分享:
分享到微信朋友圈
X
特别关注
心脏磁共振对心血管疾病的早期评估价值述评
杨淑娟 徐磊

本文引用格式:杨淑娟, 徐磊. 心脏磁共振对心血管疾病的早期评估价值述评[J]. 磁共振成像, 2025, 16(11): 1-7, 24. DOI:10.12015/issn.1674-8034.2025.11.001.


[摘要] 近年来,心血管疾病发病呈现年轻化、进展趋于隐匿化,常在临床症状出现时已进入难以逆转阶段。早期识别临床前期病变并及时干预,对改善预后至关重要。心脏磁共振(cardiac magnetic resonance, CMR)作为一种无创、无辐射、多参数成像的影像学技术,具备高灵敏度揭示心肌损伤的独特优势,在心血管疾病的诊断及预后评估中占据核心地位。然而,目前国内相关CMR研究多聚焦于临床期疾病,针对临床前期或亚临床阶段心血管疾病的早期评估未得到足够关注。本文重点阐述CMR在临床前期心肌病变的研究进展,探讨其在早期诊断与精准临床管理中的潜力,以期为未来的临床研究与转化提供参考。
[Abstract] In recent years, cardiovascular disease has shown a trend toward earlier onset and increasingly insidious progression, often reaching an irreversible stage by the time clinical symptoms appear. Early identification of pre-clinical abnormalities and timely intervention are therefore essential for improving patient outcomes. Cardiac magnetic resonance (CMR), as a noninvasive, radiation-free, and multiparametric imaging technique, possesses a unique advantage in sensitively detecting myocardial injury and plays a pivotal role in the diagnosis and prognostic assessment of cardiovascular diseases. However, current domestic research on CMR mainly focuses on clinically manifest diseases, while the early assessment of cardiovascular diseases at preclinical or subclinical stages has received insufficient attention. This review summarizes recent advances in CMR research on pre-clinical myocardial abnormalities, and explores its potential in early diagnosis and precision clinical management, with the aim of informing future clinical research and translational practice.
[关键词] 心脏磁共振;心血管疾病;临床前期;亚临床;早期诊断
[Keywords] cardiac magnetic resonance;cardiovascular diseases;pre-clinical stage;subclinical;early diagnosis

杨淑娟    徐磊 *  

首都医科大学附属北京安贞医院医学影像科,北京 100029

通信作者:徐磊,E-mail:leixu2001@hotmail.com

作者贡献声明:杨淑娟起草和撰写稿件,搜集并分析本文的研究资料,获得了四大慢病防治研究国家科技重大专项和国家自然科学基金青年科学基金项目(C类);徐磊设计本研究的方案,对稿件重要内容进行了修改,获得了国家重点研发计划战略性科技创新合作项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


        
        徐磊,主任医师、教授、博士生导师。首都医科大学附属北京安贞医院医学影像科主任,首都医科大学医学影像学院副院长,北京市临床重点专科负责人。入选国家“万人计划”科技创新领军人才。获北京市医管系统优秀党员。担任中国康复医学会医学影像与康复专委会主任委员、中国研究型医院学会心血管影像专委会常务副主任委员、中华医学会心血管病学分会影像学组副组长等多项社会职务。主持国家自然科学基金重点支持项目、国家自然科学基金面上项目等国家级项目7项,作为第一或通信作者发表SCI论文90篇,代表性成果入选ESI高被引论文,研究成果被写入11部国际指南或共识。以第一完成人获北京市科技进步奖二等奖,以骨干获国家科技进步二等奖。获首都医科大学教育教学奖。牵头制定专家共识3部,主编译及参编教材、专著15部,长期从事心血管影像的临床与科研工作,在心血管影像领域具有重要影响力。

基金项目: 四大慢病防治研究国家科技重大专项 2024ZD0538000 国家重点研发计划战略性科技创新合作项目 2022YFE0209800 国家自然科学基金青年科学基金项目(C类) 82502302
收稿日期:2025-08-20
接受日期:2025-11-03
中图分类号:R445.2  R541 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.11.001
本文引用格式:杨淑娟, 徐磊. 心脏磁共振对心血管疾病的早期评估价值述评[J]. 磁共振成像, 2025, 16(11): 1-7, 24. DOI:10.12015/issn.1674-8034.2025.11.001.

0 引言

       当前,心血管疾病发病率持续攀升,呈现出发病年轻化与症状隐匿化特征,已成为威胁公众健康的重要公共卫生问题[1, 2]。值得关注的是,一些患者在出现典型临床症状之前,已存在心肌的早期结构、功能或组织学异常[3, 4]。此阶段若能实施及时筛查和有效干预,有望降低疾病进展的风险[5]。因此,推动心血管疾病“早筛查、早诊断、早干预”策略的实施,已成为构建现代疾病防控体系的关键环节,有助于实现医疗服务由“以治病为中心”向“以预防为导向”的转变。特别是在心脏疾病的临床前期阶段,通过精准识别潜在心肌损伤,有助于延缓疾病进展、预防严重心血管事件的发生,并有效减轻医疗资源负担。

       心脏磁共振(cardiac magnetic resonance, CMR)作为一种无创、高分辨率、多参数成像技术,与传统影像检查不同,其不仅是心脏解剖结构与心功能评估的无创金标准,更具备在体表征心肌组织学特征的“病理影像化”能力[6],成为了心血管疾病诊断与风险评估中不可替代的手段[7]。近年来,越来越多的研究聚焦于心血管疾病临床前期病变评价,表明CMR能够在临床症状或传统检查异常出现之前识别心肌细微的异常变化,为心血管疾病的早期防控提供了重要影像依据[8]。在CMR技术展现优势的同时,其在心血管疾病早期评估研究领域面临重视不足的问题,在临床实践中的普及应用仍面临挑战。因此,本文重点阐述了CMR在临床前期心血管疾病的研究进展,探讨其在早期诊断与精准临床管理中的潜力,以期为未来的临床研究与转化提供参考,推动“从临床治疗向健康管理”的诊疗模式转变。

1 CMR多模态技术概述

1.1 心脏结构和功能评估技术

       CMR电影序列通过连续成像记录心脏收缩与舒张的动态过程,其血池与心肌的高对比度可清晰展示心腔形态与室壁运动情况,可准确测量射血分数、心室容积、心肌质量等结构功能参数[9]。心肌应变技术则进一步提升了对心肌运动微小变化的检测能力,可通过CMR心肌组织标记或电影图像的特征跟踪来计算,不仅能评估纵向、周向和径向不同方向的心肌运动功能,还能区分心内膜、心肌中层和心外膜不同心肌层次的运动功能[10]。应变不依赖于心腔容积的变化,在射血分数下降或心衰进展之前即可发现心房和心室功能减低[11]

1.2 心肌组织学评估技术

       延迟强化成像(late gadolinium enhancement, LGE)技术是CMR最为经典的组织学成像技术。通过静脉注射钆对比剂,利用其在纤维化或坏死区域滞留时间延长的特性,实现对心肌纤维化的高对比度在体显像[12]。大量研究证实LGE在各类心脏疾病中与心源性猝死、心衰等不良心血管事件风险密切相关,预测效能优于传统的左心室射血分数,但LGE所代表的心肌瘢痕往往是不可逆的病理改变[13, 14]

