分享:
分享到微信朋友圈
X
综述
磁共振引导聚焦超声在中枢神经系统疾病中的临床应用与研究进展
刘硕 徐靖尧 史炎弘 王鑫惠 王梅云

Cite this article as: LIU S, XU J Y, SHI Y H, et al. Clinical application and research advances of magnetic resonance-guided focused ultrasound in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2025, 16(10): 222-228.本文引用格式:刘硕, 徐靖尧, 史炎弘, 等. 磁共振引导聚焦超声在中枢神经系统疾病中的临床应用与研究进展[J]. 磁共振成像, 2025, 16(10): 222-228. DOI:10.12015/issn.1674-8034.2025.10.035.


[摘要] 磁共振引导聚焦超声(magnetic resonance-guided focused ultrasound, MRgFUS)是一种融合实时磁共振成像(magnetic resonance imaging, MRI)与精准超声能量的无创治疗技术,近年来在神经系统疾病领域取得突破性进展。本研究系统梳理了MRgFUS通过热消融、机械效应及血脑屏障(blood-brain barrier, BBB)开放等机制,在阿尔茨海默病(Alzheimer's disease, AD)、帕金森病(Parkinson's disease, PD)、特发性震颤(essential tremor, ET)等疾病中的临床应用证据,并探讨其未来发展方向。现有研究表明,MRgFUS在改善运动症状、增强药物递送及神经调控方面具有显著优势,但其长期疗效和个体化方案仍需进一步验证。在此基础上,本文进一步分析了现有研究的局限性,并提出未来的研究方向,旨在为MRgFUS的临床应用提供全面参考,推动其在疾病治疗中的优化与创新,并为相关临床研究提供借鉴与帮助。
[Abstract] Magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive therapeutic technology that integrates real-time magnetic resonance imaging (MRI) with precise ultrasound energy, demonstrating groundbreaking progress in the treatment of neurological disorders in recent years. This article systematically reviews the clinical applications of MRgFUS in Alzheimer's disease (AD), Parkinson's disease (PD), essential tremor (ET), and other conditions through mechanisms including thermal ablation, mechanical effects, and blood-brain barrier (BBB) opening, while exploring future research directions. Current evidence indicates that MRgFUS exhibits significant advantages in improving motor symptoms, enhancing drug delivery, and neuromodulation. However, further validation is required regarding its long-term efficacy and individualized treatment protocols. This article reviews the clinical applications of MRgFUS in central nervous system disorders, analyzes the limitations of the current study, and proposes future research directions, aiming to provide a comprehensive reference for the clinical application of MRgFUS, to promote its optimization and innovation in the treatment of diseases, and to provide reference and assistance for related clinical research.
[关键词] 阿尔茨海默病;帕金森病;特发性震颤;磁共振引导聚焦超声;磁共振成像;血脑屏障开放
[Keywords] Alzheimer's disease;Parkinson's disease;essential tremor;magnetic resonance-guided focused ultrasound;magnetic resonance imaging;blood-brain barrier opening

刘硕 1   徐靖尧 2   史炎弘 1   王鑫惠 2   王梅云 3, 4*  

1 新乡医学院河南省人民医院医学影像科,郑州 450003

2 郑州大学人民医院医学影像科,郑州 450003

3 河南省人民医院医学影像科,郑州 450003

4 河南省科学院生物医学研究所,郑州 450046

通信作者:王梅云,E-mail:mywang@zzu.edu.cn

作者贡献声明:王梅云设计本研究的方案,对稿件重要内容进行了修改,获得了河南省科技研发计划联合基金项目的资助;刘硕起草和撰写稿件,获取、分析并解释了本研究的相关文献及资料;徐靖尧、史炎弘、王鑫惠获取、分析或解释本研究的相关文献及资料,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河南省科技研发计划联合基金项目 225200810062
收稿日期:2025-07-14
接受日期:2025-09-28
中图分类号:R445.2  R338.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.10.035
本文引用格式:刘硕, 徐靖尧, 史炎弘, 等. 磁共振引导聚焦超声在中枢神经系统疾病中的临床应用与研究进展[J]. 磁共振成像, 2025, 16(10): 222-228. DOI:10.12015/issn.1674-8034.2025.10.035.

0 引言

       磁共振引导聚焦超声(magnetic resonance-guided focused ultrasound, MRgFUS)是一种革命性的无创治疗技术,通过热消融、机械效应、血脑屏障(blood-brain barrier, BBB)开放及神经调控等多重机制,实现对颅内靶点的精准干预[1]。该技术结合了磁共振成像(magnetic resonance imaging, MRI)的实时温度监测、精准靶向定位和疗效评估功能,在提升治疗安全性的同时,也为中枢神经系统(central nervous system, CNS)疾病提供了新的有效治疗途径[2]。近年来,MRgFUS在神经退行性疾病如阿尔茨海默病(Alzheimer's disease, AD)、帕金森病(Parkinson's disease, PD)、运动障碍性疾病如特发性震颤(essential tremor, ET)以及精神疾病等领域展现出广阔的应用前景[3]。其无创性、可重复性及精准靶向的优势,不仅避免了传统手术的创伤和风险,还为药物递送和神经调控提供了创新性解决方案[4]。随着技术的不断进步和临床研究的深入,MRgFUS正逐步成为CNS疾病治疗的重要选择[2, 4, 5]

       但现有研究仍存在关键问题亟待解决:长期疗效及安全性数据不足,多数临床研究随访时间较短;个体化治疗方案尚未建立,靶区选择及能量参数缺乏标准化;联合治疗策略(如基因疗法、免疫调节)的协同机制尚不明确[2, 6];因此,需要对当前MRgFUS在CNS疾病中的应用研究进行系统性综述,以全面评估其疗效、安全性及适用范围。现有综述多聚焦单一疾病或机制,缺乏跨病种的系统性分析[5, 7]。在此背景下,本研究总结了MRgFUS在CNS疾病领域的多种应用,进一步分析其局限性并探讨未来研究方向,旨在为临床转化与后续研究提供参考。

