分享:
分享到微信朋友圈
X
临床研究
MUSE-DWI联合酰胺质子转移定量成像评估脑膜瘤质地的应用研究
吕鸿洁 孙萌 吕瑞瑞 党佩 董磊 侯明丽 马欣雨 丁学福 王晓东

本文引用格式:吕鸿洁, 孙萌, 吕瑞瑞, 等. MUSE-DWI联合酰胺质子转移定量成像评估脑膜瘤质地的应用研究[J]. 磁共振成像, 2025, 16(12): 66-72. DOI:10.12015/issn.1674-8034.2025.12.010.


[摘要] 目的 探讨多重灵敏度编码扩散加权成像(multiplexed sensitivity encoding diffusion weighted imaging, MUSE-DWI)联合磁共振酰胺质子转移(amide proton transfer, APT)成像术前评估脑膜瘤质地的应用价值。材料与方法 回顾性分析2024年1月至2025年8月在宁夏医科大学总医院行肿瘤切除术并具有完整病理结果及术中手术记录完整的脑膜瘤患者病例资料71例,所有患者术前均接受常规MRI、MUSE-DWI、APT序列及对比增强T1加权成像(contrast enhanced T1-weighted imaging, CE_T1WI)序列扫描,术中根据Zada分级标准评估脑膜瘤质地,二分类为质软组或非质软组。测量强化区域表观扩散系数(apparent diffusion coefficient, ADC)及APT值。采用独立样本t检验或Mann-Whitney U检验比较ADC值和APT值的组间参数差异,对差异有统计学意义的参数采用多因素logistic回归分析。采用受试者工作特征(receiver operating characteristic, ROC)曲线评估各参数独立及其联合参数对预测脑膜瘤质地的诊断效能,并采用 DeLong检验对比ROC曲线下面积(area under the curve, AUC)的差异。结果 质软组脑膜瘤ADC值、APT值高于非质软组脑膜瘤(P分别为0.011、<0.001)。在所有单一参数中,APT值对质软脑膜瘤与非质软脑膜瘤的诊断效能最高,AUC为0.915,高于ADC值(AUC为0.675);多参数联合预测模型(ADC+APT)的AUC为0.947,高于任何单一参数。DeLong 检验结果显示多参数联合预测模型的诊断效能优于ADC值(P <0.05),而与APT的AUC差异无统计学意义(P=0.061)。结论 MUSE-DWI、APT技术有助于术前无创预测脑膜瘤质地,两者联合效能最高。
[Abstract] Objective To investigate the value of multiplexed sensitivity encoding diffusion weighted imaging (MUSE-DWI) combined with amide proton transfer (APT) imaging in preoperatively assessing meningioma consistency.Materials and Methods A retrospective analysis was performed on 71 patients with meningioma who underwent tumor resection at the General Hospital of Ningxia Medical University between January 2024 and August 2025. All patients had complete pathological results and comprehensive intraoperative surgical records. Preoperatively, each patient underwent conventional MRI, MUSE-DWI, amide proton transfer (APT) imaging, and contrast enhanced T1-weighted imaging (CE-T1WI). During surgery, tumor consistency was assessed according to the Zada classification scale and categorized into a soft group or a non-soft group. The apparent diffusion coefficient (ADC) and APT values were measured within the enhancing region. Independent samples t-test or Mann-Whitney U test was used to compare ADC and APT values between groups. Parameters showing significant differences were included in a multivariate logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of individual parameters and their combination for predicting meningioma consistency. The areas under the ROC curves (AUCs) were compared using DeLong's test.Results The soft meningioma group showed significantly higher ADC and APT values than the non-soft group (P = 0.011 and P < 0.001, respectively). Among all single parameters, APT value demonstrated the highest diagnostic efficacy for differentiating soft from non-soft meningiomas (AUC = 0.915), which was higher than that of the ADC value (AUC = 0.675). The multiparameter combined prediction model (ADC + APT) achieved an AUC of 0.947, which is higher than that of any single parameter. The DeLong test demonstrated that the multiparameter combined model achieved significantly superior diagnostic performance compared to the ADC value (P < 0.05), while no statistically significant difference was observed in the AUC between the combined model and APT (P = 0.061).Conclusions Both MUSE-DWI and APT techniques are useful for the noninvasive preoperative prediction of meningioma consistency. Their combination provides the highest diagnostic performance.
[关键词] 脑膜瘤;质地;磁共振成像;多重灵敏度编码;酰胺质子转移;预测效能
[Keywords] meningioma;consistency;magnetic resonance imaging;multiplexed sensitivity encoding;amide proton transfer;prediction

