分享:
分享到微信朋友圈
X
临床研究
3D-pCASL在评估HIBD极早产儿脑灌注及早期预后中的应用研究
付艺伟 丁倓 秦池 王宁 冯占起 刘雪燕 周甜 陆林 赵鑫

本文引用格式:付艺伟, 丁倓, 秦池, 等. 3D-pCASL在评估HIBD极早产儿脑灌注及早期预后中的应用研究[J]. 磁共振成像, 2025, 16(11): 49-55, 63. DOI:10.12015/issn.1674-8034.2025.11.007.


[摘要] 目的 应用三维准连续动脉自旋标记(three-dimensional pseudo-continuous arterial spin labeling, 3D-pCASL)技术评估缺氧缺血性脑损伤(hypoxic-ischemic brain damage, HIBD)对极早产儿脑血流量(cerebral blood flow, CBF)变化的影响,探讨3D-pCASL在评估HIBD极早产儿脑灌注及早期预后中的应用价值。材料与方法 回顾性纳入2022年1月至2024年9月在郑州大学第三附属医院出生且临床诊断为HIBD的110例极早产儿作为HIBD组,另选取同时期出生的83例不患有HIBD的极早产儿作为对照组,在不同的校正胎龄进行3D-pCASL序列和常规头颅MRI扫描。按照头颅MRI检查时的校正胎龄分为两个亚组:亚组1为校正胎龄32~36+6周组(HIBD组58例,对照组60例);亚组2为校正胎龄37~41+6周组(HIBD组52例,对照组23例)。分别比较两个亚组内的HIBD组极早产儿较对照组极早产儿的脑CBF值的差异,以及两个亚组间的极早产儿在不同校正胎龄时脑CBF值的差异。分析校正胎龄32~36+6周时的差异性脑区CBF值与出生后1 min、5 min的Apgar评分及校正胎龄40周时新生儿行为神经测定(Neonatal Behavioral Neurological Assessment, NBNA)评分的相关性。结果 (1)校正胎龄32~36+6周时,HIBD组双侧颞叶、顶叶、枕叶、基底节区、丘脑、右侧中央沟皮层的CBF值高于对照组(P<0.05)。校正胎龄37~41+6周时,HIBD组与对照组各脑区CBF值差异无统计学意义。(2)校正胎龄37~41+6周时,HIBD组的双侧中央沟皮层的CBF值高于校正胎龄32~36+6周(P<0.05),其余各感兴趣区差异无统计学意义(P>0.05);对照组双侧颞叶、枕叶、基底节区、中央沟皮层的CBF值高于校正胎龄32~36+6周(P<0.05),其余各感兴趣区差异无统计学意义(P>0.05)。(3)HIBD组极早产儿的各感兴趣区脑CBF值与出生时1 min、5 min Apgar评分无相关性,而双侧丘脑、左侧基底节区在校正胎龄32~36+6周时脑CBF值与校正胎龄40周时的NBNA评分呈现一定的负相关(r=-0.284、-0.292、-0.272,P<0.05)。结论 HIBD的发生可能影响极早产儿的早期脑灌注,且部分脑区的脑灌注异常可能影响患儿早期预后;3D-pCASL对评估HIBD发生后极早产儿的脑灌注变化情况及早期预后有一定价值。
[Abstract] Objective This study employed three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) to evaluate the impact of hypoxic-ischemic brain injury (HIBD) on cerebral blood flow (CBF) in extremely preterm infants, and to explore the clinical value of 3D-pCASL in assessing cerebral perfusion and early prognosis of HIBD in these infants.Materials and Methods A total of 110 extremely preterm infants clinically diagnosed with HIBD and born at the Third Affiliated Hospital of Zhengzhou University between January 2022 and September 2024 were retrospectively enrolled as the study group. Additionally, 83 extremely preterm infants without HIBD born during the same period were selected as the control group. All infants underwent 3D-pCASL sequences and conventional MRI scans at different corrected gestational ages (CGA). Participants were stratified by CGA at MRI into Subgroup 1 [CGA 32 to 36⁺⁶ weeks: HIBD (n = 58), control (n = 60)] and Subgroup 2 [CGA 37 to 41⁺⁶ weeks: HIBD (n = 52), control (n = 23)]. CBF values were compared between HIBD and control infants within each subgroup, and across subgroups at different CGAs; specifically, correlations between CBF values in differential brain regions at CGA 32 to 36⁺⁶ weeks and Apgar scores at 1 min and 5 min after birth, as well as Neonatal Behavioral Neurological Assessment (NBNA) scores at 40 weeks CGA were analyzed.Results (1) At CGA 32 to 36⁺⁶ weeks, CBF values in the HIBD group were significantly higher than controls in bilateral temporal lobes, parietal lobes, occipital lobes, basal ganglia regions, thalami, and the right central sulcus cortex (P < 0.05); however, no statistically significant differences in regional CBF values were observed between the HIBD and control groups at CGA 37 to 41⁺⁶ weeks. (2) Within the HIBD group, CBF values in bilateral central sulcus cortices were significantly higher at CGA 37 to 41⁺⁶ weeks compared to CGA 32 to 36⁺⁶ weeks (P < 0.05), with no significant differences in other regions of interest (P > 0.05). In controls, CBF values in bilateral temporal lobes, occipital lobes, basal ganglia regions, and central sulcus cortices were significantly elevated at CGA 37 to 41⁺⁶ weeks versus CGA 32 to 36⁺⁶ weeks (P < 0.05), while other regions showed no significant changes (P > 0.05). (3) The CBF values in various regions of interest showed no correlation with 1-min and 5-min Apgar scores at birth. Additionally, bilateral thalamic and left basal ganglia region CBF at CGA 32 to 36⁺⁶ weeks negatively correlated with NBNA scores at 40 weeks of CGA (r = -0.284, -0.292, -0.272; P < 0.05).Conclusions The occurrence of HIBD may affect early cerebral perfusion in extremely preterm infants. Altered perfusion in specific brain regions could influence early prognosis, and 3D-pCASL holds potential value in assessing cerebral perfusion changes and early prognosis in these infants following HIBD.
[关键词] 极早产儿;缺氧缺血性脑损伤;磁共振成像;动脉自旋标记;脑血流量;新生儿神经行为测定;Apgar评分
[Keywords] preterm infant;hypoxic-Ischemic brain damage;magnetic resonance imaging;arterial spin labeling;cerebral blood flow;neonatal behavioral neurological assessment;Apgar score

