分享:
分享到微信朋友圈
X
临床研究
多参数磁共振生境成像对前列腺癌分区异质性的预测研究
袁蕾 张景良 马丽娜 夏雨薇 韩晔 侯国瑞 秦卫军 张静 宦怡 任静

本文引用格式:袁蕾, 张景良, 马丽娜, 等. 多参数磁共振生境成像对前列腺癌分区异质性的预测研究[J]. 磁共振成像, 2025, 16(11): 142-148. DOI:10.12015/issn.1674-8034.2025.11.021.


[摘要] 目的 探讨生境成像(habitat imaging, HI)无创定量可视化前列腺癌(prostate cancer, PCa)分区异质性并预测其危险度的可行性。材料与方法 回顾性收集2018年1月至2024年8月在西京医院行多参数磁共振成像(multi-parameteric magnetic resonance imaging, mpMRI)扫描,包括扩散加权成像、体素内非相干运动加权成像和扩散峰度成像,并经根治性前列腺切除术(radical prostatectomy, RP)后病理证实为PCa的147例患者的临床及影像资料,以7∶3分为训练集和测试集。根据RP结果分为移行区(transition zone, TZ)和外周区(peripheral zone, PZ)PCa。整合每体素表观扩散系数(apparent diffusion coefficient, ADC)、灌注分数(perfusion fraction, f)和平均峰度(mean kurtosis, MK)值,划分生境亚区,生成生境地图,从临床、病理、影像多维度比较PZ和TZ PCa间差异。根据2019版国际泌尿病理协会(International Society of Urological Pathology, ISUP)指南,匹配生境地图与RP标本以评估各亚区ISUP分级,将患者分为低危组(ISUP≤2)和高危组(ISUP≥3)。logistic回归分析高危PCa相关特征并构建基于分区的HI(zone-based HI, zHI)-临床影像模型评估危险度,并评估模型效能。结果 根据肘部法所示最佳聚类簇数划分3个生境亚区,生境1较生境2、3的ADC、f值更低,MK值更高。相较于TZ,PZ PCa患者临床、病理特征更恶,生境1占比更高。logistic回归分析示解剖分区(OR=3.50,95% CI:1.01~12.09)和生境1占比(OR=3.63,95% CI:1.37~9.62)是高危PCa的独立危险因素(P<0.05)。zHI-临床影像模型评估危险度在训练集和测试集的曲线下面积(area under the curve, AUC)分别为0.889(95% CI:0.822~0.955)和0.883(95% CI:0.740~0.925)。结论 本研究多维度验证了PCa分区异质性,并基于解剖分区和HI特征构建模型,对PCa危险度的无创定量可视化预测具有增益效能。
[Abstract] Objective To explore the feasibility of habitat imaging (HI) for non-invasive quantitative visualization of zonal heterogeneity and risk prediction in prostate cancer (PCa).Materials and Methods This retrospective study involved 147 patients who underwent multi-parametric magnetic resonance imaging (mpMRI) and confirmed PCa by radical prostatectomy (RP) at Xijing Hospital from January 2018 to August 2024. Patients were divided into training and test sets in a 7∶3 ratio. According to RP results, PCa was categorized into transition zone (TZ) and peripheral zone (PZ). The apparent diffusion coefficient (ADC), perfusion fraction (f) and mean kurtosis (MK) values of each voxel were integrated to delineated habitat subregions and generate habitat maps. The differences between PZ and TZ PCa were compared from multiple perspectives including clinical, pathological and imaging. According to the 2019 International Society of Urological Pathology (ISUP) guidelines, the habitat maps were matched with RP specimens to assess the ISUP grade of each subregion, and the patients were classified into low-risk (ISUP ≤ 2) and high-risk (ISUP ≥ 3) groups. Logistic regression analysis was applied to identify factors associated with high-risk PCa and to construct a predictive model called zone-based habitat imaging (zHI)-clinial imaging. Then the model's efficacy was evaluated.Results Habitat 1 had lower ADC, f and higher MK values compared to habitats 2 and 3. Compared with TZ, PZ PCa exhibited worse clinical and pathological features, with a higher proportion of habitat 1. Logistic regression analysis indicated that anatomical zone (OR = 3.50, 95% CI: 1.01 to 12.09) and the proportion of Habitat 1 (OR = 3.63, 95% CI: 1.37 to 9.62) were independent risk factors for high-risk PCa (P < 0.05). The area under the curve (AUC) of the zHI-clinical imaging model for risk assessment in the training and test sets were 0.889 (95% CI: 0.822 to 0.955) and 0.883 (95% CI: 0.740 to 0.925), respectively.Conclusions This study comprehensively verified the zonal heterogeneity of PCa and constructed a model based on anatomical zone and HI features, which demonstrated enhanced efficacy in non-invasive quantitative visualization and prediction of PCa risk.
[关键词] 生境成像;多参数磁共振成像;前列腺癌;危险度;分区异质性;根治性前列腺切除术
[Keywords] habitat imaging;multi-parameteric magnetic resonance imaging;prostate cancer;risk degree;zonal heterogeneity;radical prostatectomy

