分享:
分享到微信朋友圈
X
综述
DWI模型在直肠癌疗效评估中的研究进展
李婉清 张广文 张劲松

Cite this article as: LI W Q, ZHANG G W, ZHANG J S. Advances in DWI models for treatment response assessment in rectal cancer[J]. Chin J Magn Reson Imaging, 2025, 16(10): 196-201.本文引用格式:李婉清, 张广文, 张劲松. DWI模型在直肠癌疗效评估中的研究进展[J]. 磁共振成像, 2025, 16(10): 196-201. DOI:10.12015/issn.1674-8034.2025.10.031.


[摘要] 直肠癌早期精准诊疗与动态疗效监测已成为临床肿瘤学的核心挑战。扩散加权成像(diffusion weighted imaging, DWI)通过捕捉水分子布朗运动受限的特征可无创解析肿瘤微环境的结构异质性。不同扩散模型在直肠癌疗效评估中均展现出一定的应用价值,但各扩散模型有着不同的技术特点、应用条件及局限性。随着技术发展和研究深入,影像参数与肿瘤微环境特征关联机制、高阶扩散模型、多模态融合等相关研究需要进一步总结分析。当前DWI模型在直肠癌疗效评估中仍面临扫描参数缺乏标准、先进图像分析方法应用较少及多模态图像信息整合不足等问题,未来需通过优化成像参数、结合人工智能及多模态数据分析等技术来提升直肠癌疗效精准评估能力。本文将对DWI模型在直肠癌疗效评估中的最新进展进行综述,以期为这一领域的后续研究提供参考。
[Abstract] Precise early diagnosis and dynamic therapeutic monitoring of rectal cancer have emerged as pivotal challenges in clinical oncology. Diffusion-weighted imaging (DWI), by characterizing the restricted Brownian motion of water molecules, enables non-invasive interrogation of structural heterogeneity within the tumor microenvironment. Various diffusion models demonstrate considerable application value in rectal cancer treatment response assessment, yet each exhibits unique technical characteristics, applicable conditions, and inherent limitations. Despite technological advancements, critical knowledge gaps persist regarding the mechanistic correlations between imaging parameters and tumor microenvironmental features, the clinical translation of advanced diffusion models, and the integration of multimodal imaging data. Current limitations in assessment based on DWI models include the lack of standardized scanning protocols, insufficient utilization of advanced analytical approaches, and inadequate multimodal data integration. Future developments should focus on optimizing acquisition parameters while incorporating artificial intelligence and multimodal data fusion techniques to enhance assessment accuracy. This review synthesizes recent progress in DWI models for rectal cancer treatment evaluation, aiming to provide a foundation for subsequent research in this evolving field.
[关键词] 直肠癌;磁共振成像;扩散加权成像;体素内不相干运动;拉伸指数模型;扩散峰度成像;病理完全缓解
[Keywords] rectal cancer;magnetic resonance imaging;diffusion-weighted imaging;intravoxel incoherent motion;stretched exponential model;diffusion kurtosis imaging;pathological complete response

李婉清    张广文    张劲松 *  

空军军医大学西京医院放射诊断科,西安 710032

通信作者:张劲松,E-mail:stspine@163.com

作者贡献声明:李婉清参与文本构思与设计、文献获取与整理分析,文章的起草与撰写;张广文参与文本构思与设计、进行数据整理和分析,并对文章重要内容进行了修改;张劲松负责论文选题、数据解释、文章指导与修改,获得了国家自然科学基金项目资助;全体作者都同意发表最后的修改稿,同意对研究工作各方面的诚信问题负责。


基金项目: 国家自然科学基金项目 82371918
收稿日期:2025-07-04
接受日期:2025-10-10
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.10.031
本文引用格式:李婉清, 张广文, 张劲松. DWI模型在直肠癌疗效评估中的研究进展[J]. 磁共振成像, 2025, 16(10): 196-201. DOI:10.12015/issn.1674-8034.2025.10.031.