吕鸿洁 1   孙萌 2   吕瑞瑞 3   党佩 3   董磊 3   侯明丽 3   马欣雨 1   丁学福 1   王晓东 3, 4*  

1 宁夏医科大学临床医学院,银川 750004

2 陕西省宝鸡市中医医院放射科,宝鸡 721000

3 宁夏医科大学总医院放射科,银川 750004

4 宁夏医科大学颅脑疾病重点实验室,银川 750004

通信作者:王晓东,E-mail:xdw80@yeah.net

作者贡献声明:王晓东、孙萌、吕瑞瑞设计本研究的方案,对稿件的重要内容进行了修改;吕鸿洁起草和撰写稿件,获取、分析和解释本研究的数据;党佩、马欣雨、丁学福、侯明丽、董磊获取、分析或解释本研究的数据,对稿件的部分内容进行了修改;王晓东获得了宁夏回族自治区科技重点研发计划项目的资助;吕瑞瑞获得了宁夏回族自治区自然科学基金项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 宁夏回族自治区科技重点研发计划项目 2024FRD05099 宁夏回族自治区自然科学基金项目 2025AAC030804
收稿日期:2025-09-24
接受日期:2025-12-03
中图分类号:R445.2  R739.45 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.12.010
本文引用格式:吕鸿洁, 孙萌, 吕瑞瑞, 等. MUSE-DWI联合酰胺质子转移定量成像评估脑膜瘤质地的应用研究[J]. 磁共振成像, 2025, 16(12): 66-72. DOI:10.12015/issn.1674-8034.2025.12.010.

0 引言

       脑膜瘤是颅内最常见肿瘤之一,发病率仅次于胶质瘤[1]。手术治疗是脑膜瘤最有效的治疗方式,脑膜瘤的质地是影响神经外科手术方案选择、入路设计以及手术切除程度的重要因素[2]。质地较硬脑膜瘤因机械硬度较高,手术完全切除难度较大,相较于质软脑膜瘤,其手术时间更长并需要多样化的手术器械[3]。同时研究发现,对于质地较硬脑膜瘤,术前经动脉栓塞术有助于肿瘤的软化和切除[4],因此术前肿瘤的质地评估对于术中手术方式的选择及风险评估具有重要意义。既往研究多采用常规MRI及扩散加权成像(diffusion weighted imaging, DWI)信号评估脑膜瘤质地[5, 6, 7],但常规MRI无法进行定量分析且其诊断过程受到主观因素的影响,同时常规DWI技术由于磁敏感伪影和几何畸变的技术限制,从而限制了脑膜瘤术前一致性评估的准确性。相较于常规DWI,多重灵敏度编码扩散加权成像(multiplexed sensitivity encoding diffusion weighted imaging, MUSE-DWI)的高分辨率和低畸变特性[8],使得脑膜瘤实现高分辨率弥散成像[9, 10, 11]。MUSE-DWI可间接反映组织微观结构的变化,既往研究表明,MUSE-DWI技术在胶质瘤、乳腺病变、子宫病变中的研究展现出显著优势[12, 13, 14]。但目前MUSE-DWI技术尚未发现用于预测术前脑膜瘤质地的研究。而酰胺质子转移成像(amide proton transfer, APT)是化学交换饱和转移磁共振成像(chemical exchange saturation transfer magnetic resonance imaging, CEST-MRI)的一种,研究表明组织中的APT成像信号主要与两个因素有关:游离酰胺质子含量和细胞的密度[15, 16]。APT成像可以提供病灶的生物学标志,从而反映脑膜瘤的质地。

       因此,本研究拟采用MUSE-DWI联合APT技术评估术前脑膜瘤质地,探索脑膜瘤表观扩散系数(apparent diffusion coefficient, ADC)值及APT信号值在脑膜瘤术前质地预测中的潜在价值,以期为临床提供一种可靠的影像学评估方法,辅助精准诊断并优化个体化治疗方案。

1 材料与方法

1.1 研究对象

       本研究回顾性收集宁夏医科大学总医院神经外科自2024年1月至2025年8月行脑膜瘤切除的患者71例,男19例,女52例,年龄24~79(56.92±10.99)岁。纳入标准:(1)年龄大于18岁;(2)检查前未接受药物、化疗、放射治疗等干预措施的原发脑膜瘤患者;(3)术中完成对脑膜瘤质地的评估;(4)具有完整病理结果的脑膜瘤患者。排除标准:(1)MRI检查图像资料不全;(2)病灶最大截面积<0.25 cm2、多发病灶,或图像质量不佳无法评估;(3)合并其他恶性肿瘤。

       本研究严格遵守《赫尔辛基宣言》,经宁夏医科大学总医院医学科研伦理审查委员会批准,免除受试者知情同意。批准文号:KYLL-2025-1632。

1.2 仪器与方法

       使用配备48通道头颈联合科研线圈的美国GE Signa Architect 3.0 T磁共振扫描仪进行术前扫描。患者以仰卧位接受常规MRI序列[包括T1WI、T2WI、T2液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)、T1WI+C]、MUSE-DWI及APT序列,所有序列均采用标准轴位图像。所示序列及具体扫描参数如下:

       T2WI序列:TR 5 162.0 ms,TE 120.0 ms,FOV 24.0 cm×24.0 cm,层数20,层厚5 mm,层间隔1 mm;T1WI序列:TR 1 750.0 ms,TE 18.0 ms,FOV 24 cm×24 cm,层数20,层厚5 mm,层间隔1 mm;T2 FLAIR序列:TR 8 400.0 ms,TE 100.0 ms,FOV 24.0 cm×24.0 cm,层数20,层厚5 mm,层间隔1 mm;T1WI 增强序列:TR 1 750.0 ms,TE 18.0 ms,FOV 24.0 cm×24.0 cm,层数20,层厚5 mm,层间隔1 mm。