       定量参数成像技术通过量化心肌组织特性来表征心肌病理组织学改变,相较于常规参数加权的对比成像,其具有更高的敏感性[15]。每种组织类型都有T1和T2值的正常范围,偏离该范围可能表明疾病状态,如T1值的变化可反映心肌纤维化、或蛋白/脂类物质的异常沉积,T2 值升高反映水含量增加,T2*值减低反映心肌出血、铁沉积[16]。细胞外容积(extracellular volume, ECV)则是基于公式计算所得,该公式结合了血池、钆对比剂注射前/后心肌的T1值和红细胞压积,可敏感反映弥漫性病变,如间质纤维化、水肿和异常代谢物沉积所致的心肌细胞外间隙增大,ECV的升高被认为是LGE出现之前的疾病早期影像标志物[17]

1.3 心肌微观评估技术

       除了以上相对常见的结构、功能、组织学评价序列,CMR还有许多在持续迭代更新、优化的技术,以更多新维度揭示心肌微观的异常改变。

       在冠状动脉微循环评估方面,CMR心肌灌注成像可无创、无辐射地动态观察心肌在静息和负荷下的血流灌注状态,敏感地检测出因冠状动脉微循环功能异常导致的心肌灌注减低[18]。相比于其他常用于评估心肌灌注的传统手段(如单光子发射计算机断层扫描),CMR具备无辐射、高空间分辨率的优势,能更准确地区分心肌不同区域的血流灌注差异,还可通过定量分析技术实现对微循环障碍的客观量化[19]。新近发展的CMR动脉自旋标记技术通过标记冠状动脉血液中的水分子质子作为内源性示踪剂,无需外源性对比剂即可实现心肌血流定量测量,早期捕捉到微血管功能障碍,具有广阔的科研与临床应用潜力[20, 21]

       在心肌微观组织结构评估方面,心脏弥散张量成像通过测量成像体素内水分子的扩散轨迹来无创表征心肌的微观结构特征,如心肌纤维的排列方向和完整性[22]。近年来,心脏弥散张量成像的技术难题已被攻克,在早期识别心肌纤维重构、排列紊乱等亚临床病变方面已逐渐凸显出价值[23]

       在心肌能量代谢评估方面,磁共振波谱技术[24]通过检测特定质子核(如13P)在不同化学环境下的共振频率差异,从而分析组织细胞中代谢物的化学组成,反映能量代谢状态,如磷酸肌酸、乳酸的浓度变化。与磁共振波谱技术相比,化学交换饱和转移成像[24]是一项相对新兴的代谢成像技术,其利用偏共振饱和脉冲对心肌代谢物中特定频率的交换质子信号进行预饱和,这种饱和通过化学交换作用转移到水分子,使得自由水的信号强度发生改变,因此可以通过检测自由水的信号改变来间接检测代谢物的浓度,具有更高的空间分辨率和信噪比。

       定量磁化率成像[25]无需对比剂,通过测量心肌磁化率可量化心肌组织成分及微观结构特征,提供传统CMR无法捕捉的精细病理信息。定量磁化率成像对铁的高特异性使其能准确量化心肌铁沉积,不受水肿、胶原或脂肪干扰,优于传统T2*成像,可敏感识别心肌铁沉积和心肌内出血;通过评价心肌氧合的差异,可早期发现心肌缺血;通过磁化率各向异性评估心肌纤维走向,早期发现心肌微结构异常[25, 26]。由于该技术受运动、血流及化学位移效应的影响明显,且重建算法复杂,限制了该技术的应用。

2 CMR在各类心血管疾病早期评估中的应用

2.1 遗传/代谢性心肌病

2.1.1 肥厚型心肌病

       遗传性心肌病的筛查和早期诊断依赖于敏感心血管影像检查手段的应用,CMR的多参数序列为早期识别这类疾病并及时干预治疗提供了可能[27]。肥厚型心肌病(hypertrophic cardiomyopathy, HCM)作为最常见的遗传性心肌病,异常肥厚的心室壁是诊断HCM的必要标准,42%~87% HCM患者会出现LGE表征的心肌纤维化[28]。然而,对于携带HCM肌小节蛋白相关基因突变,但尚未表现出临床症状、室壁肥厚未达到诊断标准的人群(即亚临床HCM人群),其重要性也不容忽视[29]。超过50%的HCM家系内突变基因携带者会进展为临床型HCM,也存在发生不良心血管事件的风险,因此识别亚临床HCM人群同样重要[30]。CMR对室壁厚度的测量展现出比超声心动图更高的可靠性和敏感性,可对约25% HCM基因携带者的诊断进行重分类[31, 32];另外,HCM基因突变携带者在出现室壁肥厚之前,已经可以出现较正常人更加粗大的肌小梁、冗长二尖瓣叶、心肌隐窝、左心室心尖-基底部异常肌束、乳头肌形态及位置异常等,这些解剖异常均可通过高分辨率的电影图像全方位显示[33]

       基于CMR电影序列的特征追踪技术发现亚临床HCM患者出现了早期的心肌应变功能减弱[34]。既往研究通过定量参数成像发现HCM患者或基因携带者在没有出现LGE前,已经出现初始T1值和ECV的升高,可以敏感识别HCM的心肌纤维化早期重塑[35, 36]。一项多中心的前瞻性CMR研究应用心脏弥散张量成像技术和负荷心肌灌注技术,发现亚临床HCM患者还会出现心肌排列紊乱和冠脉微循环障碍,其与早期的心电图异常改变密切相关[37]。在亚临床HCM患者的心肌能量代谢方面,有研究[38]应用氧合敏感CMR检测到其氧合反应差于正常人,还有研究[39]应用31P-磁共振波谱发现磷酸肌酸/三磷酸腺苷比值显著低于健康对照组,说明心肌能量利用障碍或先于宏观的结构、功能改变。因此,CMR多维度评估体系有望成为HCM家系筛查的必要检查。

2.1.2 浸润性/蓄积性心肌病

       在浸润性/蓄积性心肌病中,CMR的出现则大大提高了这些少见病的临床诊断,因为这些疾病在没有出现明显心脏重构或心肌纤维化之前,心肌内或心肌外间隙的异常代谢物沉积会影响微观心肌结构和功能,并改变心肌弛豫信号[40, 41]。Fabry病是一种蓄积性心肌病,在Fabry病早期未出现室壁增厚前,T1 mapping 可以发现其因糖鞘脂类物质蓄积导致的初始T1值减低,并且随着T1值的减低,左心室质量增加、全心纵向应变减低[42];另外,有研究发现在Fabry早期尚未出现舒张功能障碍时,左心房应变功能已经减低,提示糖鞘脂类物质可能会直接损害其心房顺应性[43]。与蓄积性心肌病不同,心脏淀粉样变则是由于异常的淀粉样原纤维沉积在细胞外间隙的一种浸润性心肌病。相关研究发现,在临床高度疑似淀粉样变的情况下,T1 mapping对诊断心脏淀粉样变具有较高准确率,尤其是在心肌尚未出现LGE、室壁尚未增厚之前,已经观察到其初始T1值和ECV值的升高,可以提示心肌早期受累[17, 44, 45]。这些研究强调了多参数CMR序列在浸润性/蓄积性心肌病早期心脏受累的诊断和指导治疗时机方面的潜在应用[46]