1 MRgFUS治疗机制

       MRgFUS通过两种差异化治疗模式实现对神经退行性疾病的精准干预:高强度聚焦超声(high-intensity focused ultrasound, HIFU)和低强度聚焦超声(low-intensity focused ultrasound, LIFU),分别针对不同病理机制发挥作用。HIFU利用高频超声在靶区产生高温,通过热效应诱导组织凝固性坏死,从而无创消融深部脑区(如PD的震颤相关核团)[8, 9]。LIFU联合微泡可通过声空化效应瞬时破坏BBB紧密连接,该破坏作用具有可逆性,这一特性保障了治疗的安全性,并显著提升了BBB的通透性[10, 11]。LIFU为AD等疾病的靶向药物递送提供了新策略[4, 12]。此外,LIFU还能以亚毫米级精度无创调控神经环路,能够无创地靶向特定神经核团或纤维束,为神经调控研究提供了新的技术途径[13, 14]。BBB的开放虽可能影响CNS稳态,但临床前研究已证实其安全性[15]。LIFU这一突破性技术有望解决传统疗法因BBB阻隔而难以递送大分子药物的难题。

       HIFU和LIFU在能量机制、治疗目标和应用前景上具有明显差异:HIFU通过不可逆性热消融作用,主要用于ET及部分PD患者的运动症状控制;而LIFU通过低能量声波与微泡协同作用,可实现可逆性BBB开放,更适合于AD和PD的药物递送、免疫疗法及基因治疗。因此,在CNS疾病中应根据病理特点和治疗需求选择合适的MRgFUS模式,从而发挥其最大临床价值。

2 MRgFUS在中枢神经系统疾病中的应用

       MRgFUS技术在多种中枢神经系统疾病治疗中显示出重要的临床应用潜力。其核心技术在于通过精准、可控的BBB开放显著提升CNS药物的靶向递送效率,包括小分子化合物、大分子单克隆抗体及神经干细胞等[16]。该技术在AD中通过增强β-淀粉样蛋白清除效率干预疾病进程,在PD中通过调控基底节-丘脑-皮质环路改善运动症状,并在ET中精准靶向丘脑腹侧中间核(ventral intermediate nucleus, VIM)以缓解震颤[17, 18]。此外,MRgFUS在精神疾病领域通过内囊前肢(anterior limb of internal capsule, ALIC)消融治疗难治性抑郁症(major depressive disorder, MDD)和强迫症(obsessive-compulsive disorder, OCD),在疼痛管理中靶向丘脑中央外侧核(central lateral thalamic nucleus, CLp)缓解神经病理性疼痛(neuropathic pain, NP),并在肿瘤治疗中联合微泡技术增强化疗药物对胶质瘤的渗透[2, 19, 20]。其无创性、实时MRI引导和可重复治疗的优势,使其成为神经退行性疾病、运动障碍及精神疾病等领域的重要治疗选择。

2.1 MRgFUS在AD中的应用

       AD的病理机制主要涉及Aβ沉积、tau蛋白异常聚集及神经炎症反应[21]。传统药物治疗如胆碱酯酶抑制剂虽可暂时缓解症状,但对疾病进程的逆转效果有限。近年来,新兴的单克隆抗体(如抗Aβ抗体)被认为是AD治疗的前沿方法[22],但其疗效受限于BBB的低通透性,递送效率不足是当前临床应用的一大瓶颈。与PD和ET主要依赖HIFU消融不同,MRgFUS在AD治疗中主要依托LIFU介导的BBB可逆开放。该方法作为一种无创手段,可显著提高抗体、基因或神经营养因子等大分子药物的脑内递送效率,从而成为区别于单纯药物治疗的核心优势[7, 23]。临床研究显示,MRgFUS可安全、可逆地开放AD患者默认模式网络的BBB,并伴随靶区Aβ正电子发射断层扫描(positron emission computed tomography,PET)信号的轻微减少[24]。REZAI等[25]的研究纳入了3名轻度AD患者,进一步证实了MRgFUS联合抗Aβ抗体可显著增强病理蛋白清除效率,治疗侧脑区的淀粉样蛋白沉积较基线平均减少32%。PARK等[26]首次在5名AD患者中验证了双侧额叶大范围BBB开放能减少Aβ沉积并短暂改善神经精神症状。

       此外,植入式超声设备的重复BBB开放也展现出良好的安全性,为联合免疫疗法奠定了基础[27]。一项针对10例轻度AD患者的研究表明,MRgFUS靶向开放海马体、额叶及顶叶BBB后,β-淀粉样蛋白沉积显著减少,且未观察到认知功能加速衰退[28]。MRgFUS联合微泡可安全、精准开放AD患者海马体及内嗅皮层的BBB,靶区覆盖率达95%且24 h内闭合[29]。D'HAESE团队通过3次MRgFUS治疗靶向开放6名AD患者海马体BBB后,正电子发射断层扫描PET成像显示靶区Aβ斑块标准摄取值比显著降低,同时维持了95%的高靶区覆盖率和24h内BBB闭合的特性[30]。XHIMA等[31, 32]利用MRgFUS递送TrkA激动剂D3,成功修复了AD模型的神经营养因子信号通路,不仅增强了胆碱能传递,还减少了淀粉样斑块沉积并促进神经发生。以上研究结果表明,MRgFUS通过精确调控BBB通透性,为神经退行性疾病的靶向治疗开辟了新途径。

       MRgFUS治疗AD最具前景的核心优势,在于能够精准、可逆地开放BBB。与传统全身给药方式相比,MRgFUS联合微泡技术可无创、定点地在特定脑区开放BBB,从而显著提高治疗性抗体、神经营养因子或基因载体在局部的浓度,同时大幅降低全身性副作用。这一“局部强化”策略,使其有望成为重塑AD治疗范式的平台型技术。然而,当前研究仍存在局限性:治疗参数缺乏标准化导致的可重复性难题,长期安全性与认知改善效益的不确定性,以及个体化治疗方案缺失。未来研究应着重探索其与免疫抗体、基因治疗及神经营养因子递送的协同作用,并开发基于影像反馈的个体化治疗系统,以进一步提升疗效与安全性。