       MUSE-DWI:基于多激发平面回波成像技术,扫描参数:TR 3921 ms,TE 78.1 ms,矩阵160×166,FOV 24 cm×24 cm,激励次数2次,层数20,层厚5 mm,层间隔1 mm,带宽±250 kHz,b值=0、1000 s/mm2,扫描时长1 min 11 s。APT:使用平面回波序列,选取肿瘤实质区域的最大截面进行数据采集,主要参数如下,TR 3000 ms,TE 33 ms,层厚8 mm,FOV 24.0 cm×24.0 cm,矩阵128×128,饱和时间2 s,扫描时长为2 min 9 s。

1.3 图像分析

       从宁夏医科大学总医院影像归档与传输系统获取所有纳入脑膜瘤患者的常规MRI、MUSE-DWI及APT数据,常规图像分析:由两位具有5年和10年工作经验的住院医师及主治医师阅读常规MRI及MUSE-DWI图像,对比对侧正常脑组织观察并记录肿瘤位置、瘤周水肿、钙化、硬膜尾征、强化是否均匀及病灶常规、MUSE-DWI信号强度。协商一致后,记录脑膜瘤的常规MRI征象。

       MUSE-DWI及APT的图像后处理分别在GE-ADW(4.7,GE Healthcare)与GE iQuant(2.0,GE Healthcare)工作站上完成,以获取ADC图及APT后处理图像。随后,所有图像均通过MATLAB(MathWorks,美国)平台下的SPM工具包统一配准至T2 FLAIR序列。最后由两位分别拥有5年与10年神经影像诊断经验的住院医师及主治医师,采用双盲法,参照T2 FLAIR及增强T1WI(T1WI+C)图像手动勾画感兴趣区(region of interest, ROI),过程中注意避开肉眼可见的囊变、坏死、出血及磁敏感伪影显著区域,选择强化程度明显的实性区域,避开肉眼可见的粗大血管及血管流空影,勾画3个大小一致的ROI(面积约0.25~0.35 cm2)。(1)平均ADC值测量:扫描后将DICOM数据传输至GE ADW 4.7工作站,MUSE-DWI衍生成的ADC图,按照上述原则放置ROI,测量平均ADC值,测量3次,计算平均值。(2)APTw图像参数测量:采用MRI主机系统自带软件获取APT定量图进行测量,按照上述原则放置ROI,测量APT信号值,测量3次,计算平均值(图1)。

图1  ROI示意图。1A:T2 FLAIR;1B:T1WI+C;1C~1D:MUSE-DWI及衍生ADC图;1E:APT。参考结合T2 FLAIR及T1WI+C肿瘤实质高信号区域(箭)勾画ROI,避开囊变、坏死区域。ROI:感兴趣区;FLAIR:液体衰减反转恢复;T1WI+C:增强T1WI;MUSE-DWI:多重灵敏度编码扩散加权成像;ADC:表观扩散系数;APT:酰胺质子转移。
Fig. 1  Schematic diagram of the ROI. 1A: T2 FLAIR; 1B: T1-weighted imaging with contrast (T1WI+C); 1C to 1D: MUSE-DWI and the derived ADC map; 1E: APT. The ROIs are delineated with reference to the hyperintense regions in the tumor parenchyma (arrows) as seen on T2 FLAIR and T1WI+C, while avoiding cystic and necrotic areas. ROI: region of interest; FLAIR: fluid attenuated inversion recovery; T1WI+C: contrast enhanced T1-weighted imaging; MUSE-DWI: multiplexed sensitivity encoding diffusion weighted imaging; ADC: apparent diffusion coefficient; APT: amide proton transfer.

1.4 脑膜瘤质地评估标准

       所有手术均分别由神经外科两组团队完成,术前充分沟通脑膜瘤质地评估标准,依据以往文献中对脑膜瘤质地的评估标准,就术中评估达成基本一致。参照2013年ZADA等[17]对脑膜瘤和术中所需手术器械的质地分级系统将脑膜瘤质地分为5级,脑膜瘤质地越硬,级别越高,本研究进一步采用了二分类,将入组病例根据Zada分级二分类分为质软组(≤2级)与非质软组(≥3级)。

1.5 统计学分析

       采用IBM SPSS Statistics(27.0,IBM公司,美国)及MedCalc(20.0.14,MedCalc Software Ltd,比利时)软件进行统计学分析。两位医师的测量一致性通过组内相关系数(intra-class correlation coefficient, ICC)评估,ICC>0.75认为一致性良好。计量资料满足正态性及方差齐性时,以x¯±s描述并采用独立样本t检验;否则以MQ1,Q3)描述并采用Mann-Whitney U检验;计数资料以例(%)描述并采用卡方检验。对单因素分析有意义的变量,经共线性诊断排除多重共线性后,进行二元logistic回归并绘制受试者工作特征(receiver operating characteristic, ROC)曲线,通过计算曲线下面积(area under the curve, AUC)及约登指数评估诊断效能并确定最佳临界值、敏感度与特异度。各AUC间的差异采用DeLong检验比较,所有统计检验均为双侧,以P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       根据本研究设定的纳入及排除标准,71例具有完整病理资料的脑膜瘤患者被纳入,男19例,女52例;年龄为24~79(56.92±10.99)岁。其中,质软组脑膜瘤(图2)33例,非质软组脑膜瘤(图3)38例;两组间在性别、MUSE-DWI信号上差异具有统计学意义(P<0.05),在年龄、肿瘤位置、强化方式、常规MRI信号、有无钙化、水肿、硬膜尾征、WHO分级上差异无统计学意义(均P>0.05)。一般资料见表1