0 引言

       结直肠癌作为全球第三大常见恶性肿瘤,其侵袭性生长模式、高度异质性及易转移特性严重威胁着人类健康[1, 2]。近年来靶向治疗和免疫治疗的突破为晚期患者带来新希望,精准疗效评估是直肠癌治疗周期中的关键环节之一[3, 4, 5]。扩散加权成像(diffusion weighted imaging, DWI)通过施加特定b值的扩散敏感梯度磁场来检测组织中水分子布朗运动的受限程度,已成为肿瘤疗效监测的有效方法[6, 7],可在直肠癌治疗早期反映肿瘤细胞坏死、凋亡等病理生理改变[8]。然而,基于单指数模型的传统DWI技术存在固有局限性:其假设水分子扩散符合高斯分布的简化模型,无法解析肿瘤内并存的复杂生理过程[9]。因此,多室模型理论与非高斯扩散数学模型应运而生,包括体素内不相干运动(intravoxel incoherent motion, IVIM)、拉伸指数模型(stretched exponential model, SEM)、扩散峰度成像(diffusion kurtosis imaging, DKI)、连续时间随机游走(continuous-time random-walk, CTRW)和分数阶微积分(fractional-order calculus, FROC)模型等,这些模型已在直肠癌疗效评估领域展现出重要的临床应用价值。既往针对DWI在直肠癌疗效评估的综述未能深入探究DWI模型参数反映肿瘤微环境变化的机制,而新的高阶扩散模型及多模态数据融合研究等需要进一步总结分析[10, 11]。因此,本文将系统综述不同扩散模型的核心原理、应用价值及局限性等,并对新兴扩散模型(CTRW/FROC)和影像-肿瘤微环境关联机制进行探讨,最后对多模态数据融合研究进行介绍,以期为直肠癌精准疗效评估研究和临床实践提供新视角及参考依据。

1 单指数模型

       基于单指数模型(公式1)生成的表观扩散系数(apparent diffusion coefficient, ADC)作为DWI技术衍生的定量生物标志物,通过量化水分子扩散受限程度及肿瘤细胞密度空间分布特征,在恶性肿瘤组织微环境评估中具有重要临床价值[12, 13]

       S0和S(b)是在b=0 s/mm2和其他给定b值扩散加权图像下获得的信号强度。ADC代表扩散驱动位移的水扩散率,服从高斯分布[14, 15]

       在直肠癌疗效评估方面,该模型主要应用于新辅助放化疗(neoadjuvant chemoradiotherapy, nCRT)后病理完全缓解(pathological complete response, pCR)与Mandard肿瘤消退分级(tumor regression grade, TRG)的预测。DRAGO等[16]发现,放化疗后ADC值与Mandard TRG显著相关,治疗后高ADC值组(ADC值≥1.170 mm²/s)治疗应答患者比例(77.8%)显著高于低ADC值组(49.1%)。相较于肿瘤区域ADC均值,直方图分析可进一步抓取ADC值分布的异质性。其中,BABATÜRK等[17]发现放化疗后ADC偏度值截断值为0.210 mm2/s时,对治疗反应的预测具有较高的敏感性;JIMÉNEZ DE LOS SANTOS等[18]进一步证实直方图参数(峰度、偏度)与pCR显著相关,提示其可作为独立预测指标。此外,CHEN等[19]通过结合影像组学方法,发现基于ADC的影像组学特征在预测治疗反应方面优于传统T2图像特征。然而有研究指出[20],ADC值无法可靠预测直肠癌nCRT的治疗反应。首先,直肠癌的生物学行为和分子特征复杂,nCRT的治疗反应受多种因素影响(如肿瘤微环境、免疫状态等),基于单指数模型的ADC值无法单独捕捉这些复杂机制。其次,水分子在组织内的复杂扩散运动不符合高斯分布,因而基于单指数模型的ADC值无法准确反映组织特性。鉴于传统单指数模型的局限性,后来有研究者开发了多种复杂的DWI模型,如IVIM和其他非高斯扩散模型,以提高对肿瘤微环境的表征能力。

2 IVIM模型

       IVIM(公式2)通过多b值DWI解析组织中水分子扩散与微循环灌注的复合效应[21, 22]。其参数包括:D(纯扩散系数,反映无灌注干扰的真实水分子扩散)、D*(伪扩散系数,表征微循环灌注引起的快速扩散)以及f(灌注分数,表示快速扩散成分占总扩散的比例)[23, 24]。这些参数可以用于深入探究肿瘤微环境的变化,特别是在评估微血管结构、血管成熟度及非典型血管模式方面具有潜力[25]

       S0和S(b)是在b=0 s/mm2和其他给定b值扩散加权图像下获得的信号强度。

       研究表明D*、f和fD*(f×D*)与微血管密度呈正相关,提示这些参数可反映内皮依赖性血管的密度和灌注状态;D值与血管生成拟态(vasculogenic mimicry, VM)呈负相关,支持VM的高细胞密度特性(因VM由肿瘤细胞形成,限制水分扩散);D*和fD*与周细胞覆盖指数(pericyte coverage index, PCI)呈正相关,表明高PCI(血管成熟度高)伴随更稳定的血流和微循环功能[25]。该模型通过双指数函数分离扩散与灌注效应,突破了单指数模型将二者混杂计算的局限性。