2.2 MRgFUS在PD中的应用

       MRgFUS技术为PD的治疗提供了全新的无创治疗策略[33]。该技术主要通过HIFU和LIFU两种机制实现对PD的精准干预。HIFU通过热消融作用对VIM、丘脑底核(subthalamic nucleus, STN)和苍白球(globus pallidus, GP)等靶点进行精准消融,可显著改善震颤及其他运动症状,并在长期随访中展现出持久的疗效[34, 35, 36];MARTÍNEZ-FERNÁNDEZ等[37, 38]的研究表明,基于个体化纤维束成像的STN靶区规划可优化治疗响应,术后6个月患者核心症状改善超50%,且弥散张量成像显示皮质-丘脑-小脑环路的结构连接变化与临床改善显著相关。聚焦超声单侧STN切开术被证实能长期改善运动功能且安全性良好,生活质量显著提升,且随访研究证实其运动症状改善效果可持续12个月以上[35, 37, 39]

       在震颤治疗方面,MRgFUS丘脑切开术通过调节脑结构网络有效缓解震颤症状。DAHMANI等[40]通过功能连接分析发现,VIM靶向的MRgFUS治疗可显著缓解震颤,根据UPDRS的静止性震颤子项目评估,10名TDPD患者在一个月的随访中平均改善了82%;干预一年后,改善率为75%,并引发小脑-丘脑-皮质网络的功能重组,其中目标手区域与小脑的功能连接变化与疗效高度相关。LIN等[41]通过多模态影像学分析发现,患者单侧MRgFUS丘脑切开术后1个月临床震颤评分量表(clinical rating scale for tremor, CRST)评分从45.89±8.94降至19.22±12.93,术后患者的脑网络拓扑结构呈现U型变化趋势,且与多巴胺受体、转运体及代谢标志物显著相关。一项针对震颤为主型PD的研究表明,MRgFUS丘脑切开术可显著改善患者的震颤症状且12个月随访显示其对认知和情绪等非运动功能无负面影响[42]。采用VIM与STN后区作为分步式双靶点的MRgFUS策略,对震颤为主型患者的运动和非运动症状均具有显著疗效,且疗效在1年随访中保持稳定,安全性良好[43, 44]。在运动并发症管理中,GP消融术可显著降低异动症评分,为药物难治性患者提供了新选择[36, 45],而基于立体定向的苍白球丘脑束精准切断术则通过选择性阻断异常神经传导通路为运动症状控制提供了新思路[46]

       LIFU则侧重于可逆性开放BBB,从而促进神经保护药物、基因载体或神经营养因子的靶向递送,为疾病修饰治疗提供新途径。在药物递送方面,MRgFUS联合微泡技术实现了BBB的可逆开放。GASCA-SALAS等[47]首次在(Parkinson's disease dementia, PDD)患者中验证了该技术的安全性,后续研究进一步证实其可安全开放黑质与壳核区BBB,并通过18F-Choline-PET验证了药物渗透效果[48]。此外,HUANG等[49]利用空化反馈控制系统实时调节超声功率,成功在PD患者壳核区域实现BBB可逆开放,对4名患者共进行了12次治疗均成功提升了靶区域的BBB通透性,目标壳核的BBB通透性均成功升高,与未治疗的对侧相比,Gd增强的T1加权MRI信号强度平均增加了14%±6%。一项针对7例PDD患者的研究采用MRgFUS分阶段单侧及双侧靶向开放BBB,所有患者均成功实现BBB开放,且屏障在24 h内闭合。研究还发现,靶向区域的β-淀粉样蛋白负荷显著降低,而多巴胺能系统未受明显影响。这表明MRgFUS可能通过促进蛋白质清除发挥治疗作用,且淀粉样蛋白减少程度与BBB开放水平相关[50]。在基因治疗方面,LIFU技术成功实现了AAV载体的靶向递送和神经元特异性转基因表达[51]。与射频消融和伽玛刀手术相比,MRgFUS在震颤控制和生活质量改善方面更具优势,长期随访疗效稳定[52]。OSADA等[53]进一步指出,LIFU通过机械敏感离子通道激活及星形胶质细胞介导的神经递质释放,可实现无创神经调控,为PD的环路调控提供了新机制。

       在PD的治疗中,MRgFUS展现了两种极具价值的独特策略:其一为一次性、无植入物的精准毁损治疗;其二为靶向性BBB开放,用以辅助药物或基因递送。通过多样化的干预方式,MRgFUS为PD提供了安全、有效且无创的治疗选择,展现出广阔的临床应用前景。MRgFUS通过调控STN和GP等靶区,显著改善PD患者的运动症状。分步式双靶点治疗进一步提升了疗效,且安全性良好。但对PD的非运动症状改善效果有限,未来研究应重点发展多靶点联合治疗策略,结合实时反馈控制系统,并探索与神经营养因子或基因疗法的结合潜力,以期获得更全面的临床获益。

2.3 MRgFUS在ET中的应用

       ET作为最常见的运动障碍性疾病之一,其典型临床特征表现为姿势性和动作性震颤,主要累及上肢,也可影响头部、声音及下肢[54]。MRgFUS作为一种无创神经调控技术,目前其主要应用模式是基于HIFU的精准热消融,通过精准靶向VIM实现对该疾病的有效干预,已成为药物难治性ET的重要治疗选择。其治疗机制与对小脑-丘脑-皮质环路的神经调控作用密切相关。研究表明,MRgFUS治疗后该环路的功能连接可获得显著改善[55]。KATO等[56]通过静息态脑功能磁共振成像分析了15例ET患者术前和术后的脑网络变化,ET患者术前感觉运动网络和视觉网络的功能连接显著降低,术后感觉运动网络连接部分恢复且小脑网络活动增强。此外,MRgFUS还能调控ET相关神经网络,其特征为感觉运动皮层激活和后扣带回抑制,并与线粒体功能基因表达相关[57]。临床研究显示,VIM核靶向治疗可使80.5%的患者手部震颤显著改善,且疗效与靶区定位准确性密切相关[58]。弥散张量成像束成像技术的应用使得MRgFUS能够直接靶向齿小脑束并避开锥体束等关键结构,在提升震颤缓解率的同时显著降低了运动和感觉不良事件发生率[59, 60]。相较于脑深部电刺激(deep brain stimulation, DBS),MRgFUS通过优化靶点定位可在保证疗效的同时减少步态障碍等副作用[61]。长期随访研究证实了该技术的持久疗效和安全性,MARTINEZ-FERNÁNDEZ等[62]报道双侧分期治疗可显著改善难治性ET患者的震颤症状,双侧治疗后CRST总分降低71%,仅出现短暂性步态不稳等轻微不良反应,其他研究也表明治疗后震颤症状持续改善且无延迟性不良事件[63, 64]。微观结构研究显示,MRgFUS治疗后小脑-丘脑-皮质网络出现特征性改变,表现为分数各向异性降低和径向扩散系数升高,这些变化与临床症状改善程度相关,分数各向异性变化与CRST评分呈正相关趋势[65]。WANG等[66]进一步发现治疗后白质网络拓扑结构优化,富俱乐部连接增强和小世界属性改善,其中右侧颞上回和壳核节点效率的变化与震颤改善密切相关。