图2  女,57岁,左侧鞍旁脑膜瘤(质软)。2A:术前T2WI;2B:MUSE-DWI衍生成的ADC图呈高信号;2C:MUSE-DWI呈高信号;2D:APT;2E:免疫组化染色病理切片(×200)。T2WI:T2加权成像;MUSE-DWI:多重灵敏度编码扩散加权成像;ADC:表观扩散系数;APT:酰胺质子转移。
Fig. 2  Female, 57 years old, left parasagittal meningioma (soft group). 2A: Preoperative T2WI; 2B: ADC map derived from MUSE-DWI shows high signal intensity; 2C: MUSE-DWI shows high signal intensity; 2D: APT; 2E: Immunohistochemical staining of pathological sections (×200). T2WI: T2-weighted imaging; MUSE-DWI: multiplexed sensitivity encoding diffusion weighted imaging; ADC: apparent diffusion coefficient; APT: amide proton transfer.
图3  女,68岁,左侧桥小脑角区脑膜瘤(非质软)。3A:术前T2WI;3B:MUSE-DWI衍生成的ADC图呈低信号;3C:MUSE-DWI呈等低信号;3D:APT;3E:免疫组化染色病理切片(×200)。T2WI:T2加权成像;MUSE-DWI:多重灵敏度编码扩散加权成像;ADC:表观扩散系数;APT:酰胺质子转移。
Fig. 3  Female,68 years old, left cerebellopontine angle meningioma (non-soft group). 3A: Preoperative T2WI; 3B: ADC map derived from MUSE-DWI shows low signal intensity; 3C: MUSE-DWI shows iso-to-low signal intensity; 3D: APT; 3E: Immunohistochemical staining of pathological sections (×200). T2WI: T2-weighted imaging; MUSE-DWI: multiplexed sensitivity encoding diffusion weighted imaging; ADC: apparent diffusion coefficient; APT: amide proton transfer.
表1  质软组与非质软组脑膜瘤患者的临床一般资料
Tab. 1  Clinical general data of patients with meningioma in soft and non-soft groups

2.2 一致性检验

       两名医师测量参数值(ADC值、APT值)的ICC分别为0.853、0.982,ICC均>0.75,一致性良好(表2)。

表2  两位观察者测量APT和MUSE-DWI定量参数的一致性检验
Tab. 2  Consistency test between two observers measuring APT and MUSE-DWI quantitative parameters

2.3 ADC值及APT值在质软组和非质软组间比较

       质软组脑膜瘤ADC、APT值高于非质软组脑膜瘤,差异具有统计学意义(P<0.05)。见表3图4, 图5

图4  APT值的分组散点图。***P<0.001;2.430为质软组APT值的中位数,1.565为非质软组APT值的中位数。APT:酰胺质子转移。
Fig. 4  Scatter plots of APT values by group. ***P < 0.001. The median value in the soft group is 2.430, whereas that in the non-soft group is 1.565. APT: amide proton transfer.
图5  ADC值的分组散点图。*P<0.05。0.810为质软组ADC值的中位数,0.761为非质软组ADC值的中位数。ADC:表观扩散系数。
Fig. 5  Scatter plots of ADC values by group. *P < 0.05. The median value in the soft group is 0.810, whereas that in the non-soft group is 0.761. ADC: apparent diffusion coefficient.
表3  质软组与非质软组脑膜瘤间APT值与MUSE-DWI定量参数比较
Tab. 3  Comparison of parameters between soft and non-soft pia meningioma groups

2.4 ADC值、APT值及其联合的诊断效能

       共线性诊断结果显示,所有单因素分析差异有统计学意义的结果不存在多重共线性,方差膨胀因子(variance inflation factor, VIF)值均<10(表3)。多因素logistic回归分析结果表明,APT(P<0.001)、ADC(P=0.007)值是预测脑膜瘤质地的独立影响因素(表4)。

       对差异具有统计学意义的参数(ADC值与APT值)进行ROC曲线分析,以评估其术前预测脑膜瘤质地的效能。结果显示,ADC值与APT值的AUC分别为0.675和0.915。其中,APT的AUC值最高;当以2.03%作为最佳截断值时,预测的敏感度为78.79%,特异度为92.11%。进一步通过二元logistic回归构建的ADC与APT联合预测模型,其AUC提升至0.947,诊断效能最优。DeLong检验表明,联合模型与单一参数ADC值之间的AUC差异具有统计学意义(P=0.001),但与单一参数APT值的AUC差异不具有统计学意义(P=0.06)。详见表5图6

图6  APT值与ADC值及其联合参数的ROC曲线。APT:酰胺质子转移;ADC:表观扩散系数;ROC:受试者工作特征;联合参数:APT+ ADC。
Fig. 6  ROC curves of single parameter and their combinations. APT: amide proton transfer; ADC: apparent diffusion coefficient; ROC: receiver operating characteristic; Combined parameters: APT + ADC.
表4  APT值与ADC值对脑膜瘤质地的多因素 logistics回归分析
Tab. 4  Multivariate logistics regression analysis of APT value and ADC value on the texture of meningioma
表5  APT值与ADC值及其联合参数对脑膜瘤质地诊断效能的比较
Tab. 5  Comparison of APT, ADC parameters and their combined parameters in the consistent diagnosis of meningioma

