World J Gastroenterol, 2025, 31(4): 98886 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39877707/. DOI: 10.3748/wjg.v31.i4.98886.
[31]
CHENG G W, FANG Y, XUE L Y, et al. Nomogram based on liver stiffness and spleen area with ultrasound for posthepatectomy liver failure: a multicenter study[J]. World J Gastroenterol, 2024, 30(27): 3314-3325. DOI: 10.3748/wjg.v30.i27.3314.
[32]
LONG H Y, PENG C, DING H, et al. Predicting symptomatic post-hepatectomy liver failure in patients with hepatocellular carcinoma: development and validation of a preoperative nomogram[J]. Eur Radiol, 2023, 33(11): 7665-7674. DOI: 10.1007/s00330-023-09803-w.
[33]
KONG W N, WANG M Y, NIU N N, et al. Role of Doppler trasonography in predicting recovery from early allograft dysfunction in liver postoperative patients[J]. Transplant Proc, 2024, 56(7): 1578-1584. DOI: 10.1016/j.transproceed.2024.08.008.
[34]
MA Y Q, XU X R, LI J, et al. Prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma through ultrasound elastography[J/OL]. World J Gastroenterol, 2025, 31(4): 99373 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/39877704/. DOI: 10.3748/wjg.v31.i4.99373.
[35]
VAN BEERS B E, PASTOR C M, HUSSAIN H K. Primovist, eovist: what to expect [J]. J Hepatol, 2012, 57(2): 421-429. DOI: 10.1016/j.jhep.2012.01.031.
[36]
KUDO M, GOTOHDA N, SUGIMOTO M, et al. Liver functional assessment using time-associated change in the liver-to-spleen signal intensity ratio on enhanced magnetic resonance imaging: a retrospective study[J/OL]. BMC Surg, 2023, 23(1): 179 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37370103/. DOI: 10.1186/s12893-023-02051-1.
[37]
WANG C, YUAN X D, WU N, et al. Optimization of hepatobiliary phase imaging in gadoxetic acid-enhanced magnetic resonance imaging: a narrative review[J]. Quant Imaging Med Surg, 2023, 13(3): 1972-1982. DOI: 10.21037/qims-22-916.
[38]
LI J, LI Y, CHEN Y Y, et al. Predicting post-hepatectomy liver failure with T1 mapping-based whole-liver histogram analysis on gadoxetic acid-enhanced MRI: comparison with the indocyanine green clearance test and albumin-bilirubin scoring system[J]. Eur Radiol, 2025, 35(6): 3587-3598. DOI: 10.1007/s00330-024-11238-w.
[39]
LI X, AI G Y, CHEN W J, et al. Evaluation of liver function using hepatocyte uptake and T1 mapping indices in gadoxetic acid-enhanced magnetic resonance imaging: correlation with the albumin-bilirubin grading system[J]. Quant Imaging Med Surg, 2025, 15(4): 3360-3371. DOI: 10.21037/qims-24-1827.
[40]
OBMANN V C, CATUCCI D, BERZIGOTTI A, et al. T1 reduction rate with Gd-EOB-DTPA determines liver function on both 1.5 T and 3 T MRI[J/OL]. Sci Rep, 2022, 12: 4716 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35304554/. DOI: 10.1038/s41598-022-08659-2.
[41]
PHONLAKRAI M, RAMADAN S, SIMPSON J, et al. Determination of hepatic extraction fraction with gadoxetate low-temporal resolution DCE-MRI-based deconvolution analysis: validation with ALBI score and Child-Pugh class[J]. J Med Radiat Sci, 2023, 70(Suppl 2): 48-58. DOI: 10.1002/jmrs.617.
[42]
FONSECA D, NAKAMURA Y, HIGAKI T, et al. Intracellular enhancement technique for gadoxetic acid-enhanced hepatobiliary-phase magnetic resonance imaging: evaluation of hepatic function[J]. Abdom Radiol, 2025, 50(8): 3506-3515. DOI: 10.1007/s00261-025-04817-y.
[43]
ASLAN S, ERYURUK U, TASDEMIR M N, et al. Determining the efficacy of functional liver imaging score (FLIS) obtained from gadoxetic acid-enhanced MRI in patients with chronic liver disease and liver cirrhosis: the relationship between Albumin-Bilirubin (ALBI) grade and FLIS[J]. Abdom Radiol (NY), 2022, 47(7): 2325-2334. DOI: 10.1007/s00261-022-03557-7.