       MRgFUS治疗ET最独特的价值在于,它已成为药物难治性ET的首选治疗方案之一。DBS和MRgFUS均展现出较好疗效。DBS虽需植入电极和脉冲发生器,初期费用较高,但具备长期可调性,可根据病程进展灵活优化参数。然而,其硬件相关并发症(如感染、器械故障)仍不可忽视。相较之下,MRgFUS在实时MRI引导下实现精准热消融,治疗过程无创、一次完成,无硬件植入及维护成本,患者依从性和生活便利性较高。MRgFUS丘脑切开术的短期疗效可与DBS相当,但其效果不可逆。其独特价值在于“无创、精准、持久”,但适应证范围和长期随访数据仍需进一步完善。今后研究应致力于扩大适应证、完善长期随访数据、建立个体化治疗参数体系,并探索其与神经调控药物或闭环调控技术的联合应用策略,进一步发展基于多模态影像与人工智能的预后评估模型,以提升治疗精准性与患者受益范围。

2.4 MRgFUS在其他疾病当中的应用

       MRgFUS作为一种非侵入性治疗技术,近年来在多种疾病领域展现出广泛的应用潜力。除前述疾病外,其在癫痫、精神疾病、慢性疼痛、肿瘤及肌肉骨骼系统疾病等领域也逐渐获得关注。

       MRgFUS技术在癫痫治疗中显示出显著潜力。一项个案报告显示,通过精准消融,患者实现18个月无癫痫发作,且无神经认知或内分泌副作用,凸显其作为微创手术替代方案的可行性[67]。在精神神经疾病方面,双侧ALIC消融术为MDD和OCD提供了无创干预手段,10年随访显示70%的OCD患者症状持续改善,其机制与边缘系统功能连接调控相关[68, 69, 70]。疼痛管理领域,靶向CLp的MRgFUS可有效缓解NP,一项系统性综述分析了3项已发表研究及9项临床试验数据,显示MRgFUS丘脑切开术可有效缓解疼痛,且安全性良好[19]。AHMED等[71]纳入10例患者进一步验证了MRgFUS中央外侧丘脑切开术对难治性NP的潜力。术后1年随访显示,多维疼痛评分显著降低,且间歇性疼痛患者改善更明显。在肿瘤治疗中,MRgFUS联合微泡技术能显著提升化疗药物的递送效率。ISHIDA等[72]研究证实,该技术可在保持BBB完整的SU-DIPG-17弥漫内生型桥脑胶质瘤小鼠模型中,实现靶向性BBB开放,使阿霉素的肿瘤内浓度提升约4倍,并有效抑制肿瘤增殖活性(Ki-67表达降低)。另一方面,将MRgFUS与特异性纳米探针联用,可进一步实现对胶质母细胞瘤的精准影像诊断与治疗增强[73]。此外,MRgFUS对骨关节疾病的创新应用包括:通过消融骨膜神经末梢使膝OA患者疼痛评分降低82%(疗效维持18个月),以及多中心研究证实的转移性骨痛缓解(3个月有效率75.6%)[74, 75, 76]。近期一项系统性综述与荟萃分析进一步证实,MRgFUS治疗骨样骨瘤的成功率达92.8%,并发症率极低(0.85%),且无严重不良事件报告,凸显其在良性骨肿瘤治疗中的安全性与有效性[77]。在妇科领域,该技术作为子宫肌瘤无创治疗手段,其精准温控特性使症状缓解率优于传统手术,且并发症发生率更低[78, 79]。此外,MRgFUS在腹壁子宫内膜异位症治疗中也显示出潜力。一项前瞻性研究表明,MRI能准确评估病灶位置、大小及HIFU术后变化,ADC值升高与组织坏死相关,消融率>50%的患者症状缓解率更高、复发率更低[80]

       MRgFUS作为一种非侵入性、精准调控的治疗技术,已逐步应用于神经系统、精神疾病、疼痛、肿瘤和肌肉骨骼等多系统疾病,体现出显著的跨学科治疗潜力。然而,其作用机制尚未完全明确,疗效存在个体差异,未来需结合多模态影像与生物标志物,进一步推动其精准化和个体化应用。

3 小结与展望

       MRgFUS技术通过其无创性、精准靶向和实时监测优势,已成为神经退行性疾病、运动障碍及精神疾病治疗的重要突破。当前研究证实,其在AD中通过BBB开放增强病理蛋白清除,在PD和ET中通过神经网络重塑改善运动症状,并在疼痛管理、肿瘤治疗等领域展现出广阔潜力。然而,其临床转化仍面临多重挑战:现有研究样本量有限,长期疗效与安全性证据不足,治疗参数和靶区选择缺乏统一标准。同时,治疗依赖较长MRI扫描时间并占用大量设备资源,限制了在常规实践中的推广;超声声学参数的优化亦具技术难度,且在部分适应证中疗效尚未全面优于传统方案。未来研究应聚焦于三方面:其一,开展大规模、多中心临床试验,完善长期疗效与安全性评价;其二,建立标准化与个体化兼顾的治疗参数体系,并推动其与药物、基因及神经营养因子疗法的联合应用;其三,开发智能化、流程化的治疗系统,以提升可及性与普适性。