3 讨论

       本研究分析了MUSE-DWI联合APT技术术前预测脑膜瘤质地的价值,结果显示,质软组与非质软组的一般资料中性别、MUSE-DWI信号上差异具有统计学意义,定量分析ADC值和APT值差异也具有统计学意义,这一结果有助于预测脑膜瘤质地,且多种参数联合诊断效能较单参数提高,通过将ADC值纳入APT参数构建联合模型(ADC+APT),实现了诊断效能的最大化(AUC=0.947)。该多参数模型显著提升了对脑膜瘤质地的预测效果。

3.1 性别预测脑膜瘤质地的价值

       脑膜瘤女性较男性多见,本研究中男19例,女52例,与文献报道一致[18, 19, 20],本研究中质软脑膜瘤多见于女性,可能是与样本量中女性占比多有关,部分文献指出,性别与脑膜瘤质地无相关性[7, 21, 22],考虑到本研究样本总量较少,同时男女比例差距大,后续仍需大量数据进一步验证该结论。

3.2 MUSE-DWI信号及ADC定量值预测脑膜瘤质地的价值

       本研究得出MUSE-DWI对于预测脑膜瘤质地有统计学意义(P<0.05),分析可能是因为MUSE-DWI能够评估水分子的扩散程度,非质软组脑膜瘤与质软组脑膜瘤相比,肿瘤细胞排列相对较密,胶原含量较高,细胞外间隙较小,从而水分子扩散受限更为明显,因此MUSE-DWI信号越高的越有可能是非质软脑膜瘤。同时,研究表明DWI信号在评估脑膜瘤分级方面有诊断价值[23, 24],而本研究中纳入脑膜瘤病例均为低级别脑膜瘤,既减少因分级导致的主观差异,也增强诊断的可靠性。LIMPASTAN等[25]认为DWI低信号与肿瘤较硬质地显著相关。但有研究认为DWI信号在脑膜瘤质地预测方面没有相关性[26],二者结果的不一致,可能源于该研究采用的常规DWI序列存在的固有局限性,包括图像变形、空间失真和显著的磁敏感伪影[27]。MUSE-DWI是一种高分辨率扩散成像技术,通过在相位编码方向交错分次采集,实现了高空间分辨率、高信噪比、高空间保真度和最小运动相位误差的影像图像[28, 29],既往有研究认为非质软脑膜瘤ADC值较质软脑膜瘤低[4, 30],本研究结果与该结果一致,考虑原因可能是非质软组脑膜瘤富含胶原纤维,从而细胞排列密集、细胞外间隙变小,水分子扩散运动受限,ADC值较低;而质软脑膜瘤较非质软脑膜瘤细胞排列疏松、含水量高,间质成分少,ADC值较高。同时本研究ADC值散点图中质软组可见两例明显高ADC值,病理显示其具有丰富的血管成分,肿瘤细胞排列疏松,因而ADC值较高,同时研究表明,ADC值与肿瘤内纤维组织的数量呈负相关[31],因此本研究中ADC值越高越可能表现为质软脑膜瘤。

3.3 APT值预测脑膜瘤质地的价值

       APT成像通过MRI中使用的水信号间接获得内源性细胞蛋白信息,从而将分子MRI技术的范围扩大到蛋白质水平[32],可间接反映细胞中的代谢变化和病理生理信息[33]。研究认为胶原蛋白含量在很大程度上决定肿瘤组织硬度[34],胶原蛋白的过度沉积可导致组织变硬。既往研究表明APT定量参数可用于评估脑膜瘤质地,病理学分析显示,相较于质地较软的脑膜瘤,质地坚硬组别的肿瘤间质中可见大量成纤维细胞样细胞、密集排列的胶原纤维及形态不规则的沙砾体。此外,该组别肿瘤细胞的核质比普遍高于其他形态的细胞,但其单位体积内的游离酰胺质子含量相对较低。上述微观结构的差异共同导致了质地坚硬组脑膜瘤的APT参数值低于质地较软组[35]。本研究与上述结果相符,本研究表明质软组脑膜瘤APT值高于非质软组脑膜瘤,且单一预测效能最佳,因此APT可作为预测脑膜瘤质地的首选指标。

3.4 多参数联合模型预测脑膜瘤质地的价值

       本研究旨在预测影像学对脑膜瘤质地的术前评估,但脑膜瘤包括15种分型,因其分型复杂,且不同分型间影像学表现差异性明显,先前的研究表明,不同病理类型的脑膜瘤的质地中存在差异,纤维型脑膜瘤因富含纤维细胞质地较硬[36],未来的研究应纳入分型比较设计,以阐明分型在脑膜瘤质地中的独立作用。质软组及非质软组脑膜瘤在常规MRI难以准确主观判断,常规MRI不能定量评估病灶质地导致鉴别困难。MUSE-DWI能清晰显示病灶,尤其是在术区磁敏感伪影较重的区域。APT通过检测蛋白质和多肽中酰胺质子的化学交换饱和转移现象,反映组织中的蛋白质和肽等移动性大分子的浓度,能提供病灶的生物学标志物信息[37]。鉴于单一影像学技术在评估脑膜瘤质地时存在局限性,而不同成像方式所能提供的病灶信息具有互补性,本研究将APT与ADC值进行整合,构建了多参数联合模型。结果显示,该联合模型的诊断效能优于任一单一参数,凸显了多参数联合分析在评估脑膜瘤质地中的显著优势。