       在直肠癌疗效评估中,多项研究证实IVIM参数具有重要临床价值。XU等[26]发现D值可有效预测pCR,其特异度达95.12%,准确率86.27%;而D值变化百分比(Δ%D)的受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)最高(0.898),成为评估新辅助化疗疗效的敏感指标[23]。WEN等[27]的研究进一步支持这一结论,他们发现pCR组的Δ%D显著高于非pCR组(88.51 vs. 48.82,P<0.001),且Δ%D的AUC值(0.881)显著高于Δ%ADC(0.716),表明IVIM-DWI在区分pCR方面优于传统DWI。YANG等[28]的研究还显示,IVIM的直方图参数(D_kurtosis、f_mean和f_median)与TRG呈显著正相关(P均<0.005),结合临床特征后,联合模型的AUC提升至0.916,显著提高了pCR的预测准确性。

       尽管IVIM在理论层面具有优势,但LIANG等[29]对比研究发现,IVIM在预测pCR方面效能(AUC=0.721)显著低于单指数模型的ADC值(AUC=0.890)和SEM的DDC中位数(AUC=0.866),这可能与IVIM对噪声敏感、参数稳定性较差有关。例如,YANG等[30]指出D*值的观察者间一致性较低,组内相关系数(intra-class correlation coefficient, ICC)达0.586,限制了其临床应用。此外,IVIM需假设体素内存在离散的快速/慢速扩散质子池,这种对生物组织异质性的简化处理可能影响其临床适用性。LIU等[31]的研究则强调了纹理分析在IVIM参数中的重要性,发现灰度共生矩阵(gray-level co-occurrence matrix)特征如CorrelatD*、DifVarncADC和DifVarncD可作为pCR的独立预测因子(AUC=0.986)。后续发展的SEM通过引入连续分布扩散系数(distributed diffusion coefficient, DDC)和异质性指数(α),避免了对离散质子池的假设,更贴合肿瘤生物学异质性特征,成为优化扩散模型的重要方向[32]

3 SEM

       SEM(公式3)是一种基于非高斯扩散理论的数学模型,由BENNETT等[33]于2003年首次提出,旨在解决传统单指数模型无法描述生物组织复杂扩散行为的局限性。

       该模型通过引入两个关键参数:分布扩散系数DDC和异质性指数α[34]。其中,DDC反映异质性存在下的平均扩散速率,而α(取值范围0~1)表征扩散信号衰减偏离单指数行为的程度:α趋近于1时,扩散高度均匀(单指数衰减);α降低则表明体素内存在多个扩散速率源,异质性显著增加。SEM能够量化用DWI测量的体素内异质性[33]

       S0和(b)是在b=0 s/mm2和其他给定b值扩散加权图像下获得的信号强度。

       在直肠癌疗效评估领域,SEM模型展现出独特的临床应用潜力。LIANG等[29]针对局部晚期直肠癌的研究表明,基于全肿瘤体积的直方图分析,SEM参数(DDC)在预测nCRT后pCR方面优于双指数IVIM模型。其中,DDC中位数的AUC值达0.866,显著高于IVIM参数(如Dslow中位数AUC=0.721)。研究进一步指出,低DDC值与高细胞密度相关,可能反映肿瘤对化疗药物更敏感的生物特性;而α值降低则与微坏死、血管异质性等侵袭性特征相关。值得注意的是,SEM参数(尤其是DDC)展现出优异的重复性,其ICC达0.85,远高于IVIM模型的参数:Dslow(ICC:0.73),Dfast(ICC:0.56)和f(ICC:0.56)。ZHU等[35]的前瞻性研究进一步验证了α值的预测价值。他们发现,CRT后pCR组的α值(0.84)显著高于非pCR组(0.77),其AUC(0.848)与ADC值(0.827)相当,但特异度提升(90.9% vs. 60.8%)。更重要的是,α值的变化率(Δα>15%)对pCR的预测AUC达0.885,敏感度和特异度分别为66.7%和93.5%,体现其在动态疗效监测中的优势。此外,α值表现出极低的变异系数(coefficient of variation, CV),最低CV<7.0%,显著优于ADC(8%~16%)及IVIM参数(如D*,CV为49%~70%),证实其作为稳定生物标志物的潜力。

4 DKI

       DKI(公式4)是一种基于非高斯扩散模型的先进磁共振成像技术,其核心在于量化水分子扩散受限的微观结构异质性[36]。与传统扩散张量成像(diffusion tensor imaging​, DTI)相比,DKI通过引入峰度张量扩展了DTI的扩散张量模型,能够更精确地描述生物组织内复杂的扩散屏障(如细胞膜)和隔室[37]