2.1.3 致心律失常性右心室心肌病

       对于致心律失常性右心室心肌病(arrhythmogenic right ventricular cardiomyopathy, ARVC),目前广为接受的2010年修订版专家组诊断标准[47]仅仅将右心室舒张末期容积指数及右心室射血分数作为重要诊断标准之一,但在实际临床实践中暴露出敏感性不足的问题[48]。CMR的应变技术为其早期识别提供了更敏感的手段,既能敏感评价右心室心肌功能的损害,还能识别其非同步化运动[49, 50]。既往研究发现,降低的右心室纵向应变可识别88%不满足右心室结构功能异常诊断标准或仅满足次要诊断标准的ARVC患者[48, 51]。对于那些表型阴性的基因携带者和不满足确诊标准的ARVC直系亲属,应变也可以敏感探测到其右心室心肌功能损害[49]。另外,左优势型致心律失常性心肌病的诊断也一直被既往专家共识忽略,鉴于近年来已经证实左心室应变在ARVC左心室受累早期诊断中的价值,最新的“Padua”标准也将左心室纵向应变受损列为次要诊断标准之一[52, 53]。一项CMR研究初步探索了T1 mapping技术在心律失常相关疾病的潜在价值,针对没有射血分数减低和LGE阴性的特发性室性早搏患者,通过T1 mapping技术在体佐证了其心肌间质性纤维化的增加,并且升高的初始T1值与完全性左束支传导阻滞电轴向下型室性早搏形态和室性早搏高负荷相关,强调了T1 mapping技术在早期、无创识别特发性频发室性早搏患者心肌隐匿性异常方面的价值[54]。综上所述,CMR为ARVC及相关心律失常性心肌病的早期识别提供了新的敏感手段。

2.2 心肌炎

       CMR还是无创诊断心肌炎的重要检查,被推荐为有创心内膜心肌活检的最佳无创替代方案[55]。LGE主要反映心肌坏死/纤维化,但在仅有轻微心肌水肿的急性心肌炎早期通常尚未出现,因此仅依靠LGE进行诊断存在明显的局限性。2018年修订的路易斯湖CMR标准诊断添加了参数定量成像,旨在更加敏感地发现心肌水肿,将CMR诊断心肌炎的准确性提高至90%以上[56]。多项前瞻性研究应用CMR筛查出相当数量的COVID-19感染后心肌炎患者,其中27%~76%是无临床表现的心肌炎亚临床患者[57]。另外,心肌炎较常累及心外膜和心肌中层,CMR应变技术可精准评价不同心肌节段、不同心肌层的运动功能,敏感识别尚未出现LGE的早期心肌炎运动功能异常,可提供增量的诊断和预后价值[58, 59, 60]。除了用于常见的病毒性心肌炎,整合了定量参数成像和应变分析的CMR检查在系统性免疫性疾病累及心肌[61]、心脏移植后排斥反应[62]和化疗所致心肌毒性损伤[62, 63]的早期识别和疗效监测方面也日益受到重视。该技术能够在临床症状出现或心功能下降之前发现早期心肌损伤,以指导治疗决策并改善长期预后。另外,CMR负荷心肌灌注在系统性红斑狼疮、心脏移植等会发生小血管炎的疾患中展现出巨大的应用潜力,可早期监测到冠状动脉微循环受累,并且微循环障碍与远期不良预后密切相关[64, 65]。因此,这些CMR技术将为亚临床炎症性心肌病的敏感识别提供重要的无创影像学检查方法。

2.3 瓣膜性心脏病

       心腔不良重构及射血分数减低是退行性瓣膜性心脏病的不良预后因素,往往意味着疾病已进入难以逆转的晚期阶段[66]。因此,瓣膜性心脏病的早期评价越来越受到关注,尤其主动脉瓣病变引起的心肌继发性改变[67]。在主动脉瓣狭窄早期,通过T1 mapping已能检测到心肌细胞外间质扩张等亚临床损伤,初始T1值与主动脉瓣狭窄的严重程度正相关,且独立于LVEF,实现“无症状期”的精准诊断[68]。近期,一项多中心的随机对照临床研究基于严重主动脉瓣狭窄且存在LGE的无症状患者,发现早期介入治疗相比于保守治疗可减少住院风险并改善症状,提示CMR可辅助临床平衡“早期干预获益”与“保守治疗风险”[69]。并且,介入术前出现左室肥厚但无LGE的患者,术后左心室心肌质量降低更明显,因此术前CMR评估可辅助识别高获益患者群体[70]。在射血分数正常的无症状慢性主动脉瓣反流患者中,CMR应变技术可以发现其早期阶段即出现心肌纵向应变减低,并且心肌应变功能随主动脉瓣反流的加重而逐渐恶化,全心周向及径向应变与其心血管不良事件和瓣膜手术治疗的发生率密切相关[71]。由此可见,CMR可帮助指导瓣膜性心脏病早期干预决策并优化治疗时机,成为早期评价和预后管理的核心检查。

2.4 冠状动脉粥样硬化性心脏病

       冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease, CHD)作为最常见的心血管疾病,持续升高的心肌梗死发生率给社会带来的负担日益加重[72]。除冠状动脉狭窄的评估外,心肌的缺血情况也是CHD治疗的重要指征。无创、无辐射的CMR负荷心肌灌注成像在CHD心肌缺血的识别也越来越多地应用到临床实践中[73]。一项纳入642例冠状动脉钙化积分>0的稳定型胸痛患者的研究发现,约12%患者存在阻塞性CHD,腺苷负荷的CMR心肌灌注成像对这些阻塞性CHD患者表现出卓越的诊断效能(敏感度:90.9%,特异度:98.6%,阳性预测值:92%,阴性预测值:98.6%)[74]。类似地,另外一项正在进行的多中心、随机对照临床试验[75]则针对于亚临床的CHD高危人群,将CMR负荷心肌灌注成像用于检测阻塞性CHD引起的心肌缺血,以探索CMR早期诊断和风险分层方面的潜在价值,其研究结果令人期待。对于已经发生心肌梗死的CHD,应变技术可以敏感识别射血分数保留患者的室壁运动减低,并且通过应变的节段分析,梗死心肌邻近的无LGE心肌节段的运动功能也出现了早期损害[76, 77]。因此,无辐射的多模态CMR技术为CHD心肌缺血的识别及亚临床心肌功能损害提供新的选择,有望进一步优化CHD的临床诊疗路径。