3.5 本研究的局限性

       (1)本研究为单中心、样本量较小的探索性研究,缺乏外部数据集验证,可能存在一定选择偏倚。后续研究将扩大样本量,并尝试多中心合作或独立验证,以进一步验证联合参数的预测效能;(2)本研究分组为二分类,未对各病理类型脑膜瘤与定量参数相匹配,各病理类型脑膜瘤质地与定量参数是否存在差异需进一步探索;(3)脑膜瘤术中质地的评估依靠于手术医生的主观判断,今后将制订更可靠的评判标准,做出更为精确的评估;(4)对脑膜瘤ROI的勾画仅基于二维层面,未能覆盖肿瘤的全层体积。可能不能代表肿瘤的整体信息,有待在后续研究中改进。

4 结论

       综上所述,MUSE-DWI、APT技术研究表明两者联合在预测脑膜瘤质地中具有一定价值,这为术前无创预测脑膜瘤质地提供了一种新的影像学评估方法,有助于指导临床个体化精准治疗。

[1]
OSTROM Q T, GITTLEMAN H, FULOP J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012[J/OL]. Neuro Oncol, 2015, 17(Suppl 4): iv1-iv62 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/26511214/. DOI: 10.1093/neuonc/nov189.
[2]
BIERNAT D, BIRKELAND BUGGE R A, RAMM-PETTERSEN J, et al. Predicting intraoperative meningioma consistency using features from standard MRI sequences: a preoperative evaluation[J/OL]. Acta Neurochir (Wien), 2025, 167(1): 173 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/40542946/. DOI: 10.1007/s00701-025-06582-9.
[3]
MURPHY M C, HUSTON J, GLASER K J, et al. Preoperative assessment of meningioma stiffness using magnetic resonance elastography[J]. J Neurosurg, 2013, 118(3): 643-648. DOI: 10.3171/2012.9.JNS12519.
[4]
YOGI A, KOGA T, AZAMA K, et al. Usefulness of the apparent diffusion coefficient (ADC) for predicting the consistency of intracranial meningiomas[J]. Clin Imaging, 2014, 38(6): 802-807. DOI: 10.1016/j.clinimag.2014.06.016.
[5]
RABIEE S, KANKAM S B, SHAFIZADEH M, et al. Supratentorial meningioma consistency prediction utilizing tumor to cerebellar peduncle intensity on T1 and T2-weighted and fluid attenuated inversion recovery magnetic resonance imaging sequences[J/OL]. World Neurosurg, 2023, 170: e180-e187 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/36328167/. DOI: 10.1016/j.wneu.2022.10.097.
[6]
CEPEDA S, ARRESE I, GARCÍA-GARCÍA S, et al. Meningioma consistency can be defined by combining the radiomic features of magnetic resonance imaging and ultrasound elastography. a pilot study using machine learning classifiers[J/OL]. World Neurosurg, 2021, 146: e1147-e1159 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/33259973/. DOI: 10.1016/j.wneu.2020.11.113.
[7]
HAN T, LIU X W, SUN J C, et al. T2-weighted imaging and apparent diffusion coefficient histogram parameters predict meningioma consistency[J]. Acad Radiol, 2024, 31(6): 2511-2520. DOI: 10.1016/j.acra.2023.12.014.
[8]
姜勇, 李林, 宋春娟, 等. FOCUS-MUSE-DWI与常规DWI在直肠癌诊断中的应用分析[J]. 中国CT和MRI杂志, 2025, 23(9): 185-187, 212. DOI: 10.3969/J.ISSN.1672-5131.2025.09.051.
JIANG Y, LI L, SONG C J, et al. Application of FOCUS-MUSE-DWI and conventional DWI in the diagnosis of rectal cancer[J]. CHIN J CT MRI, 2025, 23(9): 185-187, 212. DOI: 10.3969/J.ISSN.1672-5131.2025.09.051.
[9]
吕瑞瑞, 王璐, 葛鑫, 等. 复合灵敏度编码DWI与常规DWI在胶质瘤成像中的对比研究[J]. 中国医学计算机成像杂志, 2025, 31(2): 162-166. DOI: 10.19627/j.cnki.cn31-1700/th.2025.02.010.
LÜ R R, WANG L, GE X, et al. A comparison of multiplexed sensitivity encoding DWI and conventional DWI in the evaluation of glioma[J]. Chin Comput Med Imag, 2025, 31(2): 162-166. DOI: 10.19627/j.cnki.cn31-1700/th.2025.02.010.
[10]
CHANG H C, CHEN G T, CHUNG H W, et al. Multi-shot diffusion-weighted MRI with multiplexed sensitivity encoding (MUSE) in the assessment of active inflammation in Crohn's disease[J]. J Magn Reson Imaging, 2022, 55(1): 126-137. DOI: 10.1002/jmri.27801.
[11]
ZHA F X, FENG C, XU J, et al. Evaluation of multiplexed sensitivity encoding diffusion-weighted imaging in detecting uterine lesions: Image quality optimization[J/OL]. Magn Reson Imag, 2024, 110: 17-22 [2025-09-23]. https://www.sciencedirect.com/science/article/pii/S0730725X24000523?via%3Dihub. DOI: 10.1016/j.mri.2024.03.003.
[12]
刘欣然, 田兆荣, 何花, 等. 磁共振MUSE序列在乳腺病变中的应用价值[J]. 中国临床医学影像杂志, 2025, 36(7): 469-473. DOI: 10.12117/JCCMI.2025.07.004.
