分享:
分享到微信朋友圈
X
综述
无创弹性成像技术在代谢功能障碍相关脂肪性肝病诊断与评估中的研究进展
苗淼 赵建

本文引用格式:苗淼, 赵建. 无创弹性成像技术在代谢功能障碍相关脂肪性肝病诊断与评估中的研究进展[J]. 磁共振成像, 2025, 16(11): 222-227. DOI:10.12015/issn.1674-8034.2025.11.034.


[摘要] 近年来,代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD)患病率不断上升,已成为终末期肝病的主要病因。早期检测和准确分期肝纤维化对于预防MASLD进展及其并发症至关重要。然而,作为金标准的肝脏活检存在显著局限性,这使得非侵入性检测技术成为重要的替代手段。现有综述多仅聚焦于单一成像模态,或虽涵盖多模态成像技术但未涉及人工智能应用,且多数基于旧的非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)命名体系,难以全面反映当前研究进展。本文基于MASLD命名体系与诊疗指南,系统综述了磁共振弹性成像(magnetic resonance elastography, MRE)、剪切波弹性成像(shear-wave elastography, SWE)和振动控制瞬时弹性成像(vibration-controlled transient elastography, VCTE)在MASLD中的最新应用进展,并探讨了人工智能技术在提升诊断效率方面的潜力,旨在提高肝纤维化的早期诊断能力,为MASLD的诊疗提供更精确的影像学支持。
[Abstract] In recent years, the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been steadily increasing, making it a leading cause of end-stage liver disease. Early detection and accurate staging of liver fibrosis are crucial for preventing MASLD progression and its complications. However, liver biopsy, the current gold standard, has significant limitations, highlighting the importance of non-invasive diagnostic techniques as essential alternatives. Existing reviews often focus solely on a single imaging modality or, while covering multiple imaging techniques, fail to include artificial intelligence applications. Moreover, most are based on the outdated NAFLD nomenclature, making it difficult to comprehensively reflect current research progress. Based on the MASLD nomenclature and clinical guidelines, this article systematically reviews the latest advances in magnetic resonance elastography (MRE), shear-wave elastography (SWE), and vibration-controlled transient elastography (VCTE) for MASLD assessment, while also exploring the potential of artificial intelligence in improving diagnostic efficiency. The aim is to enhance early detection of liver fibrosis and provide more precise imaging support for MASLD diagnosis and treatment.
[关键词] 磁共振弹性成像;代谢功能障碍相关脂肪性肝病;肝纤维化;无创诊断;人工智能
[Keywords] magnetic resonance elastography;metabolic dysfunction-associated steatotic liver disease;liver fibrosis;non-invasive tests;artificial intelligence

苗淼    赵建 *  

河北医科大学第三医院医学影像科,石家庄 050051

通信作者:赵建,E-mail:37400408@hebmu.edu.cn

作者贡献声明:赵建完成论文设计,对稿件重要内容进行了修改,获得了河北省自然科学基金面上项目的资助;苗淼起草和撰写稿件,获取、分析和解释本研究的文献;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省自然科学基金面上项目 H2024206013
收稿日期:2025-07-04
接受日期:2025-11-10
中图分类号:R445.2  R575.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.11.034
本文引用格式:苗淼, 赵建. 无创弹性成像技术在代谢功能障碍相关脂肪性肝病诊断与评估中的研究进展[J]. 磁共振成像, 2025, 16(11): 222-227. DOI:10.12015/issn.1674-8034.2025.11.034.

0 引言

       代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD),是一种以肝脏脂肪过度沉积为特征的代谢性肝病,以前被称为非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD),是全球范围内一个重大的公共卫生问题[1]。过去三十年中,MASLD的发病率和患病率呈现全球性激增,目前影响超过30%的成年人,已成为终末期肝病的主要病因[2, 3, 4]。值得注意的是,MASLD并非单一的肝脏疾病,而是一个包含不同进展阶段的连续疾病谱:从代谢功能障碍相关脂肪肝到代谢功能障碍相关脂肪性肝炎,最终可能发展为肝硬化甚至肝细胞癌[5]

       早期检测和准确分期肝纤维化对于预防MASLD的进展及其并发症至关重要[6, 7]。目前肝脏活检仍是诊断MASLD的金标准,但由于活检的侵入性、观察者依赖性以及采样误差的可能性等,限制了其广泛应用 [8, 9]。基于此,临床亟需一种非侵入性且准确的方法用于风险分层和对MASLD患者进行治疗和监测。近年来,非侵入性检测凭借其可重复性高、风险低且与组织学结果高度关联的优势已成为替代肝脏活检的重要技术手段,并已被包括美国肝病研究协会和欧洲肝病研究协会在内的科学组织推荐使用[10, 11, 12]。其中,肝脏弹性成像技术如剪切波弹性成像(shear-wave elastography, SWE)、振动控制瞬时弹性成像(vibration-controlled transient elastography, VCTE)和磁共振弹性成像(magnetic resonance elastography, MRE)在评估肝纤维化方面展现出显著优势[9]。然而,现有综述或仅聚焦于单一成像模态(如仅超声弹性成像或仅MRE)[13, 14],或虽涵盖多模态技术却未能深入探讨人工智能在纤维化评估中的潜在价值[6],且随着MASLD命名和诊疗指南的更新,尚缺乏全面总结最新研究成果的综述[15]。因此本综述主要介绍了MASLD的发病机制、诊断标准以及SWE、VCTE和MRE的技术原理并总结了这三种技术评估MASLD患者肝纤维化的最新进展,并展望人工智能在纤维化评估中的潜在价值,为临床实践和研究方向提供新的研究思路。