付艺伟 1, 2, 3   丁倓 1, 2, 3   秦池 1, 2, 3   王宁 1, 2, 3   冯占起 1, 2, 3   刘雪燕 1, 2, 3   周甜 1, 2, 3   陆林 1, 2, 3   赵鑫 1, 2, 3*  

1 郑州大学第三附属医院医学影像科,郑州 450052

2 河南省神经医学影像国际联合试验室,郑州 450052

3 河南省小儿神经影像医学重点试验室,郑州 450052

通信作者:赵鑫,E-mail:zdsfyzx@zzu.edu.cn

作者贡献声明:赵鑫设计本研究的方案,对稿件重要内容进行了修改,获得了国家自然科学基金项目的资助;付艺伟起草和撰写稿件,收集、分析和解释本研究数据;丁倓、秦池、王宁、冯占起、刘雪燕、周甜、陆林收集、分析或解释本研究的数据,并对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82472046
收稿日期:2025-07-01
接受日期:2025-10-09
中图分类号:R445.2  R722.6  R651.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.11.007
本文引用格式:付艺伟, 丁倓, 秦池, 等. 3D-pCASL在评估HIBD极早产儿脑灌注及早期预后中的应用研究[J]. 磁共振成像, 2025, 16(11): 49-55, 63. DOI:10.12015/issn.1674-8034.2025.11.007.

0 引言

       缺氧缺血性脑损伤(hypoxic-ischemic brain damage, HIBD)在足月儿中的发生率大约是2‰[1],由HIBD所致的死亡占每年新生儿死亡总数的1/4[2, 3]。在幸存者中,HIBD是导致慢性神经功能障碍的主要原因,并可能遗留长期后遗症,包括发育迟缓和脑瘫[4, 5]。同时有研究认为,围产期的HIBD与整个婴儿期、儿童期和青少年期的社会和情感、行为、心理和精神缺陷存在一定相关性[6]。随着围产医学的不断发展,极早产儿的存活率不断提高,相应HIBD的发生率显著提高[7]。与足月儿相比,极早产儿HIBD的病因及发病机制较为复杂,且临床症状无特异性,但如不及时诊断及治疗,仍可导致不良的神经系统后遗改变[8],故早期对HIBD进行诊断和干预非常极为重要。

       三维准连续动脉自旋标记(three-dimensional pseudo-continuous arterial spin labeling, 3D-pCASL)成像技术是一种非侵入性的、安全无创的灌注成像技术,能够用于测量及评价脑血流量(cerebral blood flow, CBF)。近年来,该技术已广泛应用于足月儿和早产儿的脑血流模式评估[9, 10, 11],并在HIBD的早期诊断和量化评估中展现出重要价值[12, 13]。但现有研究选取的试验对象多为足月儿,对于早产儿尤其是极早产儿的研究较少[14]。本研究应用3D-pCASL技术,评估HIBD对极早产儿脑CBF值的影响,探讨了3D-pCASL在评估HIBD极早产儿脑灌注及早期预后的应用价值。

1 材料与方法

1.1 一般资料

       回顾性纳入2022年1月至2024年9月在郑州大学第三附属医院出生且临床诊断为HIBD的110例极早产儿作为试验组,另选取同时期出生的83例不患有HIBD的极早产儿作为对照组,在不同的校正胎龄进行3D-pCASL序列和常规头颅MRI扫描。HIBD组的纳入标准[15, 16]:(1)孕周28~31+6周;(2)存在宫内窘迫或分娩时有明确的窒息史;(3)以下至少满足其中一项:生后1 min、5 min Apgar评分均≤5分;在出生10 min以后需要继续复苏的,包括气管内通气或面罩通气;出生后60 min内存在酸中毒(脐带、动脉或毛细血管pH值<7.00)。对照组纳入标准:(1)孕周28~31+6周;(2)不患有HIBD。共同排除标准:(1)患有除HIBD以外的其他围产期脑损伤;(2)染色体异常、先天性畸形、宫内感染、遗传代谢性脑病、支气管肺发育不良、先天性心脏病等影响脑血流灌注的疾病或状态;(3)临床及随访资料不完整;(4)影像图像存在明显运动伪影或不满足后处理的要求。所有极早产儿按照头颅MRI检查时的校正胎龄分为两个亚组:亚组1为校正胎龄32~36+6周组(HIBD组58例,对照组60例);亚组2为校正胎龄37~41+6周组(HIBD组52例,对照组23例)。

       本研究严格遵循《赫尔辛基宣言》伦理准则,经过郑州大学第三附属医院(河南省妇幼保健院)伦理委员会批准,免除受试者监护人知情同意,批准文号:2023-140-01、2023-140-02(跟踪审查)。

1.2 扫描方法与参数

       所有极早产儿的检查均在一般情况稳定的状态下进行,在检查前30 min肌内注射5 mg/kg的苯巴比妥(天津金耀药业有限公司,中国),熟睡后接受MRI检查,检查过程中注意保暖并对其听力进行保护,除此之外,检查期间需有患儿监护人及临床医师的陪同。