       S(b)是回波时间的信号强度,Dapp是校正非高斯偏差的扩散系数,Kapp是峰度系数。其中,Kapp作为无量纲参数,反映了扩散位移概率分布偏离高斯分布的程度。此外,DKI还衍生出其他重要参数:MD(平均扩散系数)和MK(平均峰度)[38, 39]

       研究表明,DKI模型参数与肿瘤分子生物学特征存在潜在关联,平均峰度MK反映组织微观结构的复杂性,包括细胞排列紊乱、纤维化、血管扭曲等,与缺氧诱导因子1α​​(hypoxia-inducible factor 1α, HIF-1α)表达正相关(r=0.779,P<0.001):HIF-1α高表达可能通过促进血管生成和细胞增殖,导致肿瘤微环境异质性增加(如血管畸形、坏死),从而升高MK值[40];MD反映水分子扩散的整体能力,受细胞密度和坏死影响,与HIF-1α表达负相关(r=-0.588,P<0.001):HIF-1α高表达可能导致细胞增殖和缺氧性细胞肿胀,限制水分子扩散,降低MD值[40]

       在直肠癌疗效评估方面,DKI的应用显著提升了nCRT疗效评估的精准度。ZHANG等[41]的前瞻性研究构建了基于DKI与T2WI的深度学习模型,通过整合治疗前后的Dapp、Kapp、扩散加权信号Sapp及T2WI等多参数影像特征,实现了对pCR的高效预测。该模型在独立验证队列中展现出卓越性能(AUC=0.99),显著优于放射科医师的主观评估(AUC=0.66、0.72),且通过辅助决策将医师误判率从26.9%和24.8%降至12.9%和14.0%。进一步研究表明,DKI参数在治疗反应动力学中呈现特征性变化。HU等[42]发现,pCR患者治疗前的平均峰度(MKpre=0.72±0.09)显著低于非pCR组(MKpre=0.89±0.11,P<0.001),治疗后MKpost进一步降低(pCR组0.56±0.06 vs. 非pCR组0.68±0.08),而扩散系数Dpost在pCR组显著升高[(2.45±0.33)×10-3 mm2/s vs.(1.95±0.30)×10-3 mm2/s]。这种动态变化反映了治疗诱导的细胞密度降低和细胞外基质重塑,为早期疗效监测提供了量化依据。相较传统ADC值,DKI参数(尤其是MKpost)在区分pCR与非pCR时展现出更高的特异度(83.3%),凸显其对微环境异质性的敏感捕捉能力。

5 其他DWI模型

       近年来,随着非高斯扩散模型的发展,CTRW模型(公式5)和FROC模型(公式6)在直肠癌疗效评估中展现出独特优势。这些模型通过整合高阶扩散参数,突破了传统单指数模型的局限性,为肿瘤异质性和治疗反应的动态监测提供了新视角。

       CTRW模型基于随机过程理论,Dm为异常扩散系数,以μm2/s为单位,α反映水分子扩散过程中的“时间异质性”,即分子被微结构“捕获”和“释放”的概率分布;β表征“空间异质性”,与细胞内/外空间分布、血管密度等微观结构特征相关[43, 44]

       FROC模型作为CTRW的简化形式,FROC仅考虑空间异质性(固定α=1),D表示扩散系数,Gd是扩散梯度幅值,Δ为梯度脉冲间隔时间,δ指扩散梯度脉冲宽度,核心参数β与组织微观复杂性呈负相关,此外,μ参数反映水分子自由路径长度,与细胞尺寸分布密切相关[45]

       nCRT后,肿瘤微环境发生动态重构,传统ADC值因平均化效应难以捕捉早期治疗反应。多项研究证实,CTRW和FROC参数在直肠癌疗效预测中具有显著优势:ZHOU等[45]的前瞻性研究(n=103)发现,pCR组在nCRT后CTRW-α、CTRW-β、CTRW-D值均显著高于非pCR组(均P<0.01),其中CTRW参数组合(α+β+D)的AUC达0.840 [95%置信区间(confidence interval, CI):0.754~0.905],显著优于单指数ADC(AUC=0.647)。机制上,治疗有效区域因细胞凋亡、间质水肿导致扩散自由度增加,αβ升高反映时空异质性降低,提示肿瘤微环境均质化。目前CTRW/FROC模型在直肠癌中的研究较少,受限于两种模型对成像设备较高的要求,且这两种模型的数学解析也较为复杂,增加了计算难度和参数的不稳定性,不易于临床推广应用。未来需要对扫描参数进行优化,例如调整b值或改进模型算法,可以提高诊断准确率和重复性,使其更适用于临床实践;需要对参数进行生物学意义解释,与病理特征进行关联性分析,如肿瘤内异质性评分;需要将CTRW/FROC参数与正电子发射断层成像(positron emission tomography, PET)代谢特征及基因组标记(如免疫微环境、突变负荷)结合,构建跨尺度预测模型,并通过前瞻性临床试验验证模型的诊断效能与预后价值。

