分享:
分享到微信朋友圈
X
临床研究
基于磁共振定量参数与血清学指标联合模型对Graves眼病活动性的应用研究
刘俊宏 盛佳曦 赵阳 张厚宁

本文引用格式:刘俊宏, 盛佳曦, 赵阳, 等. 基于磁共振定量参数与血清学指标联合模型对Graves眼病活动性的应用研究[J]. 磁共振成像, 2025, 16(12): 80-86. DOI:10.12015/issn.1674-8034.2025.12.012.


[摘要] 目的 通过定量分析Graves眼病(Graves's orbitopathy, GO)患者眼眶参数,探讨其与血清学参数联合在GO活动性诊断中的价值。材料与方法 回顾性收集2024年1月至2025年2月就诊于华北理工大学附属医院内分泌科并诊断为GO的47名患者,根据临床活动性评分(Clinical Active Score, CAS)将患者分为活动组、非活动组,并收集15名体检健康人群做为对照组。所有入组研究对象均进行眼眶MRI检查及血清学检测。分别测量三组受检者各条眼外肌最大直径(maximum extraocular muscle diameter, EMD)、最大横截面积(maximum extraocular muscle area, EMA)、T2弛豫时间(T2 relaxation time, T2RT)及眼球突出度,并收集三组受检者的临床资料。通过SPSS 27.0软件对各参数进行统计学分析,将差异有统计学意义的参数采用二元logistic回归方法联合MRI定量参数。采用受试者工作特征(receiver operating characteristics, ROC)曲线评估眼外肌各定量参数对GO活动性的诊断效能,采用DeLong 法比较曲线下面积(area under the curve, AUC)。采用Spearman's相关性分析分析各影像学参数与CAS评分的关系。结果 活动组EMD、EMA、T2RTmax、T2RTmean及眼球突出度组间比较均具有统计学意义(P<0.05),且活动组各定量参数明显增大;ROC曲线分析TRAb、T2RTmax与眼球突出度联合评估GO的效能最好,高于三组单一的诊断价值,AUC值为0.905,敏感度为91.7%,特异度为81.0%,截断值为0.44。EMA(r=0.73,P<0.05)、EMD(r=0.70,P<0.05)、T2RT(r=0.83,P<0.05)与眼球突出度(r=0.75,P<0.05)均与CAS呈正相关。结论 磁共振多参数及血清学指标均可评估GO活动性,两者联合能提高对GO的诊断效能。
[Abstract] Objective To explore the value of orbital parameters combined with serological parameters in the diagnosis of Graves's orbitopathy (GO) activity by quantitative analysis.Materials and Methods A retrospective collection of 47 patients diagnosed with GO who visited the Endocrinology Department of North China University of Science and Technology Affiliated Hospital from January 2024 to February 2025 was conducted. Patients were divided into active and inactive groups based on Clinical Activity Score (CAS), and a control group consisting of 15 healthy individuals was also collected. All subjects were examined by MRI and serology. The maximal diameter, maximal cross-sectional area, T2 relaxation time (T2RT) and exophthalmos of each extraocular muscle of the three groups were measured respectively, and the clinical data of the three groups were collected. The parameters were statistically analyzed by SPSS 27.0 software, and the parameters with statistical differences were quantified by binary logistic regression combined with MRI. The receiver operating characteristics (