       应用3.0 T磁共振扫描仪(美国通用电气公司SIGNA,Pioneer)进行扫描。主要扫描序列及参数如下。(1)Ax-T2 CUBE序列:TR 5002 ms,TE 98.4 ms,层厚2.0 mm,层间隔1 mm,矩阵220×220,激励次数2,层数144,FOV 240 mm×316 mm,扫描时间3 min 40 s;(2)3D-pCASL序列:TR 4650 ms,TE 10.86 ms,层厚4.0 mm,层间隔4.0 mm,矩阵512×512,激励次数3,层数72,FOV 240 mm×316 mm,标记后延迟时间为2000 ms,扫描时间4 min 10 s。

1.3 图像处理与数据测量

       使用ADW 4.7工作站进行后处理,使用Ready View软件将Ax-T2 CUBE图像与3D-pCASL图像生成的彩图融合,在融合图像上手动勾画感兴趣区(region of interest, ROI),包括双侧额叶、颞叶、顶叶、枕叶、基底节区及丘脑,勾画层面的选择以清晰显示结构最大的层面为准,ROI的大小选择为20~40 mm2,左右两侧镜像对称,测量3次后取平均值。详见图1

图1  在融合图像上的ROI选择示意图。1A:额叶;1B:顶叶;1C:枕叶;1D:颞叶;1E:基底节区;1F:丘脑;1G:中央沟皮层。
Fig. 1  ROI selection on fused images. 1A: Frontal; 1B: Parietal; 1C: Occipital; 1D: Temporal; 1E: Thalamus; 1F: Basal ganglia; 1G: Central sulcus cortex.

1.4 NBNA评分测定

       当极早产儿校正胎龄达40周时,由门诊神经发育评估室对早产儿进行NBNA评分,评分人员需经过2周的专业训练、至少检测过20个新生儿且经评估合格。该评分体系包括行为、被动肌张力、主动肌张力、一般情况5个方面,共20项检查项目,每项分值1~2分,总分为40分。若评分<37分,则视为异常,若评分≥37分,则视为正常。

1.5 统计学分析

       所有分析均采用统计学软件SPSS 26.0统计软件(IBM, Armonk, NY, USA)进行统计分析。符合正态分布的计量资料用均数±标准差(x¯±s)表示,组间比较采用t检验或校正t检验;不符合正态分布的计量资料采用中位数(四分位数间距)[MP25,P75)]表示,组间比较采用Mann-Whitney U检验;计数资料以频数和百分率(%)表示,组间比较采用χ2检验或Fisher确切概率法。采用Spearman进行相关性分析。P<0.05表示差异具有统计学意义。

2 结果

2.1 基本资料

       对于校正胎龄32~36+6组的极早产儿,与对照组相比,HIBD组1 min Apgar评分、5 min Apgar评分更低、剖宫产比例更高,差异有统计学意义(P<0.05),其余各基线资料比较差异无统计学意义(P>0.05)。对于校正胎龄37~41+6组的极早产儿,与对照组相比,HIBD组1 min Apgar评分、5 min Apgar评分更低,差异有统计学意义(P<0.05),其余各基本资料比较差异无统计学意义(P>0.05)。见表1

表1  HIBD组极早产儿与对照组极早产儿的基本资料对比
Tab. 1  Comparison of baseline characteristics between very preterm infants with HIBD and control very preterm infants

2.2 在相同校正胎龄时,HIBD组极早产儿较对照组极早产儿脑CBF值变化情况

       校正胎龄32~36+6周时,HIBD组双侧颞叶、顶叶、枕叶、基底节区、丘脑、右侧中央沟皮层CBF值高于对照组(P<0.05)。校正胎龄37~41+6周时,HIBD组与对照组各脑区CBF值差异无统计学意义(P>0.05)。见表2图2

图2  校正胎龄32~36+6周时,HIBD组与对照组极早产儿各脑区CBF值比较图(*表示P<0.05)。HIBD:缺氧缺血性脑损伤;CBF:脑血流量。
Fig. 2  Comparison of CBF values in various brain regions between the HIBD group and the control group of preterm infants at corrected gestational ages of 32 to 36+6 weeks (* indicates P < 0.05). HIBD: hypoxic-ischemic brain damage; CBF: cerebral blood flow.
表2  HIBD组极早产儿与对照组极早产儿在相同校正胎龄时CBF值比较
Tab. 2  Comparison of cerebral blood flow values between very preterm infants with HIBD and control very preterm infants at the same corrected gestational age

2.3 在不同校正胎龄时,HIBD组极早产儿及对照组极早产儿脑CBF值的变化情况

       校正胎龄37~41+6周时,HIBD组双侧中央沟皮层的CBF值高于校正胎龄32~36+6周(P<0.05),其余各ROI差异无统计学意义(P>0.05)。对照组双侧颞叶、枕叶、基底节区、中央沟的CBF值高于校正胎龄32~36+6周(P<0.05),其余各ROI差异无统计学意义(P>0.05)。见表3

表 3  HIBD极早产儿和对照组极早产儿在不同校正胎龄时CBF值比较
Tab. 3  CBF values across different corrected gestational ages in very preterm infants with HIBD versus controls

2.4 HIBD组差异脑区CBF值与Apgar评分、NBNA评分的相关性

       各ROI脑CBF值与出生时1 min、5 min Apgar评分无相关性;双侧丘脑、左侧基底节区在校正胎龄32~36+6周时脑CBF值与校正胎龄40周时的NBNA评分呈现一定的负相关(r=-0.284、-0.292、-0.272,P<0.05)。见图3

图3  组间存在显著差异脑区的CBF值与NBNA评分的相关性分析图。CBF:脑血流量;NBNA:新生儿神经行为测定。
Fig. 3  Correlation analysis plot between CBF values in brain regions exhibiting significant intergroup differences and NBNA scores. CBF: cerebral blood flow; NBNA: Neonatal Behavioral Neurological Assessment.