2.5 心血管代谢相关慢性疾病

       心血管代谢相关慢性疾病则是一类由代谢异常与心血管风险因素相互作用而导致的慢性疾病,包括肥胖、糖尿病、血脂异常、高血压等一系列常见疾病,其起病隐匿、常常相互重叠,虽然进展相对缓慢,但也会导致不可逆的心脏重构,进而出现心衰等不良结局[78]。CMR应变能在糖尿病射血分数保留的临床早期,发现其左心房、室心肌的早期运动功能障碍[79, 80];对于高血压而言,在心功能尚正常且尚未发生房室结构重构的阶段,应变已经可以识别到左心房功能的下降[81]。弥漫的间质性纤维化几乎存在于这些慢性疾病中,T1 mapping/ECV成为识别、定量早期纤维化的最佳无创技术。研究表明,高血压心脏病的ECV和T1值与应变所评价的收缩和舒张功能呈负相关、与左心室质量呈正相关[82]。甚至在心肌应变参数尚正常的糖尿病患者中,T1 mapping/ECV即可发现早期心肌间质纤维化的异常增多,且纤维化的程度与血糖控制水平密切相关[83-85]。ZHAO等[86]则应用T2 mapping、ECV和应变成像技术首次提供了无心脏症状肥胖成人患者的亚临床心肌功能和组织重构的证据:相比于健康人,其收缩期应变和舒张早期应变率显著减低,代表纤维化的ECV和炎性水肿的T2值明显升高。另外,多项CMR研究基于心肌负荷灌注成像发现了糖尿病、肥胖等心血管代谢相关慢性疾病存在冠脉微循环障碍的现象,并且微循环障碍与心肌收缩或舒张功能减低、早期纤维化的形成有关,甚至可以应用心肌负荷灌注监测到临床治疗对微血管功能的改善[87, 88, 89]。综上所述,CMR不仅有助于阐明这类疾病的早期病理机制,还为其早期诊断和个体化干预提供重要依据,从而在疾病防控中发挥关键作用[90]

2.6 心脏衰老

       随着人类寿命的延长,老年人口也在不断增加,心脏衰老的早期评价不仅是精准医疗的核心环节,更是实现“健康老龄化”目标的关键策略。通过CMR多参数成像,可在症状出现前识别心肌细微变化,为延缓衰老进程提供关键时间窗[91, 92]。健康心脏的退化会伴随着向心性重塑(即左心室质量与容积之比升高)和心室腔的缩小,因此根据年龄来确定CMR参数的生理参考值对区分老年正常人和患者是必要的[93]。当生物年龄超过实际年龄(即生物年龄加速),会进一步加快心脏结构、功能的退化,增加心衰发生的风险,其中CMR衍生的多维度结构、功能参数为识别高危人群、阐明衰老机制提供了关键技术支撑[94]。心脏衰老还与胶原沉积、心肌纤维化的增加相关,因此心肌初始T1值和ECV会随年龄增长而增加[95]。另外两项小样本研究也指出,心脏T2值会随年龄增长而升高[96, 97]。这些研究体现了心脏衰老与心肌纤维化、水肿的关联,因此CMR多参数成像量化的心肌细微变化可作为心脏衰老的潜在标志,在早期识别病理性心脏衰老展现出应用潜力,助力实现健康老龄化目标。

3 人工智能赋能CMR的早期评价新突破

       得益于近年来人工智能(artificial intelligence, AI)技术与CMR的深度融合,心血管疾病的早期精准评估即将迎来突破。在CMR扫描效率提升方面,近期研究报道的自由呼吸单次心跳电影序列结合AI图像重建技术,约30 s即可完成心脏短轴电影扫描和结构、功能分析,在保证图像质量和诊断能力的前提下,显著缩短了扫描时间[98];基于AI的自动化质量控制模型展现出对电影图像定位规划与运动伪影识别的优异效能(受试者曲线下面积为0.88~0.93),能在图像采集后3 s内反馈扫描建议,实现质控流程的实时优化[99]。在心血管疾病早期筛查方面,有学者已经实现了基于CMR图像的心血管疾病的诊断自动化模型,该模型仅需输入常规电影序列,即可有效区分健康人群与患者,实现了高效、无创的疾病初筛[100];另一项引人瞩目的多中心研究通过CMR电影结合AI自动化分析,不仅快速量化了心脏的结构与功能状态,还开发了预测“心脏功能年龄”的自动化模型,发现健康人的“功能心脏年龄”与实际年龄相关性高,进一步还能区分不同疾病状态下的心脏衰老程度,为心脏衰老的早期诊断与针对性干预提供了具有潜力的新工具[101]

       这些AI赋能的CMR技术展现了显著的临床应用价值与潜力。大规模AI模型能够从海量CMR影像数据中深度挖掘更为复杂的生物标志物,发现人类肉眼难以察觉的早期细微变化,从而实现更早的干预[102]。结合生成式预训练变换器等自然语言处理技术,这些复杂的分析结果与技术结论将能被智能地转化为临床医生易于理解和操作的报告,有效降低信息传递门槛[103]。随着大规模AI模型的持续发展,CMR将在心血管疾病早期筛查与诊断领域开启全新范式,有望实现更精准、更高效的医疗服务。

4 小结与展望

       凭借多参数成像的优势,CMR可在无明显心脏重构、无明显临床症状时识别潜在病变,为心血管疾病的早期诊断和个体化治疗提供坚实依据。然而,在中国的临床实践中,CMR的普及仍面临多重制约因素,包括CMR扫描及影像解读的专业人员匮乏、CMR检查的时间与经济成本较高、地区经济差异导致的医疗资源分布不均、各医疗中心对正常参考值范围的建立尚不完善、心脏科临床医生对CMR价值认知不足等。在推动这一无创、无辐射检查技术充分发挥早期诊断优势的道路上,仍需克服重重挑战。

       心血管疾病早诊早治是我国公共卫生的核心任务,CMR检查作为临床前期病变诊断的侦察兵,是精准心脏病学与心血管预防医学的重要组成部分。通过其识别早期功能、组织、心肌灌注、微观结构、代谢异常的能力,为及时诊断疾病、风险评估及干预治疗提供了独特机会。随着AI技术的进步、高质量循证数据的积累和技术下沉,CMR将成为撬动“健康中国2030”心血管防控目标的战略杠杆。