1 MASLD发病机制简述

       MASLD的发病机制是一个多阶段、多因素参与的动态过程,其本质可概括为遗传易感性、代谢、环境因素共同作用下的“多重打击”模型[16]

       在遗传易感基础上(如PNPLA3、TM6SF2等基因变异),长期高热量饮食和久坐生活方式导致脂肪在肝脏异常堆积,若合并胰岛素抵抗,则进一步加剧脂肪合成并抑制分解,形成单纯的脂肪肝[17, 18]。随着病情进展,过量脂肪产生“毒性效应”,游离脂肪酸在肝细胞内堆积,导致线粒体功能紊乱和氧化应激增加。这些有害物质不仅直接损伤肝细胞,还会激活Kupffer细胞等免疫细胞,释放促炎因子,此时疾病进入脂肪性肝炎阶段[19, 20, 21]。在慢性炎症的持续刺激下,肝星状细胞被激活并沉积瘢痕组织,推动肝纤维化和肝硬化的发生。

       值得注意的是,不同患者的疾病进程存在显著差异。约30%的单纯脂肪肝患者会发展为肝炎,其中仅部分进展至严重纤维化[22]

2 MASLD的诊断方法及标准

       MASLD的临床诊断标准为在排除其他明确病因的情况下,影像学或组织学确认肝脏脂肪变性,并合并至少一项心脏代谢风险因素:(1)身体质量指数≥23 kg/m2(亚洲裔)或男性腰围≥90 cm、女性腰围≥80 cm;(2)空腹血糖≥5.6 mmol/L或餐后2小时血糖≥7.8 mmol/L或糖化血红蛋白≥5.7%或诊断2型糖尿病或接受2型糖尿病治疗;(3)血压≥130/85 mmHg(1 mmHg=0.133 kPa)或接受降压药物治疗;(4)甘油三酯≥1.70 mmol/L或接受降脂治疗;(5)高密度脂蛋白胆固醇≤1.0 mmol/L(男性)或≤1.3 mmol/L(女性)或降脂治疗[10]

       目前临床常用的肝纤维化评估方法主要基于血液评分、影像学以及肝脏活检。由于肝活检的侵入性及局限性,其应用范围有限。相比之下,MRE在现有非侵入性成像方法中整体表现最佳,尤其适用于早期肝纤维化阶段评估,并能预测肝硬化患者的失代偿和死亡风险[10, 23]

3 检查方法

3.1 SWE

3.1.1 SWE定义及原理

       SWE是一种基于超声的无创技术,通过在肝组织内产生短暂的力学激发,即声辐射力脉冲(acoustic radiation force impulse, ARFI),诱发剪切波并测量其传播速度或频率响应,从而间接评估组织刚度,为肝纤维化的无创评估提供了重要手段[24]。其主要技术包括瞬时弹性成像(transient elastography, TE)、点SWE(point SWE, pSWE),以及二维/三维SWE(two-dimensional/three-dimensional SWE, 2D-/3D-SWE)。

       TE通过探头内置的机械振动装置在体表产生低频纵波,激发剪切波在肝脏中传播,并用超声A模式信号测量其传播速度,再计算杨氏模量,反映肝组织硬度。pSWE技术基于ARFI原理,在肝脏实质内局部产生剪切波并测量其传播速度。与TE不同,pSWE可在常规超声平台上结合B模式成像进行定位。在诊断肝硬化方面与VCTE具有相似的准确性,且失败率较低。2D-SWE通过多点激发形成剪切波锥,并在二维平面内实时追踪剪切波传播,生成彩色弹性图谱。该方法能在B模式图像上叠加组织硬度信息,提供更直观、全面的肝脏硬度分布[24, 25]。该技术尤其适用于慢性肝病(如病毒性肝炎、NAFLD)的纤维化分期和病情监测,具有较高的可重复性和准确性[13, 26]

3.1.2 肝纤维化的诊断

       针对MASLD患者的不同阶段,SWE均展现出卓越诊断价值。JIANG等[27]研究证实其在评估早期脂肪变性方面显著优于常规超声。研究表明,pSWE对显著纤维化(≥F2)的敏感度为80.2%、特异度达85.2%,对晚期纤维化(≥F3)的诊断性能优异[25]。OH等[28]研究表明2D-SWE在诊断显著纤维化(≥F2)时受试者工作特征曲线下面积(area under the curve, AUC)达0.851,与VCTE相当;而在进展期纤维化(≥F3)的检测中表现更优。此外,其推荐的临界值(F2:5.83 kPa;F3:7.55 kPa;F4:9.58 kPa)和优秀的观察者间可重复性,使其成为临床监测慢性肝病的可靠工具。最近的一项荟萃分析显示,2D-SWE在各种纤维化阶段的诊断性能良好至最佳,≥F2、≥F3和肝硬化的AUC分别为0.855、0.928和0.917,建议的截断值为7.1 kPa(显著纤维化≥F2)、9.2 kPa(晚期纤维化≥F3)和13.0 kPa(肝硬化F4)[25]

       尽管SWE技术在肝纤维化评估中展现出良好诊断性能,但其测量结果可能受急性肝炎、肝脏充血、肥胖等因素影响,且不同设备间测量值缺乏标准化,这些局限性仍需通过进一步研究加以改进[29]