3 讨论

       本研究通过3D-pCASL成像技术定量评估了在不同校正胎龄时,HIBD组极早产儿脑CBF值与对照组极早产儿的差异性,并分析了差异脑区CBF值与Apgar评分、NBNA评分的相关性。研究结果表明,HIBD可能导致极早产儿脑CBF值在早期的异常高灌注,此外,HIBD极早产儿脑CBF值的变化与校正胎龄40周时的NBNA评分存在一定相关性。综上所述,本研究证实了HIBD的发生对于极早产儿早期脑发育的影响,同时说明了3D-pCASL技术在评估HIBD极早产儿早期脑发育的重要意义。

3.1 3D-ASL的应用价值

       CBF的变化在新生儿脑发育的过程中至关重要,研究表明,血流动力学的变化可导致早产儿的脑部损伤和脑发育异常[17]。3D-pCASL成像技术是一种安全的、无创的、可定量测量CBF值的方法,获得的CBF值能够直观反映大脑各区域的血流灌注情况,在极早产儿脑发育评估和脑损伤诊断及预后评估中具有重要应用价值[18, 19]

       3D-pCASL以磁标记的动脉血作为内源性对比剂,为了确保标记血流流入目标组织,需要设置标记脉冲和灌注成像采集之间的标记后延迟(post labeling delay, PLD)时间。目前国内的专家共识认为,一般新生儿选择2000 ms,儿童选择1500 ms[20],因此本研究的PLD时间选择2000 ms。然而WANG等[21]认为,由于新生儿血流速度快、标记的位置相对于采集位置较短、血管壁较薄等特点,更短的PLD时间可以得到好的信号强度。同时唐世龙等[22]的研究结果显示,出生后0~24 h、1~3 d 日龄段的新生儿在PLD时间为1025 ms时,各脑区CBF值更高,出生后3~7 d、7~15 d、15~28 d 日龄段的新生儿在PLD时间为1525 ms时,各脑区CBF值更高。因此,未来研究中,可将不同的PLD时间纳入研究。

3.2 HIBD组极早产儿与对照组极早产儿在相同校正胎龄时脑CBF值比较

       脑血流调节是指脑血流的自动调节,是机体的一种适应功能,既往有研究表明,足月儿发生HIBD后,刚出生的数个小时内脑灌注显著低于正常足月儿,于生后第一天内逐渐趋于正常水平,随后一周内逐渐出现高灌注状态[23],这种高灌注状态可能与缺氧缺血后机体的自我调节,心输出量再分配,脑血流量代偿性增加,同时脑血管自身调节被破坏,舒缩功能丧失,系统血压成为脑灌注的主宰因素有关[24]。研究表明,持续的高灌注状态可进一步加重大脑损伤,导致严重的神经功能障碍[25]。本研究发现HIBD极早产儿多个脑区的CBF值在校正胎龄32~36+6周时升高,提示相应脑区存在高灌注状态,与既往研究基本一致。唐世龙等[22]研究发现,7 d以上的足月HIBD患儿进行ASL扫描已无太大意义,同时WANG等[21]的研究结果显示,8~15 d时HIBD组大部分脑区的CBF值与正常组相比差异无统计学意义。但既往研究的对象多为足月儿,缺乏对早产儿尤其是极早产儿的相关研究。本研究发现HIBD极早产儿的CBF值在校正胎龄32~36+6周时升高,说明极早产儿发生HIBD后,高灌注较足月儿持续时间延长,这一时间差异可能是因为极早产儿生长发育尚不成熟,自我调节能力有限,血管的舒缩功能被破坏后需要更长的时间来恢复。因此早期诊断HIBD,指导临床医生早期治疗和干预,对于改善HIBD患儿的远期预后至关重要。

       DUBOIS等[26]的研究发现,对于胎龄<32周的早产儿,在足月等效年龄进行ASL扫描时,脑室内出血(intraventricular haemorrhage, IVH)不会影响局部或整体的脑血流灌注,同时考虑到既往的同类研究大多未把IVH当做独立的排除因素,为了与先前研究保持可比性,本研究并未排除IVH的患儿。然而既往研究表明[7],生发基质-脑室内-实质内出血(germinal matrix-intraventricular-intraparenchymal hemorrhage, GMH-IVH-IPH)是极早产儿的主要并发症,尽管临床治疗取得了进展,但整体发病率依然很高,同时QIN等[27]的研究发现,IVH可能会导致无窒息史的早产儿脑血流灌注减少。因此,未来研究中,应进一步探索IVH对于HIBD极早产儿CBF值的影响。

3.3 HIBD极早产儿特定脑区CBF值变化的潜在机制探讨

       HIBD因围生期缺氧影响新生儿脑细胞的能量代谢,导致缺氧性脑病变,最终表现为一系列神经系统症状的临床综合征。既往有研究认为,足月儿发生HIBD时,以基底节区、丘脑及分水岭区的损伤为主[28],而对于胎龄小于32周的极早产儿,发生缺氧缺血时丘脑区域最易受累[14]。同时,冀旭等[29]的研究发现,足月儿在发生HIBD 48 h后,基底节区和顶叶皮质的CBF值与对照组有差异,白质CBF值与对照组无差异,这可能是因为出生后皮质快速成熟[30],突触发生和树突分支增加导致代谢需求增加,同时药物动力学研究显示[31],在新生儿出生后的一段时间内,深部灰质核团(基底节区、丘脑)为大脑代谢相对旺盛的区域。缺氧缺血发生时,机体优先保证大脑皮质和深部灰质(基底节区、丘脑)等区域的供血,进而导致这些区域高灌注的发生。极早产儿出生后一般情况较差,需要等一般情况稳定后才能行常规MRI和ASL扫描,因此本研究选择大脑皮质区域(额叶、颞叶、顶叶和枕叶)及深部灰质区域(丘脑和基底神经节)作为ROI。