[44]
TANG G X, LIU J B, LIU P, et al. Evaluation of liver function in patients with liver cirrhosis and chronic liver disease using functional liver imaging scores at different acquisition time points[J/OL]. Front Genet, 2022, 13: 1071025 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36561314/. DOI: 10.3389/fgene.2022.1071025.
[45]
ERYURUK U, TASDEMIR M N, KARASU H I, et al. Comparison of the efficacy of the gadoxetic acid MRI-derived relative enhancement index (REI) and functional liver imaging score (FLIS) in predicting liver function: validation with Albumin-Bilirubin (ALBI) grade[J]. Abdom Radiol (NY), 2024, 49(5): 1456-1466. DOI: 10.1007/s00261-024-04324-6.
[46]
EIRAS-ARAÚJO A L, PARENTE D B, SILVA A C DA, et al. Relative enhancement index can be used to quantify liver function in cirrhotic patients that undergo gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2023, 33(7): 5142-5149. DOI: 10.1007/s00330-023-09402-9.
[47]
VERLOH N, BARTULOS C R, UTPATEL K, et al. Volume-assisted estimation of remnant liver function based on Gd-EOB-DTPA enhanced MR relaxometry: A prospective observational trial[J/OL]. Diagnostics (Basel), 2023, 13(18): 3014 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37761381/. DOI: 10.3390/diagnostics13183014.
[48]
WANG Q, BRISMAR T B, GILG S, et al. Multimodal perioperative assessment of liver function and volume in patients undergoing hepatectomy for colorectal liver metastasis: A comparison of the indocyanine green retention test, 99mTc mebrofenin hepatobiliary scintigraphy and gadoxetic acid enhanced MRI[J/OL]. Br J Radiol, 2022, 95(1139): 20220370 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36113499/. DOI: 10.1259/bjr.20220370.
[49]
SIMETH J, ARYAL M, OWEN D, et al. Gadoxetic acid uptake rate as a measure of global and regional liver function as compared with indocyanine green retention, albumin-bilirubin score, and portal venous perfusion[J/OL]. Adv Radiat Oncol, 2022, 7(5): 100942 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35496263/. DOI: 10.1016/j.adro.2022.100942.
[50]
YOSHIZAWA E, YAMADA A, OKAJIMA Y, et al. Harmonization of quantitative liver function evaluation using gadoxetate disodium-enhanced magnetic resonance imaging[J/OL]. Eur Radiol, 2025 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/40246737/. DOI: 10.1007/s00330-025-11582-5.
[51]
WANG Q, KESEN S, LILJEROTH M, et al. Quantitative evaluation of liver function with gadoxetic acid enhanced MRI: Comparison among signal intensity-, T1-relaxometry-, and dynamic-hepatocyte-specific-contrast-enhanced MRI- derived parameters[J]. Scand J Gastroenterol, 2022, 57(6): 705-712. DOI: 10.1080/00365521.2022.2032321.
[52]
XU P, LYU L L, LU X, et al. Evaluating the short-term clinical efficacy of magnetic resonance elastography in patients with budd-chiari syndrome[J]. Acad Radiol, 2021, 28(Suppl 1): S179-S183. DOI: 10.1016/j.acra.2021.02.016.
[53]
LIN H M, WANG Y H, ZHOU J H, et al. Tomoelastography based on multifrequency MR elastography predicts liver function reserve in patients with hepatocellular carcinoma: a prospective study[J/OL]. Insights Imaging, 2022, 13(1): 95 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35657534/. DOI: 10.1186/s13244-022-01232-5.
[54]
LIANG J X, AMPUERO J, CASTELL J, et al. Clinical application of Magnetic resonance elastography in hepatocellular carcinoma: From diagnosis to prognosis[J/OL]. Ann Hepatol, 2023, 28(2): 100889 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/36572210/. DOI: 10.1016/j.aohep.2022.100889.
[55]
THOMAIDES-BREARS H B, LEPE R, BANERJEE R, et al. Multiparametric MR mapping in clinical decision-making for diffuse liver disease[J]. Abdom Radiol (NY), 2020, 45(11): 3507-3522. DOI: 10.1007/s00261-020-02684-3.
[56]
LI C X, LIU H T, WANG J H, et al. Multiparametric MRI combined with liver volume for quantitative evaluation of liver function in patients with cirrhosis[J]. Diagn Interv Radiol, 2022, 28(6): 547-554. DOI: 10.5152/dir.2022.211325.