[1]
VIRANI S S, ALONSO A, APARICIO H J, et al. Heart disease and stroke statistics-2021 update: a report from the American heart association[J/OL]. Circulation, 2021, 143(8): e254-e743 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/33501848/. DOI: 10.1161/CIR.0000000000000950.
[2]
SCOTT J, AGARWALA A, BAKER-SMITH C M, et al. Cardiovascular health in the transition from adolescence to emerging adulthood: a scientific statement from the American heart association[J/OL]. J Am Heart Assoc, 2025, 14(9): e039239 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/40135400/. DOI: 10.1161/JAHA.124.039239.
[3]
REDFIELD M M. Heart failure with preserved ejection fraction[J]. N Engl J Med, 2016, 375(19): 1868-1877. DOI: 10.1056/nejmcp1511175.
[4]
THYGESEN K, ALPERT J S, JAFFE A S, et al. Fourth universal definition of myocardial infarction (2018)[J]. J Am Coll Cardiol, 2018, 72(18): 2231-2264. DOI: 10.1016/j.jacc.2018.08.1038.
[5]
ARNETT D K, BLUMENTHAL R S, ALBERT M A, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines[J/OL]. Circulation, 2019, 140(11): e596-e646 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/30879355/. DOI: 10.1161/CIR.0000000000000678.
[6]
赵世华. 浅谈心肌疾病的病理影像化[J]. 磁共振成像, 2020, 11(10): 841-842. DOI: 10.12015/issn.1674-8034.2020.10.001.
ZHAO S H. Brief comment on imaging mimicking pathology of heart diseases[J]. Chin J Magn Reson Imag, 2020, 11(10): 841-842. DOI: 10.12015/issn.1674-8034.2020.10.001.
[7]
LU M J, ZHU L Y, PRASAD S K, et al. Magnetic resonance imaging mimicking pathology detects myocardial fibrosis: a door to hope for improving the whole course management[J]. Sci Bull (Beijing), 2023, 68(9): 864-867. DOI: 10.1016/j.scib.2023.04.014.
[8]
VARADARAJAN V, GIDDING S S, WU C, et al. Imaging early life cardiovascular phenotype[J]. Circ Res, 2023, 132(12): 1607-1627. DOI: 10.1161/CIRCRESAHA.123.322054.
[9]
IPEK R, HOLLAND J, CRAMER M, et al. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(11): 1491-1504. DOI: 10.1093/ehjci/jeae224.
[10]
RAJIAH P S, KALISZ K, BRONCANO J, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications[J]. Radiographics, 2022, 42(4): 968-990. DOI: 10.1148/rg.210174.
[11]
SMISETH O A, RIDER O, CVIJIC M, et al. Myocardial strain imaging[J]. JACC Cardiovasc Imag, 2025, 18(3): 340-381. DOI: 10.1016/j.jcmg.2024.07.011.
[12]
SCHELBERT E B, HSU L Y, ANDERSON S A, et al. Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart[J]. Circ Cardiovasc Imaging, 2010, 3(6): 743-752. DOI: 10.1161/CIRCIMAGING.108.835793.
[13]
PRASAD S K, AKBARI T, BISHOP M J, et al. Late gadolinium enhancement imaging and sudden cardiac death[J]. Eur Heart J, 2025, 46(36): 3555-3568. DOI: 10.1093/eurheartj/ehaf464.
[14]
ZEPPENFELD K, TFELT-HANSEN J, DE RIVA M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death[J]. Eur Heart J, 2022, 43(40): 3997-4126. DOI: 10.1093/eurheartj/ehac262.
[15]
MESSROGHLI D R, MOON J C, FERREIRA V M, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 75 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/28992817/. DOI: 10.1186/s12968-017-0389-8.
[16]
RAJIAH P S, FRANÇOIS C J, LEINER T. Cardiac MRI: state of the art[J/OL]. Radiology, 2023, 307(3): e223008 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/37039684/. DOI: 10.1148/radiol.223008.
[17]
CLERC O F, CUDDY S A M, JEROSCH-HEROLD M, et al. Myocardial characteristics, cardiac structure, and cardiac function in systemic light-chain amyloidosis[J]. JACC Cardiovasc Imaging, 2024, 17(11): 1271-1286. DOI: 10.1016/j.jcmg.2024.05.004.
[18]
ZHOU W L, SIN J, YAN A T, et al. Qualitative and quantitative stress perfusion cardiac magnetic resonance in clinical practice: a comprehensive review[J/OL]. Diagnostics (Basel), 2023, 13(3): 524 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/36766629/. DOI: 10.3390/diagnostics13030524.
[19]
ZHOU P Y, CHEN X Y, ZHAO S H. Diagnosing coronary microvascular dysfunction in patients with non-obstructive coronary artery disease by stress cardiac magnetic resonance[J]. Chin Med J (Engl), 2025, 138(5): 601-603. DOI: 10.1097/CM9.0000000000003472.
[20]
KU M C, KOBER F, LAI Y C, et al. Cardiovascular magnetic resonance detects microvascular dysfunction in a mouse model of hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 63 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34053450/. DOI: 10.1186/s12968-021-00754-z.
[21]
ALKHALIFAH B. Quantitative imaging for early detection and risk stratification of cardiovascular disease using 4D flow MRI and arterial spin labelling[J]. Bioinformation, 2024, 20(12): 1769-1775. DOI: 10.6026/9732063002001769.
[22]
NIELLES-VALLESPIN S, SCOTT A, FERREIRA P, et al. Cardiac diffusion: technique and practical applications[J]. J Magn Reson Imaging, 2020, 52(2): 348-368. DOI: 10.1002/jmri.26912.
[23]
DALL'ARMELLINA E, ENNIS D B, AXEL L, et al. Cardiac diffusion-weighted and tensor imaging: a consensus statement from the special interest group of the society for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2025, 27(1): 101109 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39442672/. DOI: 10.1016/j.jocmr.2024.101109.
[24]
YURISTA S R, EDER R A, KWON D H, et al. Magnetic resonance imaging of cardiac metabolism in heart failure: how far have we come?[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(10): 1277-1289. DOI: 10.1093/ehjci/jeac121.
[25]
AIMO A, HUANG L, TYLER A, et al. Quantitative susceptibility mapping (QSM) of the cardiovascular system: challenges and perspectives[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 48 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/35978351/. DOI: 10.1186/s12968-022-00883-z.
[26]
TYLER A, HUANG L, KUNZE K, et al. Characterization of quantitative susceptibility mapping in the left ventricular myocardium[J/OL]. J Cardiovasc Magn Reson, 2024, 26(1): 101000 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38237902/. DOI: 10.1016/j.jocmr.2024.101000.
[27]
WARNICA W, AL-ARNAWOOT A, STANIMIROVIC A, et al. Clinical impact of cardiac MRI T1 and T2 parametric mapping in patients with suspected cardiomyopathy[J]. Radiology, 2022, 305(2): 319-326. DOI: 10.1148/radiol.220067.
[28]
KAMP N J, CHERY G, KOSINSKI A S, et al. Risk stratification using late gadolinium enhancement on cardiac magnetic resonance imaging in patients with hypertrophic cardiomyopathy: a systematic review and meta-analysis[J/OL]. Prog Cardiovasc Dis, 2021, 66: 10-16 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/33171204/. DOI: 10.1016/j.pcad.2020.11.001.