       在本研究中,我们发现在校正胎龄32~36+6周时,HIBD组双侧颞叶、顶叶、枕叶、基底节区、丘脑、右侧中央沟皮层高于对照组,这与既往的研究基本相符,同时与新生儿脑发育“从尾侧到头侧、从腹侧到背侧、从中央到周边”的顺序密切相关[32]。首先,基底节区和丘脑作为在孕期即开始快速发育的深部灰质核团代谢率较高[33],对能量衰竭和缺氧最为敏感。在HIBD后的恢复期,这些代谢活跃的区域可能会表现出更明显的反应性高灌注。其次,本研究中观察到的颞叶、顶叶、枕叶皮质的灌注升高,可能与这些区域在足月前后期的快速发育和突触形成有关[34]。此阶段的“生长爆发”使其对血供和能量需求增加,因此,在HIBD的病理生理过程中,这些正处于高速发育期的后部及中部皮质对缺氧缺血应激和后续的灌注波动也表现得尤为敏感。相反,额叶皮层(尤其是前额叶)是发育顺序中最晚成熟的区域,既往一系列研究表明[35, 36],额叶皮层在校正胎龄足月后的第一年内才进入爆发性生长阶段。因此,在极早产儿早期评估中,额叶可能尚未表现出对血流的同等高需求,这或许是本研究未在额叶皮质发现显著CBF组间差异的原因之一。

3.4 HIBD组极早产儿和对照组极早产儿在不同校正胎龄时脑CBF值的变化情况

       校正胎龄是评估早产儿生长发育的标准方法[37],使用校正胎龄而非出生后日龄,能够更准确地反映大脑的结构和功能发育阶段,使不同出生孕周的极早产儿之间更具有可比性。本研究选择MRI检查时间为校正胎龄32~36+6周及校正胎龄37~41+6周两个亚组的极早产儿,其中亚组1的极早产儿在校正胎龄后仍未足月,这一阶段新生儿大脑正经历快速的突触发生和神经回路构建,对能量和血供的需求急剧增加[38],其大脑发育模式可能与足月儿有所不同[39],亚组2的极早产儿校正胎龄后已达足月,大脑的宏观结构相对接近足月儿,对比两个亚组的结果,可以更好地揭示极早产儿脑发育的过程。

       新生儿出生后,大脑整体和局部的CBF与脑成熟度密切相关。随着日龄的增长,脑代谢活动及耗氧量逐渐增加,脑CBF值也相应升高,这主要与脑叶体积生长、突触发生以及髓鞘化需要消耗大量能量有关[40]。本研究发现,在校正胎龄37~41+6周时,对照组极早产儿的CBF值较校正胎龄32~36+6周时升高,说明极早产儿在出生后的早期相应脑区CBF值增加,该区域脑血流量及对氧的需求量增加,与既往研究相符。而对于HIBD组极早产儿,除双侧中央沟皮层外,其余各脑区的CBF值在校正胎龄32~36+6周时和校正胎龄37~41+6周时差异无统计学意义。这可能是因为缺血再灌注后存在恢复期,脑血流量的自身调节导致的脑CBF值下降与正常的脑发育导致的CBF值升高相抵消;也可能是因为HIBD的发生所导致的脑损伤影响了极早产儿脑的正常代谢活动,进而影响了脑CBF值的增长。

3.5 HIBD组差异脑区CBF值与Apgar评分、NBNA评分的相关性

       新生儿Apgar评分根据新生儿娩出后的各项临床表现对新生儿的呼吸进行快速评估,目前已广泛应用于新生儿窒息的诊断[41, 42]。但既往有研究发现,极早产儿Apgar评分与神经发育结局相关性有限[43],同时本研究结果表明,各ROI脑CBF值与出生时Apgar评分无相关性,这可能是因为Apgar评分受主观因素影响较大,而早产儿尤其是极早产儿出生时各器官发育尚未成熟,主观评估结果与足月儿的偏差较大。因此,将Apgar评分作为诊断HIBD的直接依据存在主观性和局限性。相比之下,脑CBF值的测定更客观、可定量,有助于HIBD的早期定量诊断。

       NBNA评分依据新生儿的一般状况、动作行为、肌张力及原始反射等方面进行评分,可用于评估足月儿和校正胎龄满40周的早产儿的神经发育状况,识别新生儿可能存在的早期神经损伤[44, 45]。既往研究表明,以基底神经节/丘脑损伤为主模式的脑损伤可能是导致新生儿不良预后的潜在危险因素[46],同时FAINGOLD等的研究发现,HIBD新生儿基底节区和丘脑的高灌注状态可能与不良的临床预后有关[47]。本研究发现,双侧丘脑、左侧基底节区在校正胎龄32~36+6周时脑CBF值与NBNA评分呈现一定的负相关,与既往研究基本一致,也体现了其特定的发育阶段和解剖特征。因此,对HIBD极早产儿进行脑灌注的监测极为重要,同时在监测时应重点关注上述脑区。

3.6 本研究的局限性

       本研究的局限性有以下几点。其一,本试验的样本量有限,未对HIBD的严重情况进行分级,这可能对疾病风险评估的准确性产生一定影响。其二,为了确保极早产儿的一般情况稳定,选择在校正胎龄32周以后进行常规MRI和ASL扫描,而缺乏极早产儿出生后数小时乃至数天的脑灌注情况的研究。其三,极早产儿发生IVH的风险较高,本研究未考虑IVH对整体和局部脑灌注的潜在影响;其四,本研究仅探究了极早产儿脑CBF值的变化与早期神经结局的关系,未对远期发育结局进行随访研究。