袁蕾 1   张景良 2   马丽娜 1   夏雨薇 3   韩晔 1   侯国瑞 1   秦卫军 2   张静 4   宦怡 1   任静 1*  

1 空军军医大学西京医院放射科,西安 710032

2 空军军医大学西京医院泌尿外科,西安 710032

3 上海联合影像智能有限公司研发部,上海200232

4 空军军医大学西京医院病理科,西安 710032

通信作者:任静,E-mail:jrenmm@126.com

作者贡献声明:任静酝酿和设计试验、实施研究、分析数据,对文章的重要内容作批评性审阅和修改,获得国家自然科学基金项目、陕西省重点研发计划项目、2025年度西京医院医务人员培养助推项目创新医学研究专项经费支持;袁蕾实施研究、采集数据、分析数据、起草文章、统计分析;张景良、马丽娜、夏雨薇、韩晔、侯国瑞、秦卫军、张静、宦怡获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 8257071331 陕西省重点研发计划项目 2025SF-YBXM-371 2025年度西京医院医务人员培养助推项目创新医学研究专项 XJZT25CX07
收稿日期:2025-06-17
接受日期:2025-11-10
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.11.021
本文引用格式:袁蕾, 张景良, 马丽娜, 等. 多参数磁共振生境成像对前列腺癌分区异质性的预测研究[J]. 磁共振成像, 2025, 16(11): 142-148. DOI:10.12015/issn.1674-8034.2025.11.021.

0 引言

       前列腺癌(prostate cancer, PCa)是全球男性中第二常见的恶性肿瘤,发病率居第四位,死亡率第六位,是全球男性癌症相关死亡的第五大原因[1, 2]。自2000年以来,我国PCa发病率急剧上升,已跃居男性恶性肿瘤第六位[3, 4, 5]。从2000年到2019年,中国PCa的发病率上升了约7倍,死亡率上升约5倍,初诊转移比例高达30%[6, 7]。相较于移行区(transition zone, TZ),外周区(peripheral zone, PZ)PCa发生率更高[8, 9],且病理特征和临床预后更差[10, 11, 12]。然而,目前对PCa不同解剖分区异质性的研究仍存在以下瓶颈:首先,现有研究多集中于肿瘤整体的影像表征,缺乏对肿瘤内部不同区域(如TZ与PZ)异质性特征的系统对比分析[13];其次,现有研究在量化瘤内异质性(intra-tumor heterogeneity, ITH)时,往往依赖于单一模态影像,难以同步整合细胞密度、灌注状态及组织结构复杂性等多维度生物学信息,从而限制了对ITH的全面评估[14, 15]

       在影像学方面,课题组前期研究[16, 17]发现,PZ PCa的表观扩散系数(apparent diffusion coefficient, ADC)更低,表明其细胞密度更高、恶性度更高;同时研究证实解剖分区可作为PCa危险度的独立预测因子。深入探索不同解剖分区PCa的生物学特征对治疗计划的制订和预后评估至关重要。多模态影像融合的生境成像(habitat imaging, HI)可逐体素提取、识别多模态影像中的细微差异,表征肿瘤生物学环境,实现ITH的可视化和量化,可有效表征肿瘤病理特征[18, 19, 20]。然而,目前鲜有研究将HI运用于PCa ITH的表征。因此,本研究旨在通过HI进一步验证PCa分区异质性,为临床精准诊断和治疗提供新的影像学依据,推动PCa诊疗向精准化、个体化迈进。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经西京医院伦理委员会批准,回顾性研究豁免知情同意书,批准文号:KY20242327-C-1。回顾性分析2018年1月至2024年8月西京医院PCa患者的临床、病理和MRI资料(图1)。纳入标准:(1)经根治性前列腺切除术(radical prostatectomy, RP)证实为PCa;(2)术前行多参数磁共振成像(multi-parameteric magnetic resonance imaging, mpMRI)检查。排除标准:(1)mpMRI序列不完整或图像质量差;(2)mpMRI上无可见病灶(直径<5 mm);(3)术前mpMRI与RP间隔超过3个月;(4)临床病理数据不完整;(5)术前接受过前列腺相关治疗;(6)其他原发恶性肿瘤病史;(7)病灶同时累及TZ和PZ。最终纳入147例经RP确诊且病灶局限于PZ或TZ的PCa患者,年龄45~91(68±9)岁,按7∶3分为训练集和测试集。