3.2 VCTE

3.2.1 VCTE定义及原理

       VCTE作为一种非侵入性影像检查方法,其主要用于肝脏硬度的定量评估。VCTE通过探头向肝脏发射低频机械振动,在肝实质中形成纵向传播的剪切波,并利用超声波追踪其传播速度。依据胡克定律,可将测得的波速换算为以kPa为单位的肝脏硬度测量值(liver stiffness measurement, LSM)。正常LSM约为5~5.5 kPa,LSM升高提示纤维化加重[30]。VCTE能够有效反映肝脏纤维化程度,为慢性肝病患者的诊断提供重要依据。特别是在MASLD患者的临床管理中,VCTE一方面通过LSM准确识别晚期纤维化,另一方面借助受控衰减参数(controlled attenuation parameter, CAP)实现对脂肪变性的定量评估。这种双重检测使其成为MASLD患者诊疗过程中的重要工具[6, 31]

3.2.2 肝纤维化的诊断

       大量研究证实,VCTE在慢性肝病特别是NAFLD的纤维化分期中展现出可靠的诊断性能,其与肝活检的汇总AUC达0.83~0.94,尤其在区分晚期纤维化和肝硬化阶段具有更高的诊断准确性[31, 32, 33]

       一项大型系统性综述与荟萃分析进一步明确VCTE在7.1~7.9 kPa区间内具有最优诊断性能,能高精度识别NAFLD患者的进展性肝纤维化[32]。临床上常将VCTE与血清学评分(如FIB-4)联合采用作为“两步筛查”策略,以提高特异性并减少不必要的活检[34]。基于VCTE的评分或LSM水平可用于长期风险预测[35]

       在临床实践中,VCTE的诊断性能受多种因素影响。研究显示,身体质量指数升高会导致传统M探头测量准确性的下降,这一局限性通过肥胖专用XL探头的开发得到显著改善,双探头联合使用使VCTE的可靠性得到了提高[31, 33, 36]。值得注意的是,有研究表明VCTE与病理结果的相关性存在性别差异,这可能是由于女性NAFLD患者的肋间隙通常比男性窄,VCTE和组织学分期之间的不一致可能在女性中更高[36]。尽管VCTE在排除肝硬化方面表现突出(阴性预测值>0.96),但其阳性预测值相对较低,提示需结合其他指标避免过度诊断[31]

       相较于2D-SWE,VCTE在严重肥胖人群中的诊断优势显著。但需注意,VCTE存在无法精确定位感兴趣区域的固有缺陷,且目前尚未建立统一的肝硬化LSM阈值[31, 33]。为提升诊断精度,LIN等[37]推导验证的Agile评分系统通过整合LSM与血小板计数、转氨酶、糖尿病状态等临床参数,显著提高了晚期纤维化和肝硬化的诊断准确性,初步研究还提示其具有预测肝细胞癌和门静脉高压的预后价值。

3.3 MRE

3.3.1 MRE定义及原理

       MRE是一种基于MRI的定量弹性成像技术,通过在体表/腹壁施加低频机械振动激发剪切波,用相位对比序列将组织随振动产生的位移(或其导数)编码到MRI相位中,随后对所得时空波场进行谱/逆解处理以生成组织力学参数图,常用单位为kPa。MRE可看作是一种三维“影像化触诊”,对肝纤维化的分期和定量评估在众多非侵入性方法中显示出较高的准确性与可重复性[38, 39]

       MRE的核心技术步骤包括以下三个部分:(1)机械波的生成及其传递到相关身体部位,通过外部设备在体内产生机械波(通常是剪切波),并将其传递到目标组织;(2)用于数据采集的MR脉冲序列,使用MRI的相位对比序列,将组织在机械波作用下的位移编码到MRI信号的相位中,从而获取位移场的数据;(3)从位移数据中恢复机械参数的反演算法,通过反演算法,将采集到的位移数据转换为组织的力学参数(如剪切模量G*、储能模量G′、损耗模量G″、剪切波速SWS、损耗角φ等),并生成定量刚度图[39]

3.3.2 MRE诊断优势

       与其他技术相比,MRE在评估肝纤维化方面具有更高的诊断准确性、更优的时间效率以及更稳定的检测性能。REN等[40]通过对比MRE和动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)在NAFLD患者中的应用,发现MRE在诊断肝纤维化时具有更高的效率和更短的操作时间,而DCE-MRI在早期纤维化诊断中表现优异,可作为无MRE设备时的替代技术。IMAJO等[36]的研究发现,MRE在诊断4期肝纤维化和操作者重复性方面显著优于VCTE和2D-SWE。JANG等[41]通过系统性荟萃分析,比较了扩散加权成像(diffusion-weighted imaging, DWI)和MRE在肝纤维化诊断中的表现,得出MRE在诊断纤维化分期中的准确性显著优于DWI。

3.3.3 肝纤维化的诊断

       一项包含14项研究、1484名患者的荟萃分析显示,MRE是评估NAFLD患者肝纤维化的可靠工具。当MRE临界值为3.62~3.80 kPa时,诊断晚期肝纤维化的准确性较高,各阶段(≥F1、≥F2、≥F3、F4)的AUC分别为0.89、0.92、0.89和0.94,表现出良好的诊断性能[32]。LIANG等[42]的系统评价显示,MRE在NAFLD患者肝纤维化分期诊断中具有高准确性,F≥1至F≥4阶段的汇总AUC分别为0.89、0.93、0.93和0.95,尤其在早期肝硬化(F≥4)阶段表现最佳,为NAFLD的无创诊断和临床治疗提供了重要依据。