       值得注意的是,尽管MRgFUS展现出良好的靶向性和可逆性,其长期安全性仍是临床转化的关键。本文综述所涉及的研究显示,LIFU介导的BBB开放可在数小时至24小时内完全闭合,且未观察到严重不良事件,为初步安全性提供了依据。但仍需通过长期随访与慢性治疗研究,进一步确认其稳定性与可持续临床价值。

[1]
MENG Y, HYNYNEN K, LIPSMAN N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery[J]. Nat Rev Neurol, 2021, 17(1): 7-22. DOI: 10.1038/s41582-020-00418-z.
[2]
HENN M C, SMITH H D, LOPEZ RAMOS C G, et al. A systematic review of focused ultrasound for psychiatric disorders: current applications, opportunities, and challenges[J/OL]. Neurosurg Focus, 2024, 57(3): E8 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39217636/. DOI: 10.3171/2024.6.FOCUS24278.
[3]
LEV-TOV L, BARBOSA D A N, GHANOUNI P, et al. Focused ultrasound for functional neurosurgery[J]. J Neurooncol, 2022, 156(1): 17-22. DOI: 10.1007/s11060-021-03818-3.
[4]
AKHTAR A, ANDLEEB A, WARIS T S, et al. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics[J/OL]. J Control Release, 2021, 330: 1152-1167 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33197487/. DOI: 10.1016/j.jconrel.2020.11.021.
[5]
SHIRAMBA A, LANE S, RAY N, et al. Efficacy and safety of magnetic resonance-guided focused ultrasound thalamotomy in essential tremor: a systematic review and metanalysis[J]. Mov Disord, 2025, 40(6): 1020-1033. DOI: 10.1002/mds.30188.
[6]
STAVARACHE M A, CHAZEN J L, KAPLITT M G. Innovative applications of MR-guided focused ultrasound for neurological disorders[J/OL]. World Neurosurg, 2021, 145: 581-589 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33348524/. DOI: 10.1016/j.wneu.2020.08.052.
[7]
MENG Y, KALIA L V, KALIA S K, et al. Current progress in magnetic resonance-guided focused ultrasound to facilitate drug delivery across the blood-brain barrier[J/OL]. Pharmaceutics, 2024, 16(6): 719 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38931843/. DOI: 10.3390/pharmaceutics16060719.
[8]
MENG Y, JONES R M, DAVIDSON B, et al. Technical principles and clinical workflow of transcranial MR-guided focused ultrasound[J]. Stereotact Funct Neurosurg, 2021, 99(4): 329-342. DOI: 10.1159/000512111.
[9]
BAUER R, MARTIN E, HAEGELE-LINK S, et al. Noninvasive functional neurosurgery using transcranial MR imaging-guided focused ultrasound[J/OL]. Parkinsonism Relat Disord, 2014, 20(Suppl 1): S197-S199 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/24262180/. DOI: 10.1016/S1353-8020(13)70046-4.
[10]
SHEIKOV N, MCDANNOLD N, VYKHODTSEVA N, et al. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles[J]. Ultrasound Med Biol, 2004, 30(7): 979-989. DOI: 10.1016/j.ultrasmedbio.2004.04.010.
[11]
ARYAL M, ARVANITIS C D, ALEXANDER P M, et al. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system[J/OL]. Adv Drug Deliv Rev, 2014, 72: 94-109 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/24462453/. DOI: 10.1016/j.addr.2014.01.008.
[12]
NATERA-VILLALBA E, RUIZ-YANZI M A, GASCA-SALAS C, et al. MR-guided focused ultrasound in movement disorders and beyond: Lessons learned and new frontiers[J/OL]. Parkinsonism Relat Disord, 2024, 122: 106040 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38378311/. DOI: 10.1016/j.parkreldis.2024.106040.
[13]
PULEO C, COTERO V. Noninvasive neuromodulation of peripheral nerve pathways using ultrasound and its current therapeutic implications[J/OL]. Cold Spring Harb Perspect Med, 2020, 10(2): a034215 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/31138539/. DOI: 10.1101/cshperspect.a034215.
[14]
DARMANI G, BERGMANN T O, PAULY K B, et al. Non-invasive transcranial ultrasound stimulation for neuromodulation[J/OL]. Clin Neurophysiol, 2022, 135: 51-73 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35033772/. DOI: 10.1016/j.clinph.2021.12.010.
[15]
FISHMAN P S, FISCHELL J M. Focused ultrasound mediated opening of the blood-brain barrier for neurodegenerative diseases[J/OL]. Front Neurol, 2021, 12: 749047 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34803886/. DOI: 10.3389/fneur.2021.749047.
[16]
STAMP M E M, HALWES M, NISBET D, et al. Breaking barriers: exploring mechanisms behind opening the blood-brain barrier[J/OL]. Fluids Barriers CNS, 2023, 20(1): 87 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38017530/. DOI: 10.1186/s12987-023-00489-2.
[17]
MENG Y, POPLE C B, HUANG Y X, et al. Putaminal recombinant glucocerebrosidase delivery with magnetic resonance-guided focused ultrasound in Parkinson's disease: a phase I study[J]. Mov Disord, 2022, 37(10): 2134-2139. DOI: 10.1002/mds.29190.
[18]
MENG Y, REILLY R M, PEZO R C, et al. MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases[J/OL]. Sci Transl Med, 2021, 13(615): eabj4011 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34644145/. DOI: 10.1126/scitranslmed.abj4011.
[19]
TARANTA V, SAPORITO G, ORNELLO R, et al. Magnetic Resonance-guided Focused Ultrasound thalamotomy for refractory neuropathic pain: a systematic review and critical appraisal of current knowledge[J/OL]. Ther Adv Neurol Disord, 2023, 16: 17562864231180729 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37363184/. DOI: 10.1177/17562864231180729.
[20]
MAINPRIZE T, LIPSMAN N, HUANG Y X, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study[J/OL]. Sci Rep, 2019, 9(1): 321 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/30674905/. DOI: 10.1038/s41598-018-36340-0.