图1  纳排流程图RP:根治性前列腺切除术;PCa:前列腺癌;mpMRI:多参数磁共振成像;TZ:移行区;PZ:外周区。
Fig. 1  The flow chart of the inclusion and exclusion. RP: radical prostatectomy; PCa: prostate cancer; mpMRI: multi-parameter magnetic resonance imaging; TZ: transition zone; PZ: peripheral zone.

1.2 MRI图像采集

       所有患者在Philips Ingenia 3.0 T CX或GE Discovery 750 3.0 T MRI设备上扫描,分别采用16或8通道腹部相控线圈。患者检查前禁食水4~6 h,检查时仰卧位,适度充盈膀胱,尽量排气以减少肠气伪影,扫描范围包括整个盆腔。扫描序列包括T2加权成像、扩散加权成像、体素内非相干运动加权成像及扩散峰度成像(表1)。将图像分别传输至Intellispace Portal或GE Advantage工作站,拟合各b值扩散加权成像(diffusion-weighted imaging, DWI)并生成ADC图。通过MITK(Medical Imaging Interaction Toolkit, Germany)拟合每体素扩散模型,分别从体素内非相干运动加权成像和扩散峰度成像获取灌注分数(perfusion fraction, f)和平均峰度(mean kurtosis, MK)图。

表1  MRI扫描序列及参数
Tab. 1  MRI scanning sequences and parameters

1.3 图像分析

1.3.1 图像预处理

       使用Python软件包scikit-image 0.21.0 [21](https://scikit-image.org/)行图像降噪、N4偏置场校正、MRI信号强度归一化等预处理,并重采样为1 mm×1 mm×1 mm等距体素大小,以统一不同MRI设备图像的分辨率。使用Python软件包antspyx 0.4.2[22](https://github.com/ANTSX/ANTS)行刚性配准,防止图像形变,确保不同序列图像在体素水平上空间一致。最后,由1名5年泌尿生殖诊断经验的住院医生逐层手动校对配准结果。

1.3.2 病灶分割

       根据前列腺成像报告和数据系统(prostate imaging reporting and data aystem version 2.1, PI-RADS v2.1)[23],2名8年泌尿生殖诊断经验的主治医师在不知晓对方测量结果的情况下,独立评估每个病灶并测量肿瘤最大径(maximum tumor diameter, MTD),使用3D Slicer软件(version 4.10.2, www. slicer.org)在ADC图上沿肿瘤边缘手动逐层勾画感兴趣体积(volume of interest, VOI),避免坏死、钙化或出血区,随后将所勾画的VOI映射至其他mpMRI图像。为评估勾画结果一致性,采用Python软件包simpleitk 2.20(https://simpleitk.org/)计算Dice相关系数验证病灶勾画的空间重叠性(0.83,良好);Kappa系数用于“病灶是否含坏死、钙化或出血区”定性评估一致性分析[Kappa系数0.87,P<0.001,一致性极佳]。

1.3.3 生境亚区划分

       肘部法确定最佳聚类簇数。整合每体素ADC、f和MK值,使用Python软件包scikit-learn 1.1.3[24](https://scikit-learn.org/)的K-means聚类算法,结合欧几里得距离度量,将VOI划分为k个生境亚区,生成病灶生境地图,计算各生境亚区占比,对比TZ和PZ PCa间生境差异。