6 多模态融合

       为提高预测精度,多模态影像融合策略被广泛探索:PAN等[46]将灌注参数Ktrans值与磁共振TRG(mrTRG)和ADC值联合分析,构建的模型预测pCR的AUC高达0.942(95% CI:0.881~0.977),显著优于单一使用mrTRG(AUC:0.738)、ADC(AUC:0.782)或Ktrans(AUC:0.844)的效能(DeLong检验P值分别为0.015、0.023、0.030);TAN等[47]则证实联合ADC体积变化率(%ΔV)与T2W信号强度相对变化率的模型预测pCR的AUC最高(达0.85),其准确率、敏感度和特异度分别为87%、70.59%和95.45%,显著优于单一参数(P<0.05)。此外,许宁团队[48]提出将mrTRG与ADC均值整合,可优化术前评估准确性,其预测pCR的AUC为0.908(95% CI:0.849~0.968),其敏感度和特异度分别为83.9%和85.4%。值得注意的是,混合PET/MRI技术通过量化ADC变化百分比,为评估治疗反应提供了功能-代谢双模态信息[49]。ZHANG等[50]的研究进一步指出,IVIM-DKI联合模型评估新辅助治疗的完全缓解方面显著优于传统MRI(AUC:0.855 vs. 0.685,P<0.001)。以上研究证实,通过整合不同成像模态所反映的多种肿瘤病理生物学信息,可提高直肠癌疗效预测模型的准确性和稳定性。

7 应用前景及挑战

       DWI多种模型在直肠癌疗效评估中展现出一定的应用价值,能够从不同角度量化肿瘤微结构异质性,但各扩散模型有着不同的技术特点、应用价值及局限性,需要研究者根据不同成像设备的性能和研究目的进行选择。常规单指数模型因其成熟度高,设备要求低,配合影像组学、生境分析及人工智能方法,仍是当下临床应用和研究的首选。IVIM因其可有效分离灌注对水分子在组织间隙内扩散受限程度的贡献,更适用于重点关注肿瘤灌注情况的研究,但扫描b值范围不应过高(如b=0~800 mm2/s)。SEM可对水分子非高斯扩散特性做出较为准确的描述,更适合于研究肿瘤异质性且涉及较高b值DWI的研究(如b>1500mm2/s)。而DKI通过采集多个扩散方向的数据来描述水分子的各向扩散异性,导致扫描时间较长,其临床推广应用明显受限。新兴的CTRW/FROC模型对成像设备要求较高,直肠癌相关研究也较少,需要更多研究数据验证其临床应用价值。