       多项研究[43, 44, 45]表明MRE在评估早期纤维化阶段时易受AST升高和肝脏炎症的干扰,可能导致纤维化程度的高估,尤其在炎症活跃的患者中诊断准确性受限,需结合临床指标或肝活检进行综合判断。此外,现有研究多为小样本单中心设计,对晚期纤维化亚组分析不足,结论仍需通过大规模多中心研究进一步验证,以提高MRE在临床实践中的可靠性。

3.3.4 MRE预测慢性肝病进展和风险分层

       多项研究[46, 47, 48, 49]表明MRE测量的LSM及其变化(ΔLSM)能够独立预测慢性肝病进展及风险分层,为早期筛查和临床管理提供了重要依据。GIDENER等[46]通过对1269名慢性肝病患者进行10年回顾性研究,发现MRE测量的LSM可独立预测肝硬化、失代偿及肝癌的发生,尤其在肝硬化前阶段具有较高预测价值,为慢性肝病早期筛查和风险分层提供依据。KOBAYASHI等[47]对405名MASLD患者进行多次MRE检查,发现初始LSM及ΔLSM可显著预测肝硬化、肝癌等肝脏相关事件风险,尤其是ΔLSM≥19%的患者,即使初始LSM较低也属于高风险人群,为MASLD患者的风险分层和临床管理提供了重要依据。HAN等[48]通过多中心回顾性研究,对320名NAFLD患者进行MRE测量,发现LSM≥6.48 kPa与失代偿性肝硬化和死亡风险显著相关,并确定MRE区分肝硬化与非肝硬化的阈值为3.99 kPa,表明MRE可作为预测NAFLD患者肝脏相关事件和预后的无创工具。GIDENER等[49]对829名NAFLD患者进行纵向研究,发现MRE不仅能准确评估肝纤维化,还可独立预测非肝硬化患者未来肝硬化的发展及肝硬化患者失代偿或死亡风险,为个体化疾病监测和临床管理提供依据。

       目前关于MRE测定的肝脏硬度与心血管事件及肝外恶性肿瘤的关联尚存在争议,且现有研究关于肝纤维化与心血管事件关联的结论不一致。一些研究表明肝纤维化或MRE测得的硬度升高与心血管风险显著相关[50, 51, 52];然而,也有研究未能发现这种关系,HIGUCHI等[53]在纵向随访中观察到,虽然MRE可预测肝脏相关结局,但与心血管事件之间未见显著关联。此外,虽然慢性肝病患者肝外恶性肿瘤风险确有增加,但MRE测定的肝脏硬度与肝外肿瘤风险的具体关联尚缺乏充分证据。因此,MRE在心血管事件和肝外肿瘤风险评估中的作用仍需更多研究验证,未来需要进一步探索MRE在心血管风险分层以及不同病因所致肝外肿瘤中的潜在临床应用价值[53]

3.3.5 MRE局限性与进展

       尽管MRE在肝纤维化评估中具有较高准确性,但仍存在一些技术局限。金属植入物是绝对禁忌证,肝铁过载、重度脂肪变性和肥胖会导致信号减弱或检查失败,同时该技术对驱动器放置、图像重建和患者配合要求较高[54, 55, 56]。研究显示,在轻度铁过载患者中MRE表现良好,但在铁含量较高时失败率显著增加,不过,在显著纤维化及肝硬化的诊断中,MRE在铁过载与非铁过载人群间表现相当[57]

       近年来,MRE技术不断发展,其中三维MRE(three-dimensional MRE, 3D-MRE)作为一种新兴技术,可在三个方向获取波传播信息,具备更大体积覆盖并可提供G′、G″、阻尼比等额外参数[58]。快速自由呼吸MRE已证实与传统屏气技术高度一致,为难以配合屏气的患者提供了一个可靠且舒适的替代诊断方案[59]。基于DWI的虚拟MRE(virtual magnetic resonance elastography, VMRE)无需外部激励,具有成本和可及性优势,但其分期准确性仍有限,尚不具备替代价值[60]。总体而言,MRE虽已是公认的肝纤维化无创评估工具,但其技术改良和标准化仍是未来发展方向。

3.4 人工智能

       近年来,人工智能技术在肝纤维化无创诊断领域取得显著进展。基于多模态影像的放射组学与深度学习模型在肝纤维化诊断中展现出优异的性能,为临床实践提供了新的技术支撑。

       多项研究表明,基于超声弹性成像的人工智能模型在晚期肝纤维化(≥F3)及肝硬化(F4)诊断中表现优异,显著优于传统方法[61, 62, 63],但对≥F2分期的诊断敏感性仍待提升[64]

       OZKAYA等[65]利用双阶段神经网络(SqueezeNet质量控制与U-Net分割模型)实现了肝脏弹性成像的全自动处理,在保证诊断精度的同时显著提升了效率。类似地,CUNHA等[66]在大规模临床数据中证实,卷积神经网络自动化分析与传统手动感兴趣区测量在肝硬度评估上高度一致,提示自动化方法有望替代烦琐的手工操作。JAITNER等[67]通过对比多种U-Net模型发现,利用MRE幅度图像可实现肝脏和脾脏的完全自动分割,且结果与人工分割高度一致,其中2D U-Net表现最优。与此同时,NIEVES-VAZQUEZ等[68]在MRE质量控制中比较多种深度学习架构,发现SqueezeNet及其集成方法准确率最高,进一步提升了MRE图像分析的自动化水平。此外,自动化与放射组学方法的结合也展现出潜力。SIM等[69]在NAFLD患者中发现,基于MRE放射组学的机器学习模型在区分不同纤维化分级时与传统MRE测量表现相当,为无创评估肝纤维化提供了新的思路。