1.4 组织病理学分析

       RP标本在10%中性甲醛液中固定过夜,垂直于前列腺长轴方向以4 mm间隔连续切片并行苏木精伊红染色。由3名不知晓生境划分标准和患者临床病理信息的资深医师(分别为25年泌尿生殖影像诊断经验的放射科主任医师、30年泌尿生殖病理分析经验的病理科主任医师、30年临床诊疗和手术经验的泌尿外科主任医师)结合病理报告和尿道、射精管等解剖定位,将生境地图与RP连续轴向切片一一对应、精准划区,参考小视野高分辨率轴向T2加权成像确定病灶位置,分为TZ和PZ PCa。另由2名5年泌尿生殖病理医师独立评估病理分级、精囊腺侵犯(seminal vesicle invasion, SVI)、神经脉管侵犯(neurovascular invasion, NVI)、盆腔淋巴结转移(pelvic lymph node metastasis, PLNM)和阳性手术切缘(positive surgical margins, PSM)。分歧结果双方复核协商;若未达成一致,则由第三名资深病理医师决定。依据2019版国际泌尿病理协会(International Society of Urological Pathology, ISUP)指南[25]评估各生境亚区,分为低危组(ISUP≤2)和高危组(ISUP≥3)。

1.5 统计学方法

       采用IBM SPSS Statistics 26和MedCalc 22.9.0.0软件进行统计学分析。正态分布数据以(x¯±s)表示,非正态分布数据以MQ1,Q3)表示。采用t检验、Mann-Whitney U检验或卡方检验评估PZ和TZ PCa间特征差异。特征筛选与模型构建遵循以下流程:(1)Spearman相关分析识别排除高度相关的冗余特征(|rs|>0.7);(2)对剩余特征行方差膨胀因子(variance inflation factor, VIF)检验,确保VIF<5以排除多重共线性;(3)通过共线性诊断的特征行单因素logistic回归分析;(4)单因素分析有意义的特征纳入多因素logistic回归分析(进入法:P<0.05进入,P>0.10剔除),以确定独立危险因素;(5)基于独立危险因素构建基于分区的HI(zone-based HI, zHI)-临床影像模型和临床影像模型以评估PCa危险度。使用受试者工作特征(receiver operating characteristic, ROC)曲线、曲线下面积(area under the curve, AUC)评估模型预测效能,DeLong检验比较各模型AUC;Hosmer-Lemeshow拟合优度检验评估模型校准度,临床决策曲线分析(decision curve analysis, DCA)评估模型临床效益。P<0.05为差异有统计学意义。

2 结果

2.1 患者基线资料

       147例PCa患者中,低危组45例,高危组102例;PZ PCa 88例,TZ PCa 59例;训练集103例,测试集44例,各组年龄差异无统计学意义(P>0.05)。相较于TZ,PZ PCa患者的临床T分期、ISUP分级、病理T分期、NVI、PLNM和PSM发生率均显著更高,而SVI发生率显著更低(P<0.05)(表2)。

表2  不同解剖分区PCa患者临床、病理及MRI基线资料
Tab. 2  Clinical, pathological and MRI baseline data of PCa patients in different anatomical zones

2.2 PCa分区异质性的生境分析

       根据肘部法所示最佳聚类簇数划分3个生境亚区。生境1的ADC、f值更低,MK值更高,生境2反之,生境3居中。相较于TZ,PZ PCa患者生境1占比更高而生境2更低(P<0.001);且生境地图示各亚区分布更混乱,提示异质性更高(表3图2)。

图2  两名临床特征相似PCa患者的HI分析。2A:男,58岁,PZ PCa患者,PSA为6 ng/mL,PI-RADS评分为5,MTD为2.8 cm,生境1占比为54.0%,病理ISUP分级为5;2B:男,66岁,TZ PCa患者,PSA为6.97 ng/mL,PI-RADS评分为5,MTD为2.9 cm,生境1占比为7.0%,病理ISUP分级为2。PCa:前列腺癌;HI:生境成像;PZ:外周区;TZ:移行区;PSA:前列腺特异性抗原;PI-RADS:前列腺影像报告与数据系统;MTD:肿瘤最大径;ADC:表观扩散系数;f:灌注分数;MK:平均峰度;DWI:扩散加权成像。
Fig. 2  HI analysis of two PCa patients with similar clinical characteristics. 2A: Male, 58 years old, PZ PCa patient, PSA 6 ng/ml, PI-RADS score 5, MTD 2.8 cm, Habitat 1 accounts for 54.0%, pathological ISUP grade 5; 2B: Male, 66 years old, TZ PCa patient, PSA 6.97 ng/mL, PI-RADS score 5, MTD 2.9 cm, Habitat 1 accounted for 7.0%, pathological ISUP grade 2. PCa: prostate cancer; HI: habitat imaging; PZ: peripheral zone; TZ: transition zone; PSA: prostate-specific antigen; PI-RADS: prostate imaging reporting and data system; MTD: maximum tumor diameter; ADC: apparent diffusion coefficient; f: perfusion fraction; MK: mean kurtosis; DWI: diffusion-weighted imaging.
表3  训练集中PZ和TZ PCa间的HI比较
Tab. 3  Comparison of HI between PZ and TZ PCa in the training set