LIU X R, TIAN Z R, HE H, et al. Research on the application value of magnetic resonance MUSE sequence in breast lesions[J]. J CHINA CLIN MED IMAG, 2025, 36(7): 469-473. DOI: 10.12117/JCCMI.2025.07.004.
[13]
顾海磊, 唐文伟, 田忠甫, 等. 合成MRI及复合灵敏度编码弥散加权成像定量参数预测子宫内膜癌病理特征[J]. 中国介入影像与治疗学, 2025, 22(3): 183-187. DOI: 10.13929/J.ISSN.1672-8475.2025.03.007.
GU H L, TANG W W, TIAN Z F, et al. Quantitative parameters of synthetic MRI and multiplexed sensitivity encoding diffusion weighted imaging for predicting pathological characteristics of endometrial cancer[J]. CHIN J INTERV IMAG THER, 2025, 22(3): 183-187. DOI: 10.13929/J.ISSN.1672-8475.2025.03.007.
[14]
胡玉芳, 黄梓杰, 刘凯, 等. 多重灵敏度编码弥散加权成像在鼻咽癌中的参数优化[J]. 中国CT和MRI杂志, 2025, 23(6): 39-42. DOI: 10.3969/J.ISSN.1672-5131.2025.06.012.
HU Y F, HUANG Z J, LIU K, et al. Optimization of parameters for multiple sensitivity encoding diffusion-weighted imaging in nasopharyngeal cancer[J]. CHIN J CT MRI, 2025, 23(6): 39-42. DOI: 10.3969/J.ISSN.1672-5131.2025.06.012.
[15]
YU H, LOU H L, ZOU T Y, et al. Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma[J]. Eur Radiol, 2017, 27(11): 4516-4524. DOI: 10.1007/s00330-017-4867-z.
[16]
TOGAO O, KESSINGER C W, HUANG G, et al. Characterization of lung cancer by amide proton transfer (APT) imaging: an in-vivo study in an orthotopic mouse model[J/OL]. PLoS One, 2013, 8(10): e77019 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/24143199/. DOI: 10.1371/journal.pone.0077019.
[17]
ZADA G, YASHAR P, ROBISON A, et al. A proposed grading system for standardizing tumor consistency of intracranial meningiomas[J/OL]. Neurosurg Focus, 2013, 35(6): E1 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/24289117/. DOI: 10.3171/2013.8.focus13274.
[18]
PRICE M, BALLARD C, BENEDETTI J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2017-2021[J/OL]. Neuro Oncol, 2024, 26(Supplement_6): vi1-vi85 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/39371035/. DOI: 10.1093/neuonc/noae145.
[19]
XU C, SHAO C, WANG J, et al. Association between anthropometric factors and meningioma risk: a systematic review and meta-analysis[J/OL]. PLoS One, 2025, 20(5): e0323461 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/40359201/. DOI: 10.1371/journal.pone.0323461.
[20]
OGASAWARA C, PHILBRICK B D, ADAMSON D C. Meningioma: a review of epidemiology, pathology, diagnosis, treatment, and future directions[J/OL]. Biomedicines, 2021, 9(3): 319 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/33801089/. DOI: 10.3390/biomedicines9030319.
[21]
LIN H J, YUE Y B, XIE L, et al. Multimodal deep learning-based radiomics for meningioma consistency prediction: integrating T1 and T2 MRI in a multi-center study[J/OL]. BMC Med Imag, 2025, 25(1): 216 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/40596910/. DOI: 10.1186/s12880-025-01787-x.
[22]
ZHENG L M, JIANG P R, LIN D J, et al. Histogram analysis of mono-exponential, bi-exponential and stretched-exponential diffusion-weighted MR imaging in predicting consistency of meningiomas[J/OL]. Cancer Imaging, 2023, 23(1): 117 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/38053183/. DOI: 10.1186/s40644-023-00633-z.
[23]
许帅, 王亚峰, 洪晓雪, 等. 磁共振扩散加权成像对不同级别脑膜瘤的诊断价值分析[J]. 生物医学工程学进展, 2024, 45(4): 293-298. DOI: 10.3969/j.issn.1674-1242.2024.04.002.
XU S, WANG Y F, HONG X X, et al. Analysis of the diagnostic value of magnetic resonance diffusion-weighted imaging for meningiomas of different grades[J]. Prog Biomed Eng, 2024, 45(4): 293-298. DOI: 10.3969/j.issn.1674-1242.2024.04.002.
[24]
ERSAY H, HATIPOGLU H G, GURESCI S. ADC values compared to tumor grade and Ki-67 proliferation index detected by a digital image analysis program in meningiomas[J]. Acta Radiol, 2025, 66(12): 1263-1270. DOI: 10.1177/02841851251365512.