       目前,DWI多种模型的临床应用仍面临诸多挑战:(1)高b值图像信噪比低、伪影干扰明显,急需提升DWI图像质量。如利用分割回波平面成像技术可有效减少图像畸变和模糊,提高图像空间分辨率和信噪比,为定量分析提供更可靠的数据基础。另外,采用合适的肠道准备方法,如检查前开塞露灌肠清洁肠道和注射肠道解痉剂降低肠道蠕动,亦可帮助提升图像质量。(2)DWI图像标准化不足,跨设备、多中心的临床验证缺失,需通过优化序列设计、推进多中心协作及开发自动化后处理工具,逐步推动高阶扩散模型从科研向临床实用转化。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
BAIDOUN F, ELSHIWY K, ELKERAIE Y, et al. Colorectal cancer epidemiology: recent trends and impact on outcomes[J]. Curr Drug Targets, 2021, 22(9): 998-1009. DOI: 10.2174/1389450121999201117115717.
[3]
YAEGER R, WEISS J, PELSTER M S, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C[J]. N Engl J Med, 2023, 388(1): 44-54. DOI: 10.1056/NEJMoa2212419.
[4]
XIAO W W, LUO H L, YAO Y, et al. Total neoadjuvant treatment and PD-1/PD-L1 checkpoint inhibitor in locally advanced rectal cancer[J/OL]. Front Immunol, 2023, 14: 1149122 [2025-07-03] . https://pmc.ncbi.nlm.nih.gov/articles/PMC10079866/. DOI: 10.3389/fimmu.2023.1149122.
[5]
XIAO W W, CHEN G, GAO Y H, et al. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: a randomized clinical trial[J/OL]. Cancer Cell, 2024, 42(9): 1570-1581.e4 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/39094560/. DOI: 10.1016/j.ccell.2024.07.004.
[6]
KIM Y, LEE S K, KIM J Y, et al. Pitfalls of diffusion-weighted imaging: clinical utility of T2 shine-through and T2 black-out for musculoskeletal diseases[J/OL]. Diagnostics (Basel), 2023, 13(9): 1647 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10177815/. DOI: 10.3390/diagnostics13091647.
[7]
VIJITHANANDA S M, JAYATILAKE M L, GONÇALVES T C, et al. Texture feature analysis of MRI-ADC images to differentiate glioma grades using machine learning techniques[J/OL]. Sci Rep, 2023, 13(1): 15772 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10517003/. DOI: 10.1038/s41598-023-41353-5.
[8]
SUN Y S, ZHANG X P, TANG L, et al. Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging[J]. Radiology, 2010, 254(1): 170-178. DOI: 10.1148/radiol.2541082230.
[9]
WANG C H, WANG G Y, ZHANG Y F, et al. Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order Calculus model[J/OL]. Eur J Radiol, 2023, 159: 110646 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/36577184/. DOI: 10.1016/j.ejrad.2022.110646.
[10]
杨澳, 周鹏. 功能MRI定量评估局部进展期直肠癌新辅助放化疗后病理完全缓解研究进展[J]. 磁共振成像, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imag, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
[11]
杨瑷如, 曹云太, 侯昱胤, 等. MRI在预测直肠癌新辅助放化疗疗效中的研究进展[J]. 磁共振成像, 2025, 16(2): 204-209, 214. DOI: 10.12015/issn.1674-8034.2025.02.033.
YANG A R, CAO Y T, HOU Y Y, et al. The research progress of MRI in predicting the efficacy of neoadjuvant chemoradiotherapy for rectal cancer[J]. Chin J Magn Reson Imag, 2025, 16(2): 204-209, 214. DOI: 10.12015/issn.1674-8034.2025.02.033.
[12]
WANG J, HU S, LIANG P, et al. R2* mapping and reduced field-of-view diffusion-weighted imaging for preoperative assessment of nonenlarged lymph node metastasis in rectal cancer[J/OL]. NMR Biomed, 2024, 37(10): e5174 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38712650/. DOI: 10.1002/nbm.5174.
[13]
YACHEVA A, DARDANOV D, ZLATAREVA D. The multipurpose usage of diffusion-weighted MRI in rectal cancer[J/OL]. Medicina (Kaunas), 2023, 59(12): 2162 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10744943/. DOI: 10.3390/medicina59122162.
[14]
ZHANG G W, XU Z L, ZHENG J Y, et al. Prognostic value of multi b-value DWI in patients with locally advanced rectal cancer[J]. Eur Radiol, 2023, 33(3): 1928-1937. DOI: 10.1007/s00330-022-09159-7.
[15]
AGROTIS G, POOCH E, ABDELATTY M, et al. Diagnostic performance of ADC and ADCratio in MRI-based prostate cancer assessment: a systematic review and meta-analysis[J]. Eur Radiol, 2025, 35(1): 404-416. DOI: 10.1007/s00330-024-10890-6.
[16]
DRAGO S G, MAINO C, GIANDOLA T P, et al. Correlations between apparent diffusion coefficient (ADC) and prognosis in patients with locally advanced rectal cancer[J/OL]. Life (Basel), 2024, 14(10): 1282 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11509644/. DOI: 10.3390/life14101282.
[17]
BABATÜRK A, ERDEN A, GEÇIM İ E. Apparent diffusion coefficient histogram analysis for predicting neoadjuvant chemoradiotherapy response in patients with rectal cancer[J]. Diagn Interv Radiol, 2022, 28(5): 403-409. DOI: 10.5152/dir.2022.201112.
[18]