4 结论

       本研究通过3D-pCASL成像技术定量评估了HIBD极早产儿的脑CBF值变化,揭示了HIBD对于极早产儿早期预后的潜在影响。

[1]
DE VIS J B, HENDRIKSE J, PETERSEN E T, et al. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy[J]. Eur Radiol, 2015, 25(1): 113-121. DOI: 10.1007/s00330-014-3352-1.
[2]
LIU L, OZA S, HOGAN D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis[J]. Lancet, 2015, 385(9966): 430-440. DOI: 10.1016/s0140-6736(14)61698-6.
[3]
GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Neurol, 2024, 23(4): 344-381. DOI: 10.1016/s1474-4422(24)00038-3.
[4]
CALABRESE E, WU Y, SCHEFFLER A W, et al. Correlating Quantitative MRI-based Apparent Diffusion Coefficient Metrics with 24-month Neurodevelopmental Outcomes in Neonates from the HEAL Trial[J/OL]. Radiology, 2023, 308(3): e223262 [2025-07-01]. https://pubs.rsna.org/doi/10.1148/radiol.223262. DOI: 10.1148/radiol.223262.
[5]
SUTIN J, VYAS R, FELDMAN H A, et al. Association of cerebral metabolic rate following therapeutic hypothermia with 18-month neurodevelopmental outcomes after neonatal hypoxic ischemic encephalopathy[J/OL]. EBioMedicine, 2023, 94: 104673 [2025-07-01]. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(23)00238-4/fulltext. DOI: 10.1016/j.ebiom.2023.104673.
[6]
KROMM G H, PATANKAR H, NAGALOTIMATH S, et al. Socioemotional and Psychological Outcomes of Hypoxic-Ischemic Encephalopathy: A Systematic Review[J/OL]. Pediatrics, 2024, 153(4): e2023063399 [2025-07-01]. https://publications.aap.org/pediatrics/article/153/4/e2023063399/196823. DOI: 10.1542/peds.2023-063399.
[7]
DROMMELSCHMIDT K, MAYRHOFER T, HÜNING B, et al. Incidence of brain injuries in a large cohort of very preterm and extremely preterm infants at term-equivalent age: results of a single tertiary neonatal care center over 10 years[J]. Eur Radiol, 2024, 34(8): 5239-5249. DOI: 10.1007/s00330-024-10592-z.
[8]
RISTOVSKA S, STOMNAROSKA O, DANILOVSKI D. Hypoxic Ischemic Encephalopathy (HIE) in Term and Preterm Infants[J]. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 2022, 43(1): 77-84. DOI: 10.2478/prilozi-2022-0013.
[9]
PICCIRILLI E, CHIARELLI A M, SESTIERI C, et al. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI[J]. Hum Brain Mapp, 2023, 44(9): 3833-3844. DOI: 10.1002/hbm.26315.
[10]
HU Z, JIANG D, SHEPARD J, et al. High-Fidelity MRI Assessment of Cerebral Perfusion in Healthy Neonates Less Than 1 Week of Age[J/OL]. J Magn Reson Imaging, 2025 [2025-06-22]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.29745. DOI: 10.1002/jmri.29740.
[11]
TUURA R O, KOTTKE R, BROTSCHI B, et al. Elevated cerebral perfusion in neonatal encephalopathy is associated with neurodevelopmental impairments[J/OL]. Pediatr Res, 2024 [2025-06-22]. https://www.nature.com/articles/s41390-024-03553-1. DOI: 10.1038/s41390-024-03553-1.
[12]
CAO J, MU Y, XU X, et al. Cerebral perfusion changes of the basal ganglia and thalami in full-term neonates with hypoxic-ischaemic encephalopathy: a three-dimensional pseudo continuous arterial spin labelling perfusion magnetic resonance imaging study[J]. Pediatr Radiol, 2022, 52(8): 1559-1567. DOI: 10.1007/s00247-022-05344-4.
[13]
刘畅, 计海霞, 田仰华, 等. 三维动脉自旋标记在足月新生儿缺氧缺血性脑病的早期诊断和预后分组中的价值[J]. 磁共振成像, 2023, 14(1): 61-66, 76. DOI: 10.12015/issn.1674-8034.2023.01.011.
LIU C, JI H X, TIAN Y H, et al. Value of 3D arterial spin labeling in early diagnosis and prognostic grouping of full-term neonatal hypoxic-ischemic encephalopathy[J]. Chin J Magn Reson Imaging, 2023, 14(1): 61-66, 76. DOI: 10.12015/issn.1674-8034.2023.01.011.
[14]
刘颖, 霍然, 王筝, 等. 动脉自旋标记成像对早产儿脑损伤的早期诊断及预后评估研究进展[J]. 磁共振成像, 2021, 12(9): 91-94. DOI: 10.12015/issn.1674-8034.2021.09.023.
LIU Y, HUO R, WANG Z, et al. Research progress of arterial spin labeling imaging in early diagnosis and prognosis evaluation of brain injury in premature infants[J]. Chin J Magn Reson Imaging, 2021, 12(9): 91-94. DOI: 10.12015/issn.1674-8034.2021.09.023.
[15]
刘祥龙, 岳翔, 赵鑫, 等. DKI衍生参数预测新生儿缺氧缺血性脑病预后[J]. 临床放射学杂志, 2024, 43(10): 1787-1793. DOI: 10.12015/issn.1674-8034.2021.09.023.
LIU X L, YUE X, ZHAO X, et al. DKI Derived Parameters Predict the Prognosis of Neonatal HIE[J]. Journal of Clinical Radiology, 2024, 43(10): 1787-1793. DOI: 10.13437/j.cnki.jcr.2024.10.014.
[16]