       这些技术突破不仅实现了与病理评估的高度一致性,更通过自动化分析克服了传统方法的主观性和耗时缺陷,为临床提供了高效、标准化的肝纤维化评估工具。但是部分研究肝纤维化分期的病例分布不均,可能导致模型对少数分期的预测性能下降[66, 70, 71]。此外,现有研究多使用单一系统如3 T MRI或1.5 T MRI系统完成,限制了研究结果的普适性[66, 70]。未来仍需更大规模研究进一步验证和优化这些模型的临床适用性。

4 总结与展望

       综上所述,SWE、VCTE和MRE等无创影像技术在MASLD的诊断和分期中各具优势,SWE技术在纤维化分期中表现出优异的可重复性,VCTE通过LSM和CAP参数实现纤维化和脂肪变性的同步评估,而MRE凭借全肝覆盖和高准确性成为纤维化评估的金标准。这些技术为临床提供了重要的无创诊断工具,但仍需进一步优化参数标准化和临界值设定。未来研究应致力于多模态技术的整合应用,结合人工智能分析,建立更完善的MASLD诊疗体系,最终实现精准化、个体化的疾病管理,减少对肝活检的依赖。

[1]
RINELLA M E, LAZARUS J V, RATZIU V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J]. Hepatology, 2023, 78(6): 1966-1986. DOI: 10.1097/HEP.0000000000000520.
[2]
CHEW N W S, NG C H, TAN D J H, et al. The global burden of metabolic disease: Data from 2000 to 2019[J/OL]. Cell Metab, 2023, 35(3): 414-428.e3 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/36889281/. DOI: 10.1016/j.cmet.2023.02.003.
[3]
YOUNOSSI Z M, GOLABI P, PAIK J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. DOI: 10.1097/HEP.0000000000000004.
[4]
LE M H, LE D M, BAEZ T C, et al. Global incidence of non-alcoholic fatty liver disease: A systematic review and meta-analysis of 63 studies and 1, 201, 807 persons[J]. J Hepatol, 2023, 79(2): 287-295. DOI: 10.1016/j.jhep.2023.03.040.
[5]
ZHANG J, WANG H W, WANG Q B, et al. EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease[J]. Mamm Genome, 2025, 36(1): 93-105. DOI: 10.1007/s00335-024-10078-9.
[6]
DAWOD S, BROWN K. Non-invasive testing in metabolic dysfunction-associated steatotic liver disease[J]. Front Med (Lausanne), 2024, 11: 1499013 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/39606621/. DOI: 10.3389/fmed.2024.1499013.
[7]
KOUVARI M, VALENZUELA-VALLEJO L, GUATIBONZA-GARCIA V, et al. Liver biopsy-based validation, confirmation and comparison of the diagnostic performance of established and novel non-invasive steatotic liver disease indexes: Results from a large multi-center study[J/OL]. Metabolism, 2023, 147: 155666 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/37527759/. DOI: 10.1016/j.metabol.2023.155666.
[8]
TINCOPA M A, LOOMBA R. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis[J]. Lancet Gastroenterol Hepatol, 2023, 8(7): 660-670. DOI: 10.1016/S2468-1253(23)00066-3.
[9]
HUDSON D, AFZAAL T, BUALBANAT H, et al. Modernizing metabolic dysfunction-associated steatotic liver disease diagnostics: the progressive shift from liver biopsy to noninvasive techniques[J/OL]. Therap Adv Gastroenterol, 2024, 17: 17562848241276334 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/39553445/. DOI: 10.1177/17562848241276334.
[10]
TACKE F, HORN P, WONG V W, et al. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD)[J]. J Hepatol, 2024, 81(3): 492-542. DOI: 10.1016/j.jhep.2024.04.031.
[11]
STERLING R K, PATEL K, DUARTE-ROJO A, et al. AASLD Practice Guideline on blood-based noninvasive liver disease assessment of hepatic fibrosis and steatosis[J]. Hepatology, 2025, 81(1): 321-357. DOI: 10.1097/HEP.0000000000000845.
[12]
STERLING R K, DUARTE-ROJO A, PATEL K, et al. AASLD Practice Guideline on imaging-based noninvasive liver disease assessment of hepatic fibrosis and steatosis[J]. Hepatology, 2025, 81(2): 672-724. DOI: 10.1097/HEP.0000000000000843.
[13]
INDRE M G, LEUCUTA D C, LUPSOR-PLATON M, et al. Diagnostic accuracy of 2D-SWE ultrasound for liver fibrosis assessment in MASLD: a multilevel random effects model meta-analysis[J]. Hepatology, 2025, 82(2): 454-469. DOI: 10.1097/HEP.0000000000001190.
[14]
SCHAAPMAN J J, TUSHUIZEN M E, COENRAAD M J, et al. Multiparametric MRI in patients with nonalcoholic fatty liver disease[J]. J Magn Reson Imaging, 2021, 53(6): 1623-1631. DOI: 10.1002/jmri.27292.
[15]
ABDELHAMEED F, KITE C, LAGOJDA L, et al. Non-invasive scores and serum biomarkers for fatty liver in the era of metabolic dysfunction-associated steatotic liver disease (MASLD): A comprehensive review from NAFLD to MAFLD and MASLD[J]. Curr Obes Rep, 2024, 13(3): 510-531. DOI: 10.1007/s13679-024-00574-z.
[16]
BUZZETTI E, PINZANI M, TSOCHATZIS E A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
[17]
VIDAL-CEVALLOS P, SORROZA-MARTÍNEZ A P, CHÁVEZ-TAPIA N C, et al. The relationship between pathogenesis and possible treatments for the MASLD-cirrhosis spectrum[J/OL]. Int J Mol Sci, 2024, 25(8): 4397 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/38673981/. DOI: 10.3390/ijms25084397.
[18]