[29]
JOY G, MOON J C, LOPES L R. Detection of subclinical hypertrophic cardiomyopathy[J]. Nat Rev Cardiol, 2023, 20(6): 369-370. DOI: 10.1038/s41569-023-00853-7.
[30]
LORENZINI M, NORRISH G, FIELD E, et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers[J]. J Am Coll Cardiol, 2020, 76(5): 550-559. DOI: 10.1016/j.jacc.2020.06.011.
[31]
HUURMAN R, VAN DER VELDE N, SCHINKEL A F L, et al. Contemporary family screening in hypertrophic cardiomyopathy: the role of cardiovascular magnetic resonance[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): 1144-1154. DOI: 10.1093/ehjci/jeac099.
[32]
ROWIN E J, MARON M S. Cardiovascular magnetic resonance for screening in hypertrophic cardiomyopathy: the new family plan[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): 1155-1156. DOI: 10.1093/ehjci/jeac126.
[33]
TOPRICEANU C C, MOON J C, AXELSSON RAJA A, et al. Phenotypic spectrum of subclinical sarcomere-related hypertrophic cardiomyopathy and transition to overt disease[J/OL]. Circ Genom Precis Med, 2024, 17(4): e004580 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38910555/. DOI: 10.1161/CIRCGEN.124.004580.
[34]
VIGNEAULT D M, YANG E, JENSEN P J, et al. Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: cardiac MR feature tracking[J]. Radiology, 2019, 290(3): 640-648. DOI: 10.1148/radiol.2018180339.
[35]
XU J, ZHUANG B Y, SIRAJUDDIN A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651.
[36]
HO C Y, ABBASI S A, NEILAN T G, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy[J]. Circ Cardiovasc Imaging, 2013, 6(3): 415-422. DOI: 10.1161/CIRCIMAGING.112.000333.
[37]
JOY G, KELLY C I, WEBBER M, et al. Microstructural and microvascular phenotype of sarcomere mutation carriers and overt hypertrophic cardiomyopathy[J]. Circulation, 2023, 148(10): 808-818. DOI: 10.1161/CIRCULATIONAHA.123.063835.
[38]
RAMAN B, TUNNICLIFFE E M, CHAN K, et al. Association between sarcomeric variants in hypertrophic cardiomyopathy and myocardial oxygenation: insights from a novel oxygen-sensitive cardiovascular magnetic resonance approach[J]. Circulation, 2021, 144(20): 1656-1658. DOI: 10.1161/CIRCULATIONAHA.121.054015.
[39]
LOPES L R, HO C Y, ELLIOTT P M. Genetics of hypertrophic cardiomyopathy: established and emerging implications for clinical practice[J]. Eur Heart J, 2024, 45(30): 2727-2734. DOI: 10.1093/eurheartj/ehae421.
[40]
IOANNOU A, PATEL R K, RAZVI Y, et al. Impact of earlier diagnosis in cardiac ATTR amyloidosis over the course of 20 years[J]. Circulation, 2022, 146(22): 1657-1670. DOI: 10.1161/CIRCULATIONAHA.122.060852.
[41]
CAMELI M, PIERONI M, PASTORE M C, et al. The role of cardiovascular multimodality imaging in the evaluation of Anderson-Fabry disease: from early diagnosis to therapy monitoring[J]. Eur Heart J Cardiovasc Imaging, 2025, 26(5): 814-829. DOI: 10.1093/ehjci/jeaf038.
[42]
DEL FRANCO A, IANNACCONE G, MEUCCI M C, et al. Clinical staging of Anderson-fabry cardiomyopathy: an operative proposal[J]. Heart Fail Rev, 2024, 29(2): 431-444. DOI: 10.1007/s10741-023-10370-x.
[43]
BERNARDINI A, CAMPOREALE A, PIERONI M, et al. Atrial dysfunction assessed by cardiac magnetic resonance as an early marker of fabry cardiomyopathy[J]. JACC Cardiovasc Imaging, 2020, 13(10): 2262-2264. DOI: 10.1016/j.jcmg.2020.05.011.
[44]
BAGGIANO A, BOLDRINI M, MARTINEZ-NAHARRO A, et al. Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis[J]. JACC Cardiovasc Imag, 2020, 13(1): 69-80. DOI: 10.1016/j.jcmg.2019.03.026.
[45]
WECHALEKAR A D, FONTANA M, QUARTA C C, et al. AL amyloidosis for cardiologists: awareness, diagnosis, and future prospects: JACC: CardioOncology state-of-the-art review[J]. JACC CardioOncol, 2022, 4(4): 427-441. DOI: 10.1016/j.jaccao.2022.08.009.
[46]
胡敏, 李博文, 宋正午, 等. 代谢异常相关心肌病的心脏磁共振研究进展[J]. 磁共振成像, 2025, 16(8): 194-200. DOI: 10.12015/issn.1674-8034.2025.08.029.
HU M, LI B W, SONG Z W, et al. Advances in cardiac magnetic resonance imaging of cardiomyopathy associated with metabolic abnormalities[J]. Chin J Magn Reson Imag, 2025, 16(8): 194-200. DOI: 10.12015/issn.1674-8034.2025.08.029.
[47]
MARCUS F I, MCKENNA W J, SHERRILL D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria[J]. Circulation, 2010, 121(13): 1533-1541. DOI: 10.1161/CIRCULATIONAHA.108.840827.
[48]
DONG Z X, DAI L L, SONG Y Y, et al. Right ventricular strain derived from cardiac MRI feature tracking for the diagnosis and prognosis of arrhythmogenic right ventricular cardiomyopathy[J/OL]. Radiol Cardiothorac Imaging, 2024, 6(3): e230292 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38842456/. DOI: 10.1148/ryct.230292.
[49]
TAHA K, BOURFISS M, RIELE A S J M TE, et al. A head-to-head comparison of speckle tracking echocardiography and feature tracking cardiovascular magnetic resonance imaging in right ventricular deformation[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(8): 950-958. DOI: 10.1093/ehjci/jeaa088.
[50]
SONG Y Y, LI L, CHEN X Y, et al. Left ventricular longitudinal dyssynchrony by CMR feature tracking is related to adverse prognosis in advanced arrhythmogenic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 712832 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34708081/. DOI: 10.3389/fcvm.2021.712832.
[51]
TADIC M, KERSTEN J, NITA N, et al. The prognostic importance of right ventricular longitudinal strain in patients with cardiomyopathies, connective tissue diseases, coronary artery disease, and congenital heart diseases[J/OL]. Diagnostics, 2021, 11(6): 954 [2025-08-19]. https://www.mdpi.com/2075-4418/11/6/954. DOI: 10.3390/diagnostics11060954.
[52]
CORRADO D, ANASTASAKIS A, BASSO C, et al. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report[J/OL]. Int J Cardiol, 2024, 395: 131447 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/37844667/. DOI: 10.1016/j.ijcard.2023.131447.
[53]
CHEN X Y, LI L, CHENG H B, et al. Early left ventricular involvement detected by cardiovascular magnetic resonance feature tracking in arrhythmogenic right ventricular cardiomyopathy: the effects of left ventricular late gadolinium enhancement and right ventricular dysfunction[J/OL]. J Am Heart Assoc, 2019, 8(17): e012989 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/31441357/. DOI: 10.1161/JAHA.119.012989.
[54]
YU S Q, CHEN X Y, DONG Z X, et al. T1 mapping for identifying the substrate in patients with apparently idiopathic premature ventricular complexes[J]. JACC Clin Electrophysiol, 2023, 9(6): 751-761. DOI: 10.1016/j.jacep.2022.12.012.