[25]
LIMPASTAN K, UNSRISONG K, VANIYAPONG T, et al. Benefits of combined MRI sequences in meningioma consistency prediction: a prospective study of 287 consecutive patients[J]. Asian J Neurosurg, 2022, 17(4): 614-620. DOI: 10.1055/s-0042-1758849.
[26]
MASUDA H, NEMOTO M, HARADA N, et al. Comparison of quantitative measurements of central nervous system tumour consistency and the associated preoperative imaging findings[J]. Br J Neurosurg, 2019, 33(5): 522-527. DOI: 10.1080/02688697.2019.1617405.
[27]
蔡磊, 王玉芳, 鞠静怡, 等. 基于MUSE与SS-EPI的DWI序列在克罗恩病活动性评估中的对比研究[J]. 中国医学计算机成像杂志, 2025, 31(2): 232-236. DOI: 10.19627/j.cnki.cn31-1700/th.2025.02.017.
CAI L, WANG Y F, JU J Y, et al. Comparative analysis of DWI sequences: muse vs SS-EPI in evaluating Crohn's disease activity[J]. Chin Comput Med Imag, 2025, 31(2): 232-236. DOI: 10.19627/j.cnki.cn31-1700/th.2025.02.017.
[28]
李刚, 罗娜, 欧阳佳裕. 复合灵敏度编码高分辨率扩散加权成像与常规扩散加权成像在头颅检查中的价值比较[J]. 影像技术, 2022, 34(4): 25-28, 34. DOI: 10.3969/j.issn.1001-0270.2022.04.05.
LI G, LUO N, OUYANG J Y. Comparison of the value of multiplexed sensitivity encoding diffusion-weighted imaging with conventional diffusion-weighted imaging in brain examination[J]. Image Technol, 2022, 34(4): 25-28, 34. DOI: 10.3969/j.issn.1001-0270.2022.04.05.
[29]
刘琴, 周智鹏. 基于复合灵敏度编码的高分辨率磁共振扩散成像原理及其临床应用[J]. 磁共振成像, 2022, 13(1): 167-170. DOI: 10.12015/issn.1674-8034.2022.01.040.
LIU Q, ZHOU Z P. Principle and clinical application of high resolution magnetic resonance diffusion imaging based on composite sensitivity coding[J]. Chin J Magn Reson Imaging, 2022, 13(1): 167-170. DOI: 10.12015/issn.1674-8034.2022.01.040.
[30]
MIYOSHI K, WADA T, UWANO I, et al. Predicting the consistency of intracranial meningiomas using apparent diffusion coefficient maps derived from preoperative diffusion-weighted imaging[J]. J Neurosurg, 2020, 135(3): 969-976. DOI: 10.3171/2020.6.JNS20740.
[31]
HIGANO S, YUN X, KUMABE T, et al. Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis[J]. Radiology, 2006, 241(3): 839-846. DOI: 10.1148/radiol.2413051276.
[32]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[33]
GE Y, DU J, CHENG H, et al. Assessment of renal allograft function using amide proton transfer imaging[J/OL]. Front Med (Lausanne), 2025, 12: 1612028 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/40950973/. DOI: 10.3389/fmed.2025.1612028.
[34]
SHI Y, HUO Y L, PAN C, et al. Use of magnetic resonance elastography to gauge meningioma intratumoral consistency and histotype[J/OL]. Neuroimage Clin, 2022, 36: 103173 [2025-09-23]. https://pubmed.ncbi.nlm.nih.gov/36081257/. DOI: 10.1016/j.nicl.2022.103173.
[35]
于昊, 王显龙, 孙占国, 等. 磁共振酰胺质子转移成像在预测脑膜瘤硬度中的可行性研究[J]. 中华神经外科杂志, 2022, 38(8): 831-836. DOI: 10.3760/cma.j.cn112050-20201120-00584.
YU H, WANG X L, SUN Z G, et al. Feasibility study of magnetic resonance amide proton transfer imaging in predicting the hardness of meningioma[J]. Chin J Neurosurg, 2022, 38(8): 831-836. DOI: 10.3760/cma.j.cn112050-20201120-00584.
[36]
TAKAMURA T, MOTOSUGI U, OGIWARA M, et al. Relationship between shear stiffness measured by MR elastography and perfusion metrics measured by perfusion CT of meningiomas[J]. AJNR Am J Neuroradiol, 2021, 42(7): 1216-1222. DOI: 10.3174/ajnr.A7117.
[37]
LI J L, XU Y, XIANG Y S, et al. Comparative analysis of amide proton transfer and diffusionweighted imaging for assessing ki-67, p53 and PD-L1 expression in bladder cancer[J]. Acad Radiol, 2025, 32(2): 834-843. DOI: 10.1016/j.acra.2024.09.043.

上一篇 基于rs-fMRI图论分析研究不同负荷脑小血管病患者脑功能网络变化
下一篇 基于DCE-MRI的影像组学对高级别胶质瘤与单发脑转移瘤的预测价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2