BANSAL S K, BANSAL M B. Pathogenesis of MASLD and MASH–role of insulin resistance and lipotoxicity[J]. Aliment Pharmacol Ther, 2024, 59(S1): S10-S22. DOI: 10.1111/apt.17930.
[19]
XU G X, WEI S, YU C, et al. Activation of kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions[J/OL]. Front Cell Dev Biol, 2023, 11: 1199519 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/37261074/. DOI: 10.3389/fcell.2023.1199519.
[20]
HORN P, TACKE F. Metabolic reprogramming in liver fibrosis[J]. Cell Metab, 2024, 36(7): 1439-1455. DOI: 10.1016/j.cmet.2024.05.003.
[21]
CAPUTO V, TARANTINO G, SANTINI S J, et al. The role of epigenetic control of mitochondrial (dys)function in MASLD onset and progression[J/OL]. Nutrients, 2023, 15(22): 4757 [2025-05-05].https://pubmed.ncbi.nlm.nih.gov/38004151/. DOI: 10.3390/nu15224757.
[22]
PORTINCASA P, KHALIL M, MAHDI L, et al. Metabolic dysfunction-associated steatotic liver disease: from pathogenesis to current therapeutic options[J/OL]. Int J Mol Sci, 2024, 25(11): 5640 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/38891828/. DOI: 10.3390/ijms25115640.
[23]
KAYLAN K B, PAUL S. NAFLD No more: a review of current guidelines in the diagnosis and evaluation of metabolic dysfunction-associated steatotic liver disease (MASLD)[J/OL]. Curr Diab Rep, 2024, 25(1): 5 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/39535566/. DOI: 10.1007/s11892-024-01558-y.
[24]
SIGRIST R M S, LIAU J, KAFFAS A EL, et al. Ultrasound elastography: review of techniques and clinical applications[J]. Theranostics, 2017, 7(5): 1303-1329. DOI: 10.7150/thno.18650.
[25]
ZONCAPÈ M, LIGUORI A, TSOCHATZIS E A. Non-invasive testing and risk-stratification in patients with MASLD[J]. Eur J Intern Med, 2024, 122: 11-19. DOI: 10.1016/j.ejim.2024.01.013.
[26]
KOBAYASHI T, NAKATSUKA T, SATO M, et al. Diagnostic performance of two-dimensional shear wave elastography and attenuation imaging for fibrosis and steatosis assessment in chronic liver disease[J]. J Med Ultrason (2001), 2025, 52(1): 95-103. DOI: 10.1007/s10396-024-01473-5.
[27]
JIANG H, QIN C, XU Y M. Feasibility of shear wave elastography for assessing steatosis in early-stage non-alcoholic fatty liver disease[J/OL]. PLoS One, 2025, 20(5): e0324637 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/40440252/. DOI: 10.1371/journal.pone.0324637.
[28]
OH H. A non-invasive test that enables longitudinal monitoring of chronic liver disease: VCTE versus 2D-SWE[J]. Korean J Intern Med, 2022, 37(2): 281-282. DOI: 10.3904/kjim.2022.065.
[29]
BIRIS A I, KARAMATZANIS I, BIRI D, et al. Non-invasive ultrasound diagnostic techniques for steatotic liver disease and focal liver lesions: 2D, Dopplercolour, 3D, two-dimensional shear wave elastography (2D-SWE), and ultrasound-guided attenuation parameter (UGAP)[J/OL]. Cureus, 2024, 16(10): e72087 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/39440161/. DOI: 10.7759/cureus.72087.
[30]
KIM M N. Noninvasive imaging test to assess liver fibrosis: vibration-controlled transient elastography[J]. Korean J Gastroenterol, 2024, 84(5): 201-205. DOI: 10.4166/kjg.2024.120.
[31]
SHEN M, LEE A N, LEFKOWITCH J H, et al. Vibration-controlled transient elastography for assessment of liver fibrosis at a USA academic medical center[J]. J Clin Transl Hepatol, 2022, 10(2): 197-206. DOI: 10.14218/JCTH.2021.00188.
[32]
CHON Y E, JIN Y J, AN J, et al. Optimal cut-offs of vibration-controlled transient elastography and magnetic resonance elastography in diagnosing advanced liver fibrosis in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Clin Mol Hepatol, 2024, 30(Suppl): S117-S133. DOI: 10.3350/cmh.2024.0392.
[33]
SHARPTON S R, TAMAKI N, BETTENCOURT R, et al. Diagnostic accuracy of two-dimensional shear wave elastography and transient elastography in nonalcoholic fatty liver disease[J/OL]. Therap Adv Gastroenterol, 2021, 14: 17562848211050436 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/34646360/. DOI: 10.1177/17562848211050436.
[34]
LEE H W, LEE J S, KIM M N, et al. Risk stratification by noninvasive tests in patients with metabolic dysfunction-associated steatotic liver disease[J]. Clin Mol Hepatol, 2025, 31(3): 1018-1031. DOI: 10.3350/cmh.2024.1183.
[35]
GAWRIEH S, VILAR-GOMEZ E, WILSON L A, et al. Increases and decreases in liver stiffness measurement are independently associated with the risk of liver-related events in NAFLD[J]. J Hepatol, 2024, 81(4): 600-608. DOI: 10.1016/j.jhep.2024.05.008.
[36]