JIMÉNEZ DE LOS SANTOS M E, REYES-PÉREZ J A, DOMÍNGUEZ OSORIO V, et al. Whole lesion histogram analysis of apparent diffusion coefficient predicts therapy response in locally advanced rectal cancer[J]. World J Gastroenterol, 2022, 28(23): 2609-2624. DOI: 10.3748/wjg.v28.i23.2609.
[19]
CHEN H, LI X, PAN X Y, et al. Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer[J/OL]. Phys Med Biol, 2023, 68(23) [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/37972413/. DOI: 10.1088/1361-6560/ad0d46.
[20]
SUROV A, PECH M, POWERSKI M, et al. Pretreatment apparent diffusion coefficient cannot predict histopathological features and response to neoadjuvant radiochemotherapy in rectal cancer: a meta-analysis[J]. Dig Dis, 2022, 40(1): 33-49. DOI: 10.1159/000515631.
[21]
CHAI Y X, NIU Y C, CHENG R X, et al. Dynamic contrast-enhanced MRI combined with intravoxel incoherent motion in quantitative evaluation for preoperative risk stratification of resectable rectal adenocarcinoma[J/OL]. Oncol Lett, 2024, 29(2): 68 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11605276/. DOI: 10.3892/ol.2024.14814.
[22]
ZHANG J, ZHENG Y R, LI L, et al. Combination of IVIM with DCE-MRI for diagnostic and prognostic evaluation of breast cancer[J/OL]. Magn Reson Imag, 2024, 113: 110204 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38971263/. DOI: 10.1016/j.mri.2024.07.003.
[23]
HU H B, JIANG H J, WANG S, et al. 3.0 T MRI IVIM-DWI for predicting the efficacy of neoadjuvant chemoradiation for locally advanced rectal cancer[J]. Abdom Radiol (NY), 2021, 46(1): 134-143. DOI: 10.1007/s00261-020-02594-4.
[24]
BORTOLOTTO C, STELLA G M, MESSANA G, et al. Correlation between PD-L1 expression of non-small cell lung cancer and data from IVIM-DWI acquired during magnetic resonance of the Thorax: preliminary results[J/OL]. Cancers (Basel), 2022, 14(22): 5634 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9688282/. DOI: 10.3390/cancers14225634.
[25]
TAO J, YIN Z Z, LI X W, et al. Correlation between IVIM parameters and microvessel architecture: direct comparison of MRI images and pathological slices in an orthotopic murine model of rhabdomyosarcoma[J]. Eur Radiol, 2023, 33(12): 8576-8584. DOI: 10.1007/s00330-023-09835-2.
[26]
XU Q Y, XU Y Y, SUN H L, et al. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Magn Reson Imaging, 2018, 48(1): 248-258. DOI: 10.1002/jmri.25931.
[27]
WEN L, HOU J, ZHOU J M, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J/OL]. Sci Rep, 2017, 7: 8496 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5561073/. DOI: 10.1038/s41598-017-09227-9.
[28]
YANG A, LIN L B, XU H, et al. Combination of intravoxel incoherent motion histogram parameters and clinical characteristics for predicting response to neoadjuvant chemoradiation in patients with locally advanced rectal cancer[J]. Abdom Radiol (NY), 2025, 50(4): 1505-1515. DOI: 10.1007/s00261-024-04629-6.
[29]
LIANG C Y, CHEN M D, ZHAO X X, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005.
[30]
YANG L Q, XIA C C, ZHAO J, et al. The value of intravoxel incoherent motion and diffusion kurtosis imaging in the assessment of tumor regression grade and T stages after neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, 2021, 136: 109504 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/33421885/. DOI: 10.1016/j.ejrad.2020.109504.
[31]
LIU S Y, WEN L, HOU J, et al. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging[J]. Abdom Radiol (NY), 2019, 44(8): 2689-2698. DOI: 10.1007/s00261-019-02032-0.
[32]
ZHANG J H, XING X Y, WANG Q Z, et al. Preliminary study of monoexponential, biexponential, and stretched-exponential models of diffusion-weighted MRI and diffusion kurtosis imaging on differential diagnosis of spinal metastases and chordoma[J]. Eur Spine J, 2022, 31(11): 3130-3138. DOI: 10.1007/s00586-022-07269-w.
[33]
BENNETT K M, SCHMAINDA K M, BENNETT R T, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magn Reson Med, 2003, 50(4): 727-734. DOI: 10.1002/mrm.10581.
[34]
GUO Y X, CHEN J J, ZHANG Y F, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order calculus models[J/OL]. Eur J Radiol, 2022, 150: 110237 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/35278979/. DOI: 10.1016/j.ejrad.2022.110237.
[35]
ZHU H B, ZHANG X Y, ZHOU X H, et al. Assessment of pathological complete response to preoperative chemoradiotherapy by means of multiple mathematical models of diffusion-weighted MRI in locally advanced rectal cancer: a prospective single-center study[J]. J Magn Reson Imaging, 2017, 46(1): 175-183. DOI: 10.1002/jmri.25567.