2.3 各生境亚区与临床、病理和MRI特征的相关性分析

       解剖分区、ISUP分级、PSA、NVI、PSM、PLNM、病理T分期、PI-RADS评分、MTD和临床T分期均与生境1占比正相关,而与生境2占比负相关,差异均具有统计学意义(P<0.05)。生境1与生境2占比负相关(rs>0.7),生境3占比与上述特征无相关性(P>0.05)(图3)。

图3  临床、病理和MRI特征间的相关性热图图中数字为相关系数rs1或2个黑色星标标记的区域表示具有显著相关性(P<0.05或P<0.001),正相关用红色表示,负相关用蓝色表示ISUP:国际泌尿生殖病理协会;PSA:前列腺特异性抗原;NVI:神经脉管侵犯;PSM:阳性手术切缘;SVI:精囊腺侵犯;PLNM:盆腔淋巴结转移;pT:病理T分期;PI-RADS:前列腺影像报告与数据系统;MTD:肿瘤最大径;cT:临床T分期。
Fig. 3  Heatmap of the correlation among clinical, pathological and MRI features. The numbers in the figure represent the correlation coefficient rs, areas marked with 1 or 2 black stars indicate significant correlation (P < 0.05 or P < 0.001), positive correlation is indicated in red and negative correlation in blue ISUP: International Society of Urological Pathology; PSA: prostate-specific antigen; NVI: neurovascular invasion; PSM: positive surgical margin; SVI: seminal vesicle invasion; PLNM: pelvic lymph node metastasis; pT: pathological T stage; PI-RADS: prostate imaging reporting and data system; MTD: maximum tumor diameter; cT: clinical T stage.

2.4 PCa危险度的logistic回归分析

       鉴于生境1与生境2占比负相关(rs=-0.88,P<0.001)(图4),剔除与恶性特征负相关的生境2占比以规避多重共线性。其余特征的VIF均<5,不存在共线性。单因素logistic回归示解剖分区、生境1占比、临床分期、PSA、病灶最大径、PI-RADS评分均与高危PCa有关(P<0.05)。多因素logistic回归示解剖分区、生境1占比、PSA和PI-RADS评分是高危PCa的独立危险因素,其中生境1占比的OR值最高,为3.63(95% CI:1.37~9.62),详见表4

图4  模型在训练集(4A~4C)和测试集(4D~4F)中预测效能的评估与验证。4A、4D:受试者工作特征曲线;4B、4E:校准曲线;4C、4F:临床决策曲线分析。AUC:曲线下面积;zHI:基于分区的生境成像。
Fig. 4  Evaluation and verification of the model's predictive effectiveness in the training set (4A-4C) and test set (4D-4F). 4A, 4D: ROC curves; 4B, 4E: calibration curves; 4C, 4F: decision curve analysis. ROC: receiver operating characteristic; zHI: zone-based habitat imaging.
表4  PCa风险单因素和多因素logistic回归分析
Tab. 4  Univariate and multivariate logistic regression analysis of PCa risk

2.5 PCa危险度预测模型的构建与评估

       采用解剖分区、生境1占比、PSA和PI-RADS评分构建zHI-临床影像模型,评估PCa危险度;同时联合PSA和PI-RADS评分构建临床影像模型。在训练集中,zHI-临床影像模型和临床影像模型预测PCa危险度的AUC分别为0.889(95% CI:0.822~0.955)和0.817(95% CI:0.733~0.900),差异具有统计学意义(P=0.037)。在测试集中,zHI-临床影像模型和临床影像模型预测PCa危险度的AUC分别为0.883(95% CI:0.740~0.925)和0.724(95% CI:0.535~0.912),差异无统计学意义(P=0.168)。校准曲线示zHI-临床影像模型具有较好的预测一致性,DCA示更高的临床净获益(图4)。

3 讨论

       本研究首次以HI技术无创可视化与量化PCa分区异质性,并从“影像-病理-临床”多维度验证。进一步融合解剖分区和HI特征构建预测模型,实现了对PCa危险度的无创定量可视化预测,为精准诊疗提供了新范式。