IMAJO K, HONDA Y, KOBAYASHI T, et al. Direct comparison of US and MR elastography for staging liver fibrosis in patients with nonalcoholic fatty liver disease[J/OL]. Clin Gastroenterol Hepatol, 2022, 20(4): 908-917.e11 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/33340780/. DOI: 10.1016/j.cgh.2020.12.016.
[37]
LIN H P, LEE H W, YIP T C, et al. Vibration-controlled transient elastography scores to predict liver-related events in steatotic liver disease[J]. JAMA, 2024, 331(15): 1287-1297. DOI: 10.1001/jama.2024.1447.
[38]
MOURA CUNHA G, FAN B, NAVIN P J, et al. Interpretation, reporting, and clinical applications of liver MR elastography[J/OL]. Radiology, 2024, 310(3): e231220 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/38470236/. DOI: 10.1148/radiol.231220.
[39]
MEYER T, CASTELEIN J, SCHATTENFROH J, et al. Magnetic resonance elastography in a nutshell: tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation[J]. Prog Nucl Magn Reson Spectrosc, 2024, 144/145: 1-14. DOI: 10.1016/j.pnmrs.2024.05.002.
[40]
REN H, YANG D W, XU H, et al. The staging of nonalcoholic fatty liver disease fibrosis: A comparative study of MR elastography and the quantitative DCE-MRI exchange model[J/OL]. Heliyon, 2024, 10(2): e24558 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/38312594/. DOI: 10.1016/j.heliyon.2024.e24558.
[41]
JANG W, JO S, SONG J S, et al. Comparison of diffusion-weighted imaging and MR elastography in staging liver fibrosis: a meta-analysis[J]. Abdom Radiol (NY), 2021, 46(8): 3889-3907. DOI: 10.1007/s00261-021-03055-2.
[42]
LIANG Y Z, LI D W. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy[J/OL]. BMC Gastroenterol, 2020, 20(1): 89 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/32252641/. DOI: 10.1186/s12876-020-01234-x.
[43]
WEI X D, QI S, WEI X H, et al. Inflammation activity affects liver stiffness measurement by magnetic resonance elastography in MASLD[J]. Dig Liver Dis, 2024, 56(10): 1715-1720. DOI: 10.1016/j.dld.2024.04.031.
[44]
LIANG J X, AMPUERO J, NIU H, et al. An individual patient data meta-analysis to determine cut-offs for and confounders of NAFLD-fibrosis staging with magnetic resonance elastography[J]. J Hepatol, 2023, 79(3): 592-604. DOI: 10.1016/j.jhep.2023.04.025.
[45]
LARA ROMERO C, LIANG J-X, FERNÁNDEZ LIZARANZAZU I, et al. Liver stiffness accuracy by MR elastography in histologically proven non-alcoholic fatty liver disease patients: a Spanish cohort[J/OL]. Rev Esp Enferm Dig, 2023, 115(4): 162-167. DOI: 10.17235/reed.2022.8777/2022
[46]
GIDENER T, YIN M, DIERKHISING R A, et al. Magnetic resonance elastography for prediction of long-term progression and outcome in chronic liver disease: A retrospective study[J]. Hepatology, 2022, 75(2): 379-390. DOI: 10.1002/hep.32151.
[47]
KOBAYASHI T, IWAKI M, NOGAMI A, et al. Prediction of outcomes in patients with metabolic dysfunction-associated steatotic liver disease based on initial measurements and subsequent changes in magnetic resonance elastography[J]. J Gastroenterol, 2024, 59(1): 56-65. DOI: 10.1007/s00535-023-02049-9.
[48]
HAN M A T, VIPANI A, NOUREDDIN N, et al. MR elastography-based liver fibrosis correlates with liver events in nonalcoholic fatty liver patients: A multicenter study[J]. Liver Int, 2020, 40(9): 2242-2251. DOI: 10.1111/liv.14593.
[49]
GIDENER T, AHMED O T, LARSON J J, et al. Liver stiffness by magnetic resonance elastography predicts future cirrhosis, decompensation, and death in NAFLD[J/OL]. Clin Gastroenterol Hepatol, 2021, 19(9): 1915-1924.e6 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/33010409/. DOI: 10.1016/j.cgh.2020.09.044.
[50]
NIIKURA T, IMAJO K, OZAKI A, et al. Coronary artery disease is more severe in patients with non-alcoholic steatohepatitis than fatty liver[J/OL]. Diagnostics (Basel), 2020, 10(3): 129 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/32111021/. DOI: 10.3390/diagnostics10030129.
[51]
HENSON J B, SIMON T G, KAPLAN A, et al. Advanced fibrosis is associated with incident cardiovascular disease in patients with non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2020, 51(7): 728-736. DOI: 10.1111/apt.15660.
[52]
TAMAKI N, KUROSAKI M, TAKAHASHI Y, et al. Liver fibrosis and fatty liver as independent risk factors for cardiovascular disease[J]. J Gastroenterol Hepatol, 2021, 36(10): 2960-2966. DOI: 10.1111/jgh.15589.
[53]
HIGUCHI M, TAMAKI N, KUROSAKI M, et al. Longitudinal association of magnetic resonance elastography-associated liver stiffness with complications and mortality[J]. Aliment Pharmacol Ther, 2022, 55(3): 292-301. DOI: 10.1111/apt.16745.