[21]
RAJAH KUMARAN K, YUNUSA S, PERIMAL E, et al. Insights into the pathophysiology of Alzheimer's disease and potential therapeutic targets: a current perspective[J]. J Alzheimers Dis, 2023, 91(2): 507-530. DOI: 10.3233/JAD-220666.
[22]
YANG H M. Recent advances in antibody therapy for Alzheimer's disease: focus on bispecific antibodies[J/OL]. Int J Mol Sci, 2025, 26(13): 6271 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/40650049/. DOI: 10.3390/ijms26136271.
[23]
DURHAM P G, BUTNARIU A, ALGHORAZI R, et al. Current clinical investigations of focused ultrasound blood-brain barrier disruption: a review[J/OL]. Neurotherapeutics, 2024, 21(3): e00352 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/38636309/. DOI: 10.1016/j.neurot.2024.e00352.
[24]
MENG Y, GOUBRAN M, RABIN J S, et al. Blood-brain barrier opening of the default mode network in Alzheimer's disease with magnetic resonance-guided focused ultrasound[J]. Brain, 2023, 146(3): 865-872. DOI: 10.1093/brain/awac459.
[25]
REZAI A R, D'HAESE P F, FINOMORE V, et al. Ultrasound blood-brain barrier opening and aducanumab in Alzheimer's disease[J]. N Engl J Med, 2024, 390(1): 55-62. DOI: 10.1056/NEJMoa2308719.
[26]
PARK S H, BAIK K, JEON S, et al. Extensive frontal focused ultrasound mediated blood-brain barrier opening for the treatment of Alzheimer's disease: a proof-of-concept study[J/OL]. Transl Neurodegener, 2021, 10(1): 44 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34740367/. DOI: 10.1186/s40035-021-00269-8.
[27]
EPELBAUM S, BURGOS N, CANNEY M, et al. Pilot study of repeated blood-brain barrier disruption in patients with mild Alzheimer's disease with an implantable ultrasound device[J/OL]. Alzheimers Res Ther, 2022, 14(1): 40 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35260178/. DOI: 10.1186/s13195-022-00981-1.
[28]
REZAI A R, RANJAN M, HAUT M W, et al. Focused ultrasound-mediated blood-brain barrier opening in Alzheimer's disease: long-term safety, imaging, and cognitive outcomes[J]. J Neurosurg, 2023, 139(1): 275-283. DOI: 10.3171/2022.9.jns221565.
[29]
REZAI A R, RANJAN M, D'HAESE P F, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. Proc Natl Acad Sci USA, 2020, 117(17): 9180-9182. DOI: 10.1073/pnas.2002571117.
[30]
D'HAESE P F, RANJAN M, SONG A, et al. β-amyloid plaque reduction in the hippocampus after focused ultrasound-induced blood-brain barrier opening in Alzheimer's disease[J/OL]. Front Hum Neurosci, 2020, 14: 593672 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33132889/. DOI: 10.3389/fnhum.2020.593672.
[31]
XHIMA K, MARKHAM-COULTES K, NEDEV H, et al. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease[J/OL]. Sci Adv, 2020, 6(4): eaax6646 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/32010781/. DOI: 10.1126/sciadv.aax6646.
[32]
XHIMA K, MARKHAM-COULTES K, HAHN KOFOED R, et al. Ultrasound delivery of a TrkA agonist confers neuroprotection to Alzheimer-associated pathologies[J]. Brain, 2022, 145(8): 2806-2822. DOI: 10.1093/brain/awab460.
[33]
WANG X Y, XIONG Y Q, LIN J J, et al. Target selection for magnetic resonance-guided focused ultrasound in the treatment of Parkinson's disease[J]. J Magn Reson Imaging, 2022, 56(1): 35-44. DOI: 10.1002/jmri.28080.
[34]
SINAI A, NASSAR M, SPRECHER E, et al. Focused ultrasound thalamotomy in tremor dominant Parkinson's disease: long-term results[J]. J Parkinsons Dis, 2022, 12(1): 199-206. DOI: 10.3233/JPD-212810.
[35]
ARMENGOU-GARCIA L, SANCHEZ-CATASUS C A, AVILES-OLMOS I, et al. Unilateral magnetic resonance-guided focused ultrasound lesion of the subthalamic nucleus in Parkinson's disease: a prospective study[J]. Mov Disord, 2024, 39(12): 2230-2241. DOI: 10.1002/mds.30020.
[36]
EISENBERG H M, KRISHNA V, ELIAS W J, et al. MR-guided focused ultrasound pallidotomy for Parkinson's disease: safety and feasibility[J]. J Neurosurg, 2020, 135(3): 792-798. DOI: 10.3171/2020.6.JNS192773.
[37]
MARTÍNEZ-FERNÁNDEZ R, NATERA-VILLALBA E, et al. Prospective long-term follow-up of focused ultrasound unilateral subthalamotomy for parkinson disease[J/OL]. Neurology, 2023, 100(13): e1395-e1405 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36631272/. DOI: 10.1212/WNL.0000000000206771.
[38]
MARTÍNEZ-FERNÁNDEZ R, PINEDA-PARDO J A. Magnetic resonance-guided focused ultrasound for movement disorders: clinical and neuroimaging advances[J]. Curr Opin Neurol, 2020, 33(4): 488-497. DOI: 10.1097/WCO.0000000000000840.
[39]
CAMPINS-ROMEU M, CONDE-SARDÓN R, SASTRE-BATALLER I, et al. MRgFUS subthalamotomy in Parkinson's disease: an approach aimed at minimizing lesion volume[J/OL]. NPJ Parkinsons Dis, 2024, 10(1): 230 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39622797/. DOI: 10.1038/s41531-024-00843-7.
[40]
DAHMANI L, BAI Y, LI M L, et al. Focused ultrasound thalamotomy for tremor treatment impacts the cerebello-thalamo-cortical network[J/OL]. NPJ Parkinsons Dis, 2023, 9(1): 90 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37322044/. DOI: 10.1038/s41531-023-00543-8.
[41]