[57]
MANHARD M K, RAMANIHARAN A K, TKACH J A, et al. Simultaneous multiparameter mapping of the liver in a single breath-hold or respiratory-triggered acquisition using multi-inversion spin and gradient echo MRI[J]. J Magn Reson Imaging, 2025, 61(4): 1925-1936. DOI: 10.1002/jmri.29584.
[58]
JAUBERT O, ARRIETA C, CRUZ G, et al. Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T1, T2, T2 *, and fat fraction mapping[J]. Magn Reson Med, 2020, 84(5): 2625-2635. DOI: 10.1002/mrm.28311.
[59]
FUJITA S, SANO K, CRUZ G, et al. MR fingerprinting for liver tissue characterization: a histopathologic correlation study[J]. Radiology, 2023, 306(1): 150-159. DOI: 10.1148/radiol.220736.
[60]
QIU T T, YANG J G, PAN T, et al. Assessment of liver function reserve by photoacoustic tomography: a feasibility study[J]. Biomed Opt Express, 2020, 11(7): 3985-3995. DOI: 10.1364/BOE.394344.
[61]
ZHANG H, ZENG S L, WU Y Z, et al. Handheld photoacoustic imaging of indocyanine green clearance for real-time quantitative evaluation of liver reserve function[J]. Biomed Opt Express, 2023, 14(7): 3610-3621. DOI: 10.1364/BOE.493538.
[62]
QIU T T, PENG C H, HUANG L, et al. ICG clearance test based on photoacoustic imaging for assessment of human liver function reserve: An initial clinical study[J/OL]. Photoacoustics, 2023, 31: 100511 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37252651/. DOI: 10.1016/j.pacs.2023.100511.
[63]
QIU T T, YANG J G, PENG C H, et al. Diagnosis of liver fibrosis and liver function reserve through non-invasive multispectral photoacoustic imaging[J/OL]. Photoacoustics, 2023, 33: 100562 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/38021289/. DOI: 10.1016/j.pacs.2023.100562.
[64]
HUANG S, BLUTKE A, FEUCHTINGER A, et al. Functional multispectral optoacoustic tomography imaging of hepatic steatosis development in mice[J/OL]. EMBO Mol Med, 2021, 13(9): e13490 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/34411447/. DOI: 10.15252/emmm.202013490.
[65]
SUN T, LV J, ZHAO X Y, et al. In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging[J/OL]. Photoacoustics, 2023, 34: 100569 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/38046637/. DOI: 10.1016/j.pacs.2023.100569.
[66]
SONG X J, WANG S Y, JIA S Y, et al. In vivo evaluation of liver function by multimodal imaging in an alcohol-induced liver injury model[J]. Quant Imaging Med Surg, 2023, 13(10): 6434-6445. DOI: 10.21037/qims-23-122.
[67]
VAN DEN BERG P J, BANSAL R, DAOUDI K, et al. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system[J]. Biomed Opt Express, 2016, 7(12): 5081-5091. DOI: 10.1364/BOE.7.005081.
[68]
MIYATA A, ISHIZAWA T, KAMIYA M, et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging[J/OL]. PLoS One, 2014, 9(11): e112667 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/25379674/. DOI: 10.1371/journal.pone.0112667.
[69]
HUANG W J, YANG W, ZHANG Z Y, et al. Liver function classification based on local direction number and non-local binary pattern[J]. Multimed Tools Appl, 2022, 81(22): 32305-32322. DOI: 10.1007/s11042-022-12986-x.
[70]
RÍO BÁRTULOS C, SENK K, BADE R, et al. Using AI and Gd-EOB-DTPA-enhanced MR imaging to assess liver function, comparing the MELIF score with the ALBI score[J/OL]. Sci Rep, 2023, 13: 13121 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37573451/. DOI: 10.1038/s41598-023-39954-1.
[71]
ZHU L, WANG F F, CHEN X, et al. Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image[J/OL]. BMC Med Imaging, 2023, 23(1): 94 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/37460944/. DOI: 10.1186/s12880-023-01050-1.
[72]
HUANG Z W, ZHANG G, LIU J, et al. LRFNet: a deep learning model for the assessment of liver reserve function based on Child‐Pugh score and CT image[J/OL]. Comput Meth Programs Biomed, 2022, 223: 106993 [2025-07-11]. https://pubmed.ncbi.nlm.nih.gov/35793571/. DOI: 10.1016/j.cmpb.2022.106993.

上一篇 MRI生境分析在乳腺癌临床诊疗中的研究进展
下一篇 基于MRI深度学习预测肝细胞癌微血管侵犯的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2