[55]
COMMITTEE W, DRAZNER M H, BOZKURT B, et al. 2024 ACC expert consensus decision pathway on strategies and criteria for the diagnosis and management of myocarditis: a report of the American college of cardiology solution set oversight committee[J]. J Am Coll Cardiol, 2025, 85(4): 391-431. DOI: 10.1016/j.jacc.2024.10.080.
[56]
LI S, DUAN X J, FENG G X, et al. Multiparametric cardiovascular magnetic resonance in acute myocarditis: comparison of 2009 and 2018 lake louise criteria with endomyocardial biopsy confirmation[J/OL]. Front Cardiovasc Med, 2021, 8: 739892 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34712710/. DOI: 10.3389/fcvm.2021.739892.
[57]
DANIELS C J, RAJPAL S, GREENSHIELDS J T, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry[J]. JAMA Cardiol, 2021, 6(9): 1078-1087. DOI: 10.1001/jamacardio.2021.2065.
[58]
ISAAK A, KRAVCHENKO D, MESROPYAN N, et al. Layer-specific strain analysis with cardiac MRI feature tracking in acute myocarditis[J/OL]. Radiol Cardiothorac Imaging, 2022, 4(3): e210318 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/35833169/. DOI: 10.1148/ryct.210318.
[59]
EICHHORN C, GREULICH S, BUCCIARELLI-DUCCI C, et al. Multiparametric cardiovascular magnetic resonance approach in diagnosing, monitoring, and prognostication of myocarditis[J]. JACC Cardiovasc Imaging, 2022, 15(7): 1325-1338. DOI: 10.1016/j.jcmg.2021.11.017.
[60]
DOERNER J, BUNCK A C, MICHELS G, et al. Incremental value of cardiovascular magnetic resonance feature tracking derived atrial and ventricular strain parameters in a comprehensive approach for the diagnosis of acute myocarditis[J/OL]. Eur J Radiol, 2018, 104: 120-128 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/29857857/. DOI: 10.1016/j.ejrad.2018.05.012.
[61]
LUO S, DOU W Q, SCHOEPF U J, et al. Cardiovascular magnetic resonance imaging in myocardial involvement of systemic lupus erythematosus[J]. Trends Cardiovasc Med, 2023, 33(6): 346-354. DOI: 10.1016/j.tcm.2022.02.002.
[62]
HAN D, MILLER R J H, OTAKI Y, et al. Diagnostic accuracy of cardiovascular magnetic resonance for cardiac transplant rejection[J]. JACC Cardiovasc Imag, 2021, 14(12): 2337-2349. DOI: 10.1016/j.jcmg.2021.05.008.
[63]
徐淑菲, 王志学, 赵森, 等. 心脏磁共振特征追踪技术对乳癌患者化疗期间心脏功能的评估价值[J]. 磁共振成像, 2024, 15(5):87-93. DOI: 10.12015/issn.1674-8034.2024.05.015.
XU S F, WANG Z X, ZHAO S, et al. Value of cardiac magnetic resonance feature tracking technique in evaluating cardiac function during chemotherapy in breast cancer patients[J]. Chin J Magn Reson Imag, 2024, 15(5):87-93. DOI: 10.12015/issn.1674-8034.2024.05.015.
[64]
SANDHU V K, WEI J, THOMSON L E J, et al. Five-year follow-up of coronary microvascular dysfunction and coronary artery disease in systemic lupus erythematosus: results from a community-based lupus cohort[J]. Arthritis Care Res (Hoboken), 2020, 72(7): 882-887. DOI: 10.1002/acr.23920.
[65]
KAZMIRCZAK F, NIJJAR P S, ZHANG L, et al. Safety and prognostic value of regadenoson stress cardiovascular magnetic resonance imaging in heart transplant recipients[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 9 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/30674318/. DOI: 10.1186/s12968-018-0515-2.
[66]
MAZNYCZKA A, PRENDERGAST B, DWECK M, et al. Timing of aortic valve intervention in the management of aortic stenosis[J]. JACC Cardiovasc Interv, 2024, 17(21): 2502-2514. DOI: 10.1016/j.jcin.2024.08.046.
[67]
AJMONE MARSAN N, DELGADO V, SHAH D J, et al. Valvular heart disease: shifting the focus to the myocardium[J]. Eur Heart J, 2023, 44(1): 28-40. DOI: 10.1093/eurheartj/ehac504.
[68]
BULL S, WHITE S K, PIECHNIK S K, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis[J]. Heart, 2013, 99(13): 932-937. DOI: 10.1136/heartjnl-2012-303052.
[69]
LOGANATH K, CRAIG N J, EVERETT R J, et al. Early intervention in patients with asymptomatic severe aortic stenosis and myocardial fibrosis: the EVOLVED randomized clinical trial[J]. JAMA, 2025, 333(3): 213-221. DOI: 10.1001/jama.2024.22730.
[70]
DOBSON L E, MUSA T A, UDDIN A, et al. Acute reverse remodelling after transcatheter aortic valve implantation: a link between myocardial fibrosis and left ventricular mass regression[J]. Can J Cardiol, 2016, 32(12): 1411-1418. DOI: 10.1016/j.cjca.2016.04.009.
[71]
FERNÁNDEZ-GOLFÍN C, HINOJAR-BAYDES R, GONZÁLEZ-GÓMEZ A, et al. Prognostic implications of cardiac magnetic resonance feature tracking derived multidirectional strain in patients with chronic aortic regurgitation[J]. Eur Radiol, 2021, 31(7): 5106-5115. DOI: 10.1007/s00330-020-07651-6.
[72]
NEDKOFF L, BRIFFA T, ZEMEDIKUN D, et al. Global trends in atherosclerotic cardiovascular disease[J]. Clin Ther, 2023, 45(11): 1087-1091. DOI: 10.1016/j.clinthera.2023.09.020.
[73]
NAGEL E, CHANDRASHEKHAR Y. Stress-only CMR[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1296-1298. DOI: 10.1016/j.jcmg.2020.04.001.
[74]
RIJLAARSDAM-HERMSEN D, LO-KIOENG-SHIOE M, VAN DOMBURG R T, et al. Stress-only adenosine CMR improves diagnostic yield in stable symptomatic patients with coronary artery calcium[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1152-1160. DOI: 10.1016/j.jcmg.2019.12.009.
[75]
TIES D, VAN DORP P, PUNDZIUTE G, et al. Early detection of obstructive coronary artery disease in the asymptomatic high-risk population: objectives and study design of the EARLY-SYNERGY trial[J/OL]. Am Heart J, 2022, 246: 166-177 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/35038412/. DOI: 10.1016/j.ahj.2022.01.005.
[76]
FENT G J, GARG P, FOLEY J R J, et al. The utility of global longitudinal strain in the identification of prior myocardial infarction in patients with preserved left ventricular ejection fraction[J]. Int J Cardiovasc Imaging, 2017, 33(10): 1561-1569. DOI: 10.1007/s10554-017-1138-7.
[77]
YU S Q, ZHOU J Y, YANG K, et al. Correlation of myocardial strain and late gadolinium enhancement by cardiac magnetic resonance after a first anterior ST-segment elevation myocardial infarction[J/OL]. Front Cardiovasc Med, 2021, 8: 705487 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/34277744/. DOI: 10.3389/fcvm.2021.705487.
[78]
REN J, WU N N, WANG S Y, et al. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications[J]. Physiol Rev, 2021, 101(4): 1745-1807. DOI: 10.1152/physrev.00030.2020.
[79]