[54]
ZERUNIAN M, MASCI B, CARUSO D, et al. Liver magnetic resonance elastography: focus on methodology, technique, and feasibility[J/OL]. Diagnostics (Basel), 2024, 14(4): 379 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/38396418/. DOI: 10.3390/diagnostics14040379.
[55]
KIM D W, KIM S Y, YOON H M, et al. Comparison of technical failure of MR elastography for measuring liver stiffness between gradient-recalled echo and spin-echo echo-planar imaging: a systematic review and meta-analysis[J]. J Magn Reson Imaging, 2020, 51(4): 1086-1102. DOI: 10.1002/jmri.26918.
[56]
GILL H E, LISANTI C J, SCHWOPE R B, et al. Technical success rate of MR elastography in a population without known liver disease[J]. Abdom Radiol (NY), 2021, 46(2): 590-596. DOI: 10.1007/s00261-020-02652-x.
[57]
SGIER D, STOCKER D, JÜNGST C, et al. Feasibility and performance of spin-echo EPI MR elastography at 3 Tesla for staging hepatic fibrosis in the presence of hepatic iron overload[J]. Abdom Radiol (NY), 2024, 49(11): 3871-3882. DOI: 10.1007/s00261-023-04160-0.
[58]
BHUIYAN E H, OZKAYA E, KENNEDY P, et al. Magnetic resonance elastography for noninvasive detection of liver fibrosis: is there an added value of 3D acquisition [J]. Abdom Radiol (NY), 2023, 48(11): 3420-3429. DOI: 10.1007/s00261-023-04036-3.
[59]
LI J H, OBRZUT M, CHEN J, et al. Free-breathing hepatic 2D magnetic resonance elastography[J]. Magn Reson Med, 2025, 93(6): 2434-2443. DOI: 10.1002/mrm.30483.
[60]
ONAR M A, NURAL M S, DEVECI A, et al. Evaluation of liver fibrosis using diffusion-weighted virtual magnetic resonance elastography and ultrasound elastography[J/OL]. Abdom Radiol (NY), 2025 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/40500481/. DOI: 10.1007/s00261-025-05043-2.
[61]
WANG X Y, LIU B, WU C L, et al. Shear wave trajectory detection in ultra-fast M-mode images for liver fibrosis assessment: a deep learning-based line detection approach[J/OL]. Ultrasonics, 2024, 142: 107358 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/38901149/. DOI: 10.1016/j.ultras.2024.107358.
[62]
HUANG X Z, LI Y H, YUAN S S, et al. Shear wave elastography-based deep learning model for prognosis of patients with acutely decompensated cirrhosis[J]. J Clin Ultrasound, 2023, 51(9): 1568-1578. DOI: 10.1002/jcu.23577.
[63]
XUE L Y, JIANG Z Y, FU T T, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis[J]. Eur Radiol, 2020, 30(5): 2973-2983. DOI: 10.1007/s00330-019-06595-w.
[64]
WANG K, LU X, ZHOU H, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4): 729-741. DOI: 10.1136/gutjnl-2018-316204.
[65]
OZKAYA E, NIEVES-VAZQUEZ H A, YUCE M, et al. Automated liver magnetic resonance elastography quality control and liver stiffness measurement using deep learning[J]. Abdom Radiol (NY), 2025, 50(9): 4100-4109. DOI: 10.1007/s00261-025-04883-2.
[66]
CUNHA G M, DELGADO T I, MIDDLETON M S, et al. Automated CNN-based analysis versus manual analysis for MR elastography in nonalcoholic fatty liver disease: intermethod agreement and fibrosis stage discriminative performance[J]. AJR Am J Roentgenol, 2022, 219(2): 224-232. DOI: 10.2214/AJR.21.27135.
[67]
JAITNER N, LUDWIG J, MEYER T, et al. Automated liver and spleen segmentation for MR elastography maps using U-Nets[J/OL]. Sci Rep, 2025, 15(1): 10762 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/40155744/. DOI: 10.1038/s41598-025-95157-w.
[68]
NIEVES-VAZQUEZ H A, OZKAYA E, MEINHOLD W, et al. Deep learning-enabled automated quality control for liver MR elastography: initial results[J]. J Magn Reson Imag, 2025, 61(2): 985-994. DOI: 10.1002/jmri.29490.
[69]
SIM K C, KIM M J, CHO Y, et al. Diagnostic feasibility of magnetic resonance elastography radiomics analysis for the assessment of hepatic fibrosis in patients with nonalcoholic fatty liver disease[J]. J Comput Assist Tomogr, 2022, 46(4): 505-513. DOI: 10.1097/RCT.0000000000001308.
[70]
GOTTA J, GRUENEWALD L D, RESCHKE P, et al. Noninvasive grading of liver fibrosis based on texture analysis from MRI-derived radiomics[J/OL]. NMR Biomed, 2025, 38(1): e5301 [2025-05-05]. https://pubmed.ncbi.nlm.nih.gov/39702901/. DOI: 10.1002/nbm.5301.
[71]
HECTORS S J, KENNEDY P, HUANG K H, et al. Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2021, 31(6): 3805-3814. DOI: 10.1007/s00330-020-07475-4.

上一篇 扩张型心肌病精准诊疗进展:聚焦遗传学与心脏磁共振成像
下一篇 扩散加权成像技术在血液系统恶性肿瘤的应用研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2