LIN J J, KANG X P, XIONG Y Q, et al. Convergent structural network and gene signatures for MRgFUS thalamotomy in patients with Parkinson's disease[J/OL]. Neuroimage, 2021, 243: 118550 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34481084/. DOI: 10.1016/j.neuroimage.2021.118550.
[42]
PURRER V, POHL E, BORGER V, et al. Motor and non-motor outcome in tremor dominant Parkinson's disease after MR-guided focused ultrasound thalamotomy[J]. J Neurol, 2024, 271(7): 3731-3742. DOI: 10.1007/s00415-024-12469-z.
[43]
CHEN J C, LU M K, CHEN C M, et al. Stepwise dual-target magnetic resonance–guided focused ultrasound in tremor-dominant parkinson disease: a feasibility study[J/OL]. World Neurosurg, 2023, 171: e464-e470 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36563853/. DOI: 10.1016/j.wneu.2022.12.049.
[44]
CHEN J C, CHEN C M, AOH Y, et al. Stepwise dual-target magnetic resonance-guided focused ultrasound in tremor-dominant Parkinson disease: One-year follow-up[J/OL]. Eur J Neurol, 2024, 31(12): e16468 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/39287607/. DOI: 10.1111/ene.16468.
[45]
KRISHNA V, FISHMAN P S, EISENBERG H M, et al. Trial of globus pallidus focused ultrasound ablation in Parkinson's disease[J]. N Engl J Med, 2023, 388(8): 683-693. DOI: 10.1056/NEJMoa2202721.
[46]
HORISAWA S, FUKUI A, YAMAHATA H, et al. Unilateral pallidothalamic tractotomy for akinetic-rigid Parkinson's disease: a prospective open-label study[J]. J Neurosurg, 2021, 135(3): 799-805. DOI: 10.3171/2020.7.JNS201547.
[47]
GASCA-SALAS C, FERNÁNDEZ-RODRÍGUEZ B, PINEDA-PARDO J A, et al. Blood-brain barrier opening with focused ultrasound in Parkinson's disease dementia[J/OL]. Nat Commun, 2021, 12(1): 779 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33536430/. DOI: 10.1038/s41467-021-21022-9.
[48]
GASCA-SALAS C, PINEDA-PARDO J A, DEL ÁLAMO M, et al. Nigrostriatal blood-brain barrier opening in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2024, 95(11): 1089-1092. DOI: 10.1136/jnnp-2023-332967.
[49]
HUANG Y X, MENG Y, POPLE C B, et al. Cavitation feedback control of focused ultrasound blood-brain barrier opening for drug delivery in patients with Parkinson's disease[J/OL]. Pharmaceutics, 2022, 14(12): 2607 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36559101/. DOI: 10.3390/pharmaceutics14122607.
[50]
PINEDA-PARDO J A, GASCA-SALAS C, FERNÁNDEZ-RODRÍGUEZ B, et al. Striatal blood-brain barrier opening in Parkinson's disease dementia: a pilot exploratory study[J]. Mov Disord, 2022, 37(10): 2057-2065. DOI: 10.1002/mds.29134.
[51]
BLESA J, PINEDA-PARDO J A, INOUE K I, et al. BBB opening with focused ultrasound in nonhuman Primates and Parkinson's disease patients: Targeted AAV vector delivery and PET imaging[J/OL]. Sci Adv, 2023, 9(16): eadf4888 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37075119/. DOI: 10.1126/sciadv.adf4888.
[52]
BINDER D K, SHAH B B, ELIAS W J. Focused ultrasound and other lesioning in the treatment of tremor[J/OL]. J Neurol Sci, 2022, 435: 120193 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35259650/. DOI: 10.1016/j.jns.2022.120193.
[53]
OSADA T, KONISHI S. Noninvasive intervention by transcranial ultrasound stimulation: Modulation of neural circuits and its clinical perspectives[J]. Psychiatry Clin Neurosci, 2024, 78(5): 273-281. DOI: 10.1111/pcn.13663.
[54]
SHANKER V. Essential tremor: diagnosis and management[J/OL]. BMJ, 2019, 366: l4485 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/31383632/. DOI: 10.1136/bmj.l4485.
[55]
KINDLER C, UPADHYAY N, PURRER V, et al. MRgFUS of the nucleus ventralis intermedius in essential tremor modulates functional connectivity within the classical tremor network and beyond[J/OL]. Parkinsonism Relat Disord, 2023, 115: 105845 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37717502/. DOI: 10.1016/j.parkreldis.2023.105845.
[56]
KATO S, MAESAWA S, BAGARINAO E, et al. Magnetic resonance-guided focused ultrasound thalamotomy restored distinctive resting-state networks in patients with essential tremor[J]. J Neurosurg, 2023, 138(2): 306-317. DOI: 10.3171/2022.5.jns22411.
[57]
XIONG Y Q, LIN J J, BIAN X B, et al. Treatment-specific network modulation of MRI-guided focused ultrasound thalamotomy in essential tremor: modulation of ET-related network by MRgFUS thalamotomy[J]. Neurotherapeutics, 2022, 19(6): 1920-1931. DOI: 10.1007/s13311-022-01294-9.
[58]
ARCADI A, AVILES-OLMOS I, GONZALEZ-QUARANTE L H, et al. Magnetic resonance-guided focused ultrasound (MRgFUS)-thalamotomy for essential tremor: lesion location and clinical outcomes[J]. Mov Disord, 2024, 39(6): 1015-1025. DOI: 10.1002/mds.29801.
[59]
RANJAN M, ELIAS G J B, BOUTET A, et al. Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy[J]. J Neurosurg, 2020, 133(4): 1002-1009. DOI: 10.3171/2019.6.jns19612.
[60]
SALUJA S, BARBOSA D A N, PARKER J J, et al. Case report on deep brain stimulation rescue after suboptimal MR-guided focused ultrasound thalamotomy for essential tremor: a tractography-based investigation[J/OL]. Front Hum Neurosci, 2020, 14: 191 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/32676015/. DOI: 10.3389/fnhum.2020.00191.
[61]
GERMANN J, SANTYR B, BOUTET A, et al. Comparative neural correlates of DBS and MRgFUS lesioning for tremor control in essential tremor[J]. J Neurol Neurosurg Psychiatry, 2024, 95(2): 180-183. DOI: 10.1136/jnnp-2022-330795.