WANG J, LI J, YIN X, et al. The Value of Arterial Spin Labeling Imaging in the Classification and Prognostic Evaluation of Neonatal Hypoxic-ischemic Encephalopathy[J]. Curr Neurovasc Res, 2021, 18(3): 307-313. DOI: 10.2174/1567202618666210920112001.
[17]
HO S Y, CHIANG M C, LIN J J, et al. Middle cerebral artery velocity is associated with the severity of MRI brain injury in neonates received therapeutic hypothermia[J]. Biomed J, 2021, 44(6Suppl 1): S119-S125. DOI: 10.1016/j.bj.2020.08.002.
[18]
HUNTINGFORD S L, BOYD S M, MCINTYRE S J, et al. Long-Term Outcomes Following Hypoxic Ischemic Encephalopathy[J]. Clin Perinatol, 2024, 51(3): 683-709. DOI: 10.1016/j.clp.2024.04.008.
[19]
李思柯, 程美英, 张灵洁, 等. 3D-pCASL在评估妊娠期高血压对早产儿脑发育影响中的价值[J]. 磁共振成像, 2025, 16(2): 7-13. DOI: 10.12015/issn.1674-8034.2025.02.002.
LI S K, CHENG M Y, ZHANG L J, et al. 3D-pCASL in the developmental brain abnormalities of preterm infants born to hypertensive mothers during pregnancy[J]. Chin J Magn Reson Imaging, 2025, 16(2): 7-13. DOI: 10.12015/issn.1674-8034.2025.02.002.
[20]
中华医学会放射学分会质量管理与安全管理学组, 中华医学会放射学分会磁共振学组. 动脉自旋标记脑灌注MRI技术规范化应用专家共识[J]. 中华放射学杂志, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
Quality management and safety management group of Chinese society of radiology, MRI group of Chinese society of radiology. Expert consensus on standardized application of arterial spin labeled cerebral perfusion MRI[J]. Chin J Radiol, 2016, 50(11): 817-824. DOI: 10.3760/cma.j.issn.1005-1201.2016.11.003.
[21]
WANG J, LI J, YIN X, et al. Cerebral hemodynamics of hypoxic-ischemic encephalopathy neonates at different ages detected by arterial spin labeling imaging[J]. Clin Hemorheol Microcirc, 2022, 81(4): 271-279. DOI: 10.3233/ch-211324.
[22]
唐世龙, 何玲, 刘波, 等. 三维动脉自旋标记灌注成像结合标记后延迟时间在新生儿缺氧缺血性脑病中的应用[J]. 中国医学影像学杂志, 2018, 26(12): 928-933. DOI: 10.3969/j.issn.1005-5185.2018.12.012.
TANG S L, HE L, LIU B, et al. Three-dimensional arterial spin labeling perfusion imaging combined with post-labeling delay in neonatal hypoxic ischemic encephalopathy[J]. Chin J Med imaging, 2018, 26(12): 928-933. DOI: 10.3969/j.issn.1005-5185.2018.12.012.
[23]
SHEN G, SANCHEZ K, HU S, et al. 3D doppler ultrasound imaging of cerebral blood flow for assessment of neonatal hypoxic-ischemic brain injury in mice[J/OL]. PLoS One, 2023, 18(5): e0285434 [2025-07-01]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285434. DOI: 10.1371/journal.pone.0285434.
[24]
HOFFMAN S B, LAKHANI A, VISCARDI R M. The association between carbon dioxide, cerebral blood flow, and autoregulation in the premature infant[J]. J Perinatol, 2021, 41(2): 324-329. DOI: 10.1038/s41372-020-00835-4.
[25]
RANJAN A K, GULATI A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy[J/OL]. J Clin Med, 2023, 12(20): 6653 [2025-10-01]. https://www.mdpi.com/2077-0383/12/20/6653. DOI: 10.3390/jcm12206653.
[26]
DUBOIS M, LEGOUHY A, COROUGE I, et al. Multiparametric Analysis of Cerebral Development in Preterm Infants Using Magnetic Resonance Imaging[J/OL]. Front Neurosci, 2021, 15: 658002 [2025-07-01]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.658002/full. DOI: 10.3389/fnins.2021.658002.
[27]
QIN C, ZHAO X, SHEN Y, et al. Evaluation of the effect of intraventricular haemorrhage on cerebral perfusion in preterm neonates using three-dimensional pseudo-continuous arterial spin labelling[J]. Pediatr Radiol, 2024, 54(5): 776-786. DOI: 10.1007/s00247-024-05865-0.
[28]
MACHIE M, DE VRIES L S, INDER T. Advances in Neuroimaging Biomarkers and Scoring[J]. Clin Perinatol, 2024, 51(3): 629-647. DOI: 10.1016/j.clp.2024.04.005.
[29]
冀旭, 范国光. 连续动脉自旋标记磁共振灌注成像对足月缺氧缺血性脑病患儿的初步研究[J]. 磁共振成像, 2011, 2(1): 19-23. DOI: 10.3969/j.issn.1674-8034.2011.01.006.
JI X, FAN G G. Continuous arterial spin labeling MR perfusion imaging in diagnosis of hypoxic ischemic encephalopathy in full-term neonates: Preliminary study[J]. Chin J Magn Reson Imaging, 2011, 2(1): 19-23. DOI: 10.3969/j.issn.1674-8034.2011.01.006.
[30]
GIRAULT J B, CORNEA E, GOLDMAN B D, et al. Cortical Structure and Cognition in Infants and Toddlers[J]. Cereb Cortex, 2020, 30(2): 786-800. DOI: 10.1093/cercor/bhz126.
[31]
FAVIÉ L M A, GROENENDAAL F, VAN DEN BROEK M P H, et al. Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia[J/OL]. PLoS One, 2019, 14(2): e0211910 [2025-07-01]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211910. DOI: 10.1371/journal.pone.0211910.