SHEN M T, GUO Y K, LIU X, et al. Impact of BMI on left atrial strain and abnormal atrioventricular interaction in patients with type 2 diabetes mellitus: a cardiac magnetic resonance feature tracking study[J]. J Magn Reson Imaging, 2022, 55(5): 1461-1475. DOI: 10.1002/jmri.27931.
[80]
LI X N, LIU Y T, KANG S, et al. Interdependence between myocardial deformation and perfusion in patients with T2DM and HFpEF: a feature-tracking and stress perfusion CMR study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 303 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39152461/. DOI: 10.1186/s12933-024-02380-2.
[81]
LI L, CHEN X Y, YIN G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients[J]. Eur Radiol, 2020, 30(2): 702-711. DOI: 10.1007/s00330-019-06397-0.
[82]
KURUVILLA S, JANARDHANAN R, ANTKOWIAK P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone[J]. JACC Cardiovasc Imaging, 2015, 8(2): 172-180. DOI: 10.1016/j.jcmg.2014.09.020.
[83]
LI X M, SHI K, JIANG L, et al. Assessment of subclinical LV myocardial dysfunction in T2DM patients with diabetic peripheral neuropathy: a cardiovascular magnetic resonance study[J/OL]. Cardiovasc Diabetol, 2024, 23(1): 217 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/38915040/. DOI: 10.1186/s12933-024-02307-x.
[84]
CAO Y K, ZENG W J, CUI Y, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain[J/OL]. Cardiovasc Diabetol, 2018, 17(1): 7 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/29301529/. DOI: 10.1186/s12933-017-0651-2.
[85]
庞艳秋, 万娜, 郭瑞, 等. 心脏磁共振组织追踪及T1 mapping技术对糖尿病心肌损伤评估的应用研究[J]. 磁共振成像, 2025, 16(9): 82-89. DOI: 10.12015/issn.1674-8034.2025.09.013.
PANG Y Q, WAN N, GUO R, et al. Application of cardiac magnetic resonance tissue tracking and T1 mapping technology in the assessment of diabetic myocardial injury[J]. Chin J Magn Reson Imag, 2025, 16(9): 82-89. DOI: 10.12015/issn.1674-8034.2025.09.013.
[86]
ZHAO H, HUANG R, JIANG M, et al. Myocardial tissue-level characteristics of adults with metabolically healthy obesity[J]. JACC Cardiovasc Imaging, 2023, 16(7): 889-901. DOI: 10.1016/j.jcmg.2023.01.022.
[87]
ZHAO W J, LI K, TANG L T, et al. Coronary microvascular dysfunction and diffuse myocardial fibrosis in patients with type 2 diabetes using quantitative perfusion MRI[J]. J Magn Reson Imaging, 2024, 60(6): 2395-2406. DOI: 10.1002/jmri.29296.
[88]
SØRENSEN M H, BOJER A S, BROADBENT D A, et al. Cardiac perfusion, structure, and function in type 2 diabetes mellitus with and without diabetic complications[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(8): 887-895. DOI: 10.1093/ehjci/jez266.
[89]
CRANE J D, JOY G, KNOTT K D, et al. The impact of bariatric surgery on coronary microvascular function assessed using automated quantitative perfusion CMR[J]. JACC Cardiovasc Imaging, 2024, 17(11): 1305-1316. DOI: 10.1016/j.jcmg.2024.05.022.
[90]
吴永顺, 包梦圆, 张林鑫, 等. 心脏磁共振在糖尿病心肌病亚临床阶段中的研究进展[J]. 磁共振成像, 2025, 16(4): 168-173. DOI: 10.12015/issn.1674-8034.2025.04.027.
WU Y S, BAO M Y, ZHANG L X, et al. Advances in research on the application of cardiac magnetic resonance imaging in the subclinical stage of diabetic cardiomyopathy[J]. Chin J Magn Reson Imag, 2025, 16(4): 168-173. DOI: 10.12015/issn.1674-8034.2025.04.027.
[91]
CONSORTIUM A B, ZHANG W W, CHE Y, et al. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement[J/OL]. Life Med, 2023, 2(5): lnad035 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39872891/. DOI: 10.1093/lifemedi/lnad035.
[92]
LIU C Y, LIU Y C, WU C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis)[J]. J Am Coll Cardiol, 2013, 62(14): 1280-1287. DOI: 10.1016/j.jacc.2013.05.078.
[93]
GRASSOW L, GRÖSCHEL J, SAAD H, et al. Sex-specific structural and functional cardiac remodeling during healthy aging assessed by cardiovascular magnetic resonance[J/OL]. Clin Res Cardiol, 2024 [2025-08-19]. https://link.springer.com/article/10.1007/s00392-024-02430-5. DOI: 10.1007/s00392-024-02430-5.
[94]
MAO R, WANG F, ZHONG Y, et al. Association of biological age acceleration with cardiac morphology, function, and incident heart failure: insights from UK Biobank participants[J]. Eur Heart J Cardiovasc Imaging, 2024, 25(9): 1315-1323. DOI: 10.1093/ehjci/jeae126.
[95]
RAISI-ESTABRAGH Z, MCCRACKEN C, HANN E, et al. Incident clinical and mortality associations of myocardial native T1 in the UK biobank[J]. JACC Cardiovasc Imaging, 2023, 16(4): 450-460. DOI: 10.1016/j.jcmg.2022.06.011.
[96]
MELONI A, NICOLA M, POSITANO V, et al. Myocardial T2 values at 1.5 T by a segmental approach with healthy aging and gender[J]. Eur Radiol, 2022, 32(5): 2962-2975. DOI: 10.1007/s00330-021-08396-6.
[97]
BÖNNER F, JANZARIK N, JACOBY C, et al. Myocardial T2 mapping reveals age- and sex-related differences in volunteers[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 9 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/25656484/. DOI: 10.1186/s12968-015-0118-0.
[98]
GHANBARI F, MORALES M A, STREET J A, et al. Free-breathing, highly accelerated, single-beat, multisection cardiac cine MRI with generative artificial intelligence[J/OL]. Radiol Cardiothorac Imaging, 2025, 7(2): e240272 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/40178397/. DOI: 10.1148/ryct.240272.
[99]
CHEUNG H C, VIMALESVARAN K, ZAMAN S, et al. Automating quality control in cardiac magnetic resonance: Artificial intelligence for discriminative assessment of planning and motion artifacts and real-time reacquisition guidance[J/OL]. J Cardiovasc Magn Reson, 2024, 26(2): 101067 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/39079601/. DOI: 10.1016/j.jocmr.2024.101067.
[100]
WANG Y J, YANG K, WEN Y, et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging[J]. Nat Med, 2024, 30(5): 1471-1480. DOI: 10.1038/s41591-024-02971-2.
[101]
ASSADI H S, ZHAO X D, MATTHEWS G, et al. Cardiovascular magnetic resonance imaging markers of ageing: a multi-centre, cross-sectional cohort study[J/OL]. Eur Heart J Open, 2025, 5(3): oeaf032 [2025-08-19]. https://pubmed.ncbi.nlm.nih.gov/40322642/. DOI: 10.1093/ehjopen/oeaf032.
[102]
LANG M, BERNIER A, KNOPPERS B M. Artificial intelligence in cardiovascular imaging: "unexplainable" legal and ethical challenges?[J]. Can J Cardiol, 2022, 38(2): 225-233. DOI: 10.1016/j.cjca.2021.10.009.
[103]
SENGUPTA P P, CHANDRASHEKHAR Y. From conventional deep learning to GPT: AI's emergent power for cardiac imaging[J]. JACC Cardiovasc Imaging, 2023, 16(8): 1129-1131. DOI: 10.1016/j.jcmg.2023.07.001.

上一篇 MRI无线线圈研究进展
下一篇 基于心脏磁共振的影像组学预后预测模型在射血分数降低型心力衰竭患者中的应用研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2