3.1 PCa存在分区异质性

       同既往研究结果一致,本研究证实PZ PCa的临床、病理特征均更差[10]。本研究还发现PZ PCa的PSM率更高。PSM作为生化复发的独立危险因素,提示PZ PCa需扩大手术范围或强化辅助治疗[26];TZ PCa则因毗邻精囊腺的解剖特性,SVI发生率更高。此外,本队列PZ和TZ PCa发生比例与既往报道的7∶3不符[8, 9],多由于小视野高分辨率T2加权成像的应用和扩散加权成像的持续优化显著提升TZ PCa检出敏感度,警示基于解剖分区的个体化治疗决策需结合当代影像技术进展重新评估。

3.2 HI评估PCa异质性的价值

       mpMRI可一定程度定量反映组织的生物学特性[27]:ADC值提供细胞密度信息[28, 29, 30]f值反映血流灌注,与PCa病理分级呈负相关[31, 32];MK值反映组织结构复杂性[33, 34]。但既往研究多仅测量病灶平均值,对微小变化不敏感且易受极端值影响,难以客观呈现ITH[35]。本研究通过HI技术整合每体素ADC、f和MK值,划分3个生境亚区,其中生境1具有低ADC、f和高MK值,提示其细胞密集、灌注异常且组织结构复杂,恶性度更高。同时发现生境1在PZ PCa中显著富集,logistic回归分析证实生境1占比和解剖分区均为高危PCa的独立预测因子。基于此,本研究整合解剖分区、生境1占比、PSA和PI-RADS评分构建的zHI-临床影像模型,在训练集显著提升危险度预测效能,但测试集差异需未来扩大样本进一步验证。

3.3 HI的跨学科验证

       为验证HI技术可靠性,本研究建立跨学科验证:由影像科、病理科和泌尿外科医师协作,依据PI-RADS v2.1前列腺解剖图谱分割RP标本,并利用尿道、射精管等关键标志点实现生境地图与连续病理切片的空间配准。在此基础上,病理医师逐一观察各生境亚区肿瘤组织的分化程度和形态特征,评估ISUP分级,尽可能规避组织交错导致的误判。该方法在体素水平证实HI对肿瘤恶性表型空间分布的解析能力,为无法手术患者的无创风险分层奠定技术基础。

3.4 研究局限性与未来方向

       本研究存在以下局限性:首先,回顾性数据可能存在选择偏倚;其次,尽管手动分割靶病灶更准确,但耗时费力,亟需开发AI辅助工具;此外,仅纳入局限于TZ或PZ且行RP的患者,需扩大至多治疗模式队列。未来将通过前瞻性多中心研究,整合病理基因特征及治疗反应数据,构建可指导个性化治疗的动态预后模型,并探索HI在非手术患者中的应用价值。

4 结论

       综上,本研究从“影像-病理-临床”多维度证实PCa存在分区异质性。基于mpMRI的HI技术不仅实现分区异质性的可视化与量化,所构建的预测模型更显著提升PCa危险度的评估效能。解剖分区定位联合HI风险评估,将推动PCa诊疗向精准化、个体化迈进,最终改善患者生存预后。