[32]
DUBOIS J, ALISON M, COUNSELL S J, et al. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[33]
OTANI S, FUSHIMI Y, IWANAGA K, et al. Evaluation of deep gray matter for early brain development using quantitative susceptibility mapping[J]. Eur Radiol, 2023, 33(6): 4488-4499. DOI: 10.1007/s00330-022-09267-4.
[34]
DIPIERO M, RODRIGUES P G, GROMALA A, et al. Applications of advanced diffusion MRI in early brain development: a comprehensive review[J]. Brain Struct Funct, 2023, 228(2): 367-392. DOI: 10.1007/s00429-022-02605-8.
[35]
BAUMANN N, PHAM-DINH D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001, 81(2): 871-927. DOI: 10.1152/physrev.2001.81.2.871.
[36]
DUBOIS J, DEHAENE-LAMBERTZ G, KULIKOVA S, et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants[J]. Neuroscience, 2014, 276: 48-71. DOI: 10.1016/j.neuroscience.2013.12.044.
[37]
GOLDSHTEIN I, AMIT G, TSADOK M A, et al. Age-corrected development of preterm children: a population-based study[J]. Pediatr Res, 2025, 97(3): 1001-1008. DOI: 10.1038/s41390-024-03449-0.
[38]
VANES L, FENN-MOLTU S, HADAYA L, et al. Longitudinal neonatal brain development and socio-demographic correlates of infant outcomes following preterm birth[J/OL]. Dev Cogn Neurosci, 2023, 61: 101250 [2025-10-01]. DOI: 10.1016/j.dcn.2023.101250.
[39]
GONDOVÁ A, NEUMANE S, ARICHI T, et al. Early Development and Co-Evolution of Microstructural and Functional Brain Connectomes: A Multi-Modal MRI Study in Preterm and Full-Term Infants[J/OL]. Hum Brain Mapp, 2025, 46(5): e70186 [2025-10-01]. https://onlinelibrary.wiley.com/doi/10.1002/hbm.70186. DOI: 10.1002/hbm.70186.
[40]
TIERRADENTRO-GARCÍA L O, SAADE-LEMUS S, FREEMAN C, et al. Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury[J]. Am J Perinatol, 2023, 40(5): 475-488. DOI: 10.1055/s-0041-1731278.
[41]
谢北辰, 闫瑞芳, 任继鹏, 等. 三维动脉自旋标记灌注成像在足月新生儿窒息脑损伤中的应用[J]. 中国医学影像学杂志, 2022, 30(3): 193-198, 204. DOI: 10.3969/j.issn.1005-5185.2022.03.001.
XIE B C, YAN R F, REN J P, et al. Three-Dimensional Arterial Spin Labeling Perfusion Imaging in Full-Term Neonates with Hypoxic Brain Injury After Asphyxia[J]. Chin J Med Imaging, 2022, 30(3): 193-198, 204. DOI: 10.3969/j.issn.1005-5185.2022.03.001.
[42]
HONG J, CRAWFORD K, JARRETT K, et al. Five-minute Apgar score and risk of neonatal mortality, severe neurological morbidity and severe non-neurological morbidity in term infants - an Australian population-based cohort study[J/OL]. Lancet Reg Health West Pac, 2024, 44: 101011 [2025-07-01].https://www.thelancet.com/retrieve/pii/S2666606524000051. DOI: 10.1016/j.lanwpc.2024.101011.
[43]
EHRHARDT H, AUBERT A M, ÅDÉN U, et al. Apgar Score and Neurodevelopmental Outcomes at Age 5 Years in Infants Born Extremely Preterm[J/OL]. JAMA Netw Open, 2023, 6(9): e2332413 [2025-07-01]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2808959. DOI: 10.1001/jamanetworkopen.2023.32413.
[44]
LIU C, MESSERLIAN C, CHEN Y J, et al. Trimester-specific associations of maternal exposure to disinfection by-products, oxidative stress, and neonatal neurobehavioral development[J/OL]. Environ Int, 2021, 157: 106838 [2025-07-01]. https://www.sciencedirect.com/science/article/pii/S0160412021004633. DOI: 10.1016/j.envint.2021.106838.
[45]
LU Z H, LIU C, CHEN Y J, et al. Gestational Exposure to PM(2.5) and Specific Constituents, Meconium Metabolites, and Neonatal Neurobehavioral Development: A Cohort Study[J]. Environ Sci Technol, 2024, 58(23): 9980-9990. DOI: 10.1021/acs.est.4c00074.
[46]
GLASS H C, WOOD T R, COMSTOCK B A, et al. Predictors of Death or Severe Impairment in Neonates With Hypoxic-Ischemic Encephalopathy[J/OL]. JAMA Netw Open, 2024, 7(12): e2449188 [2025-07-01]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2827551. DOI: 10.1001/jamanetworkopen.2024.49188.
[47]
FAINGOLD R, PREMPUNPONG C, GARFINKLE J, et al. Association between Early Basal Ganglia and Thalami Perfusion Assessed by Color Doppler Ultrasonography and Brain Injury in Infants with Hypoxic-Ischemic Encephalopathy: A Prospective Cohort Study[J/OL]. J Pediatr, 2024, 271: 114086 [2025-07-01]. https://www.jpeds.com/article/S0022-3476(24)00189-6. DOI: 10.1016/j.jpeds.2024.114086.

上一篇 四维血流心脏磁共振评估儿童室性期前收缩心室血流动力学特征及其对负荷程度的预测价值
下一篇 伴中央颞区棘波自限性癫痫患者个体结构协变网络的形态学重塑
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2