[36]
SINGHAL S, SARAN S, SAXENA S, et al. Role of diffusion kurtosis imaging in evaluating microstructural changes in spinal cord of patients with cervical spondylosis[J]. Eur Spine J, 2023, 32(3): 986-993. DOI: 10.1007/s00586-023-07559-x.
[37]
TAHA H T, CHAD J A, CHEN J J. DKI enhances the sensitivity and interpretability of age-related DTI patterns in the white matter of UK biobank participants[J]. Neurobiol Aging, 2022, 115: 39-49. DOI: 10.1016/j.neurobiolaging.2022.03.008.
[38]
ŻUROWSKA A, PĘKSA R, GRZYWIŃSKA M, et al. Comparison of diffusion kurtosis imaging and standard mono-exponential apparent diffusion coefficient in diagnosis of significant prostate cancer-a correlation with gleason score assessed on whole-mount histopathology specimens[J/OL]. Diagnostics (Basel), 2023, 13(2): 173 [2025-07-03]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9858256/. DOI: 10.3390/diagnostics13020173.
[39]
DUAN Z Q, FANG S B, HU J W, et al. Correlation of intravoxel incoherent motion and diffusion kurtosis MR imaging models with reactive stromal grade in prostate cancer[J]. J Magn Reson Imaging, 2023, 58(2): 630-639. DOI: 10.1002/jmri.28546.
[40]
LI X W, YANG L, WANG Q M, et al. Soft tissue sarcomas: IVIM and DKI correlate with the expression of HIF-1α on direct comparison of MRI and pathological slices[J]. Eur Radiol, 2021, 31(7): 4669-4679. DOI: 10.1007/s00330-020-07526-w.
[41]
ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI: 10.1148/radiol.2020190936.
[42]
HU F X, TANG W, SUN Y Q, et al. The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging[J]. Oncotarget, 2017, 8(43): 75597-75606. DOI: 10.18632/oncotarget.17491.
[43]
DU M, ZOU D, GAO P, et al. Evaluation of a continuous-time random-walk diffusion model for the differentiation of malignant and benign breast lesions and its association with Ki-67 expression[J/OL]. NMR Biomed, 2023, 36(8): e4920 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/36912198/. DOI: 10.1002/nbm.4920.
[44]
SHENG Y R, CHANG H, XUE K, et al. Characterization of prostatic cancer lesion and gleason grade using a continuous-time random-walk diffusion model at high b-values[J/OL]. Front Oncol, 2024, 14: 1389250 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38854720/. DOI: 10.3389/fonc.2024.1389250.
[45]
ZHOU M, CHEN M Y, CHEN M N, et al. Predictive value of mono-exponential and multiple mathematical models in locally advanced rectal cancer response to neoadjuvant chemoradiotherapy[J]. Abdom Radiol (NY), 2025, 50(3): 1105-1116. DOI: 10.1007/s00261-024-04588-y.
[46]
PAN Y N, GU M Y, MAO Q L, et al. Value of perfusion parameters from golden-angle radial sparse parallel dynamic contrast-enhanced magnetic resonance imaging in predicting pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer[J]. Diagn Interv Radiol, 2024, 30(4): 228-235. DOI: 10.4274/dir.2024.232460.
[47]
TAN Z W, XIE L L, CHENG L, et al. Combination of multiple MRI parameters related to signal intensity and volume for predicting response to neoadjuvant chemoradiotherapy by patients with locally advanced rectal cancer[J/OL]. Curr Med Imaging, 2023 [2025-07-03]. https://pubmed.ncbi.nlm.nih.gov/38031786/. DOI: 10.2174/0115734056258900231025043146.
[48]
许宁, 黄凤昌, 李文亮, 等. 磁共振肿瘤退缩分级和表观弥散系数对局部进展期直肠癌新辅助治疗后病理完全缓解的预测价值[J]. 中华胃肠外科杂志, 2021, 24(4): 359-365. DOI: 10.3760/cma.j.cn.441530-20200225-00089.
XU N, HUANG F C, LI W L, et al. Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer[J]. Chin J Gastrointest Surg, 2021, 24(4): 359-365. DOI: 10.3760/cma.j.cn.441530-20200225-00089.
[49]
TEY J, TAN J K, TAN K K, et al. Restaging of rectal cancer with hybrid positron emission tomography magnetic resonance imaging after preoperative chemoradiotherapy[J]. Ann Acad Med Singap, 2023, 52(6): 289-295. DOI: 10.47102/annals-acadmedsg.2022378.
[50]
ZHANG L, JIN Z W, YANG F, et al. Added value of histogram analysis of intravoxel incoherent motion and diffusion kurtosis imaging for the evaluation of complete response to neoadjuvant therapy in locally advanced rectal cancer[J]. Eur Radiol, 2025, 35(3): 1669-1678. DOI: 10.1007/s00330-024-11081-z.

上一篇 基于MRI深度学习预测肝细胞癌微血管侵犯的研究进展
下一篇 磁共振成像预测膀胱癌术后复发的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2