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA A Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
瞿旻, 高旭. 2022年全球及中国前列腺癌流行状况分析[J]. 海军军医大学学报, 2025, 46(2): 229-233. DOI: 10.16781/j.CN31-2187/R.20240685.
QU M, GAO X. Prostate cancer in the world and China in 2022: an epidemiological analysis[J]. Acad J Nav Med Univ, 2025, 46(2): 229-233. DOI: 10.16781/j.CN31-2187/R.20240685.
[3]
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
[4]
DESANTIS C E, MILLER K D, DALE W, et al. Cancer statistics for adults aged 85 years and older, 2019[J]. CA Cancer J Clin, 2019, 69(6): 452-467. DOI: 10.3322/caac.21577.
[5]
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
ZHENG R S, CHEN R, HAN B F, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[6]
LIU X M, JIANG H O. The global, regional, and national prostate cancer burden and trends from 1990 to 2021, results from the global burden of disease study 2021[J/OL]. Front Public Health, 2025, 13: 1553747 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/40469596/. DOI: 10.3389/fpubh.2025.1553747.
[7]
WANG B, LIU Z, YANG L, et al. Advances in the treatment of metastatic prostate cancer in China[J]. Cancer Biol Med, 2025, 22(5): 433–438. DOI: 10.20892/j.issn.2095-3941.2025.0065.
[8]
MCNEAL J E, REDWINE E A, FREIHA F S, et al. Zonal distribution of prostatic adenocarcinoma[J]. Am J Surg Pathol, 1988, 12(12): 897-906. DOI: 10.1097/00000478-198812000-00001.
[9]
WIBMER A, HRICAK H, GONDO T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different gleason scores[J]. Eur Radiol, 2015, 25(10): 2840-2850. DOI: 10.1007/s00330-015-3701-8.
[10]
ALI A M, DU FEU A, OLIVEIRA P, et al. Prostate zones and cancer: lost in transition [J]. Nat Rev Urol, 2022, 19(2): 101-115. DOI: 10.1038/s41585-021-00524-7.
[11]
ALI A M, ELUMALAI T, VENKATESULU B, et al. Tale of two zones: investigating the clinical outcomes and research gaps in peripheral and transition zone prostate cancer through a systematic review and meta-analysis[J/OL]. BMJ Oncol, 2024, 3(1): e000193 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/39886173/. DOI: 10.1136/bmjonc-2023-000193.
[12]
PATEL P, NALLANDHIGHAL S, SCOVILLE D, et al. Spatial transcriptomic profiling to characterize the nature of peripheral- versus transition-zone prostate cancer[J]. Eur Urol Focus, 2025, 11(2): 226-234. DOI: 10.1016/j.euf.2024.11.009.
[13]
ALANEZI S T, SULLIVAN F, KLEEFELD C, et al. Quantifying tumor heterogeneity from multiparametric magnetic resonance imaging of prostate using texture analysis[J/OL]. Cancers (Basel), 2022, 14(7): 1631 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/35406403/. DOI: 10.3390/cancers14071631.
[14]
TETEREVA A, KNODT A R, MELZER T R, et al. Improving predictability, reliability, and generalizability of brain-wide associations for cognitive abilities via multimodal stacking[J/OL]. PNAS Nexus, 2025, 4(6): pgaf175 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/40575708/. DOI: 10.1093/pnasnexus/pgaf175.
[15]
NG B, TAI C E A, ZENG E Z, et al. Enhancing trust in clinically significant prostate cancer prediction with multiple magnetic resonance imaging modalities[J/OL]. arXiv, 2024 [2025-06-16]. https://arxiv.org/pdf/2411.04662. DOI: 10.48550/arxiv.2411.04662.
[16]
肖遵健, 任静, 韩晔, 等. 不同解剖分区前列腺癌的影像与病理比较[J]. 实用放射学杂志, 2022(10): 1647-1650. DOI: 10.3969/j.issn.1002-1671.2022.10.020.
XIAO Z J, REN J, HAN Y, et al. Comparative of imaging and pathology characters of prostate cancer in different anatomical zones[J]. J Pract Radiol, 2022(10): 1647-1650. DOI: 10.3969/j.issn.1002-1671.2022.10.020.
[17]
HAN Y, YUAN L, ZHANG J L, et al. Bi-parameter MRI could quantitatively assess the zonal heterogeneity of prostate cancer[J/OL]. Clin Genitourin Cancer, 2024, 22(5): 102135 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/38917763/. DOI: 10.1016/j.clgc.2024.102135.
[18]
袁蕾, 李延静, 宦怡, 等. 生境成像在肿瘤中的应用进展[J]. 国际医学放射学杂志, 2023, 46(6): 721-724. DOI: 10.19300/j.2023.z20836.
YUAN L, LI Y J, HUAN Y, et al. Application advances of tumor habitat imaging[J]. Int J Med Radiol, 2023, 46(6): 721-724. DOI: 10.19300/j.2023.z20836.
[19]
NAPEL S, MU W, JARDIM-PERASSI B V, et al. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats[J]. Cancer, 2018, 124(24): 4633-4649. DOI: 10.1002/cncr.31630.