[62]
MARTÍNEZ-FERNÁNDEZ R, MAHENDRAN S, PINEDA-PARDO J A, et al. Bilateral staged magnetic resonance-guided focused ultrasound thalamotomy for the treatment of essential tremor: a case series study[J]. J Neurol Neurosurg Psychiatry, 2021, 92(9): 927-931. DOI: 10.1136/jnnp-2020-325278.
[63]
PARK Y S, JUNG N Y, NA Y C, et al. Four-year follow-up results of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor[J]. Mov Disord, 2019, 34(5): 727-734. DOI: 10.1002/mds.27637.
[64]
COSGROVE G R, LIPSMAN N, LOZANO A M, et al. Magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor: 5-year follow-up results[J]. J Neurosurg, 2023, 138(4): 1028-1033. DOI: 10.3171/2022.6.jns212483.
[65]
THALER C, TIAN Q Y, WINTERMARK M, et al. Changes in the cerebello-thalamo-cortical network after magnetic resonance-guided focused ultrasound thalamotomy[J]. Brain Connect, 2023, 13(1): 28-38. DOI: 10.1089/brain.2021.0157.
[66]
WANG X Y, LIN J J, LU H X, et al. Alteration of white matter connectivity for MR-guided focused ultrasound in the treatment of essential tremor[J]. J Magn Reson Imaging, 2024, 59(4): 1358-1370. DOI: 10.1002/jmri.28896.
[67]
RICCIARDI G K, PAIO F, ZIVELONGHI C, et al. MRgFUS disconnection surgery for hypothalamic hamartoma-related epilepsy: case report and literature review[J]. Neurol Sci, 2025, 46(3): 1399-1404. DOI: 10.1007/s10072-024-07946-2.
[68]
DAVIDSON B, HAMANI C, HUANG Y X, et al. Magnetic resonance-guided focused ultrasound capsulotomy for treatment-resistant psychiatric disorders[J]. Oper Neurosurg, 2020, 19(6): 741-749. DOI: 10.1093/ons/opaa240.
[69]
CHANG K W, CHANG J G, JUNG H H, et al. Long-term clinical outcome of a novel bilateral capsulotomy with focused ultrasound in refractory obsessive-compulsive disorder treatment[J]. Mol Psychiatry, 2025, 30(5): 1897-1905. DOI: 10.1038/s41380-024-02799-9.
[70]
HAMANI C, DAVIDSON B, RABIN J S, et al. Long-term safety and efficacy of focused ultrasound capsulotomy for obsessive-compulsive disorder and major depressive disorder[J]. Biol Psychiatry, 2025, 97(7): 698-706. DOI: 10.1016/j.biopsych.2024.08.015.
[71]
AHMED A K, ZHUO J C, GULLAPALLI R P, et al. Focused ultrasound central lateral thalamotomy for the treatment of refractory neuropathic pain: phase I trial[J]. Neurosurgery, 2024, 94(4): 690-699. DOI: 10.1227/neu.0000000000002752.
[72]
ISHIDA J, ALLI S, BONDOC A, et al. MRI-guided focused ultrasound enhances drug delivery in experimental diffuse intrinsic pontine glioma[J/OL]. J Control Release, 2021, 330: 1034-1045 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/33188825/. DOI: 10.1016/j.jconrel.2020.11.010.
[73]
CHEN J W, YANG R, YU H W, et al. Ultrasmall iron oxide nanoparticles with MRgFUS for enhanced magnetic resonance imaging of orthotopic glioblastoma[J]. J Mater Chem B, 2024, 12(20): 4833-4842. DOI: 10.1039/D3TB02966B.
[74]
KAWASAKI M, MURAMATSU S, NAMBA H, et al. Efficacy and safety of magnetic resonance-guided focused ultrasound treatment for refractory chronic pain of medial knee osteoarthritis[J]. Int J Hyperthermia, 2021, 38(2): 46-55. DOI: 10.1080/02656736.2021.1955982.
[75]
YIN X, TANG N, FAN X, et al. Mid-term efficacy grading evaluation and predictive factors of magnetic resonance-guided focused ultrasound surgery for painful bone metastases: a multi-center study[J]. Eur Radiol, 2023, 33(2): 1465-1474. DOI: 10.1007/s00330-022-09118-2.
[76]
HAN X Y, HUANG R Z, MENG T, et al. The roles of magnetic resonance-guided focused ultrasound in pain relief in patients with bone metastases: a systemic review and meta-analysis[J/OL]. Front Oncol, 2021, 11: 617295 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/34458131/. DOI: 10.3389/fonc.2021.617295.
[77]
HU R R, HE P C, TIAN X N, et al. Efficacy and safety of magnetic resonance-guided focused ultrasound for the treatment of osteoid osteoma: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2023, 166: 111006 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37523874/. DOI: 10.1016/j.ejrad.2023.111006.
[78]
KOCIUBA J, ŁOZIŃSKI T, ZGLICZYŃSKA M, et al. Occurrence of adverse events after magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) therapy in symptomatic uterine fibroids-a retrospective case-control study[J/OL]. Int J Hyperthermia, 2023, 40(1): 2219436 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/37277102/. DOI: 10.1080/02656736.2023.2219436.
[79]
KOCIUBA J, ŁOZIŃSKI T, ZGLICZYŃSKA M, et al. Adverse events and complications after magnetic resonance-guided focused ultrasound (MRgFUS) therapy in uterine fibroids - a systematic review and future perspectives[J/OL]. Int J Hyperthermia, 2023, 40(1): 2174274 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/36775655/. DOI: 10.1080/02656736.2023.2174274.
[80]
HU S Y, LIU Y H, CHEN R S, et al. Exploring the diagnostic performance of magnetic resonance imaging in ultrasound-guided high-intensity focused ultrasound ablation for abdominal wall endometriosis[J/OL]. Front Physiol, 2022, 13: 819259 [2025-07-13]. https://pubmed.ncbi.nlm.nih.gov/35242052/. DOI: 10.3389/fphys.2022.819259.

上一篇 MRI技术在胎盘功能不全评估的研究进展
下一篇 MRI无线线圈研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2