[20]
TOLKACH Y, KRISTIANSEN G. The heterogeneity of prostate cancer: a practical approach[J]. Pathobiology, 2018, 85(1/2): 108-116. DOI: 10.1159/000477852.
[21]
VAN DER WALT S, SCHÖNBERGER J L, NUNEZ-IGLESIAS J, et al. Scikit-image: image processing in Python[J/OL]. PeerJ, 2014, 2: e453 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/25024921/. DOI: 10.7717/peerj.453.
[22]
AVANTS B B, TUSTISON N J, SONG G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration[J]. Neuroimage, 2011, 54(3): 2033-2044. DOI: 10.1016/j.neuroimage.2010.09.025.
[23]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[24]
PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. DOI: 10.48550/arXiv.1201.0490.
[25]
VAN LEENDERS G J L H, VAN DER KWAST T H, GRIGNON D J, et al. The 2019 international society of urological pathology (ISUP) consensus conference on grading of prostatic carcinoma[J/OL]. Am J Surg Pathol, 2020, 44(8): e87-e99 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/32459716/. DOI: 10.1097/PAS.0000000000001497.
[26]
HACKMAN G, TAARI K, TAMMELA T L, et al. Randomised trial of adjuvant radiotherapy following radical prostatectomy versus radical prostatectomy alone in prostate cancer patients with positive margins or extracapsular extension[J]. Eur Urol, 2019, 76(5): 586-595. DOI: 10.1016/j.eururo.2019.07.001.
[27]
杨澳, 周鹏. 功能MRI定量评估局部进展期直肠癌新辅助放化疗后病理完全缓解研究进展[J]. 磁共振成像, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
YANG A, ZHOU P. Progress of quantitative prediction of the pathologic complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer with functional MRI[J]. Chin J Magn Reson Imag, 2024, 15(7): 210-215. DOI: 10.12015/issn.1674-8034.2024.07.035.
[28]
LUCARELLI N M, VILLANOVA I, MAGGIALETTI N, et al. Quantitative ADC: an additional tool in the evaluation of prostate cancer [J/OL]. J Pers Med, 2023, 13(9): 1378 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/37763146/. DOI: 10.3390/jpm13091378.
[29]
NEMATOLLAHI H, MARACY M R, MOSLEHI M, et al. Comparison of diagnostic performance between diffusion models parameters and mono-exponential apparent diffusion coefficient in patients with prostate cancer: A systematic review and meta-analysis[J/OL]. J Res Med Sci, 2024, 29: 43 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/40224195/. DOI: 10.4103/jrms.jrms_359_23.
[30]
TAVAKOLI A A, HIELSCHER T, BADURA P, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer[J]. Radiology, 2023, 306(1): 186-199. DOI: 10.1148/radiol.212692.
[31]
UEDA Y, TAKAHASHI S, OHNO N, et al. Triexponential function analysis of diffusion-weighted MRI for diagnosing prostate cancer[J]. J Magn Reson Imaging, 2016, 43(1): 138-148. DOI: 10.1002/jmri.24974.
[32]
BALAHA H M, AYYAD S M, ALKSAS A, et al. Precise prostate cancer assessment using IVIM-based parametric estimation of blood diffusion from DW-MRI[J/OL]. Bioengineering (Basel), 2024, 11(6): 629 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/38927865/. DOI: 10.3390/bioengineering11060629.
[33]
LAWRENCE E M, WARREN A Y, PRIEST A N, et al. Evaluating prostate cancer using fractional tissue composition of radical prostatectomy specimens and pre-operative diffusional kurtosis magnetic resonance imaging[J/OL]. PLoS One, 2016, 11(7): e0159652 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/27467064/. DOI: 10.1371/journal.pone.0159652.
[34]
ZHOU K P, HUANG H B, BU C, et al. Sub-differentiation of PI-RADS 3 lesions in TZ by advanced diffusion-weighted imaging to aid the biopsy decision process[J/OL]. Front Oncol, 2023, 13: 1092073 [2025-06-16]. https://pubmed.ncbi.nlm.nih.gov/36845749/. DOI: 10.3389/fonc.2023.1092073.
[35]
余加懿, 郭大静, 罗银灯, 等. 磁共振动态对比增强直方图分析在前列腺癌鉴别诊断中的价值[J]. 第三军医大学学报, 2017, 39(22): 2206-2213. DOI: 10.16016/j.1000-5404.201708017.
YU J Y, GUO D J, LUO Y D, et al. Value of histogram analysis of quantitative parameters in dynamic contrastenhanced magnetic resonance imaging in diagnosis of prostate cancer[J]. J Third Mil Med Univ, 2017, 39(22): 2206-2213. DOI: 10.16016/j.1000-5404.201708017.

上一篇 基于磁共振细胞微观结构参数预测直肠癌淋巴结转移及癌结节的应用研究
下一篇 基于Bp-MRI的PI-RADS v2.1联合PSAD风险分层诊断tPSA 4~20 ng/mL临床显著性前列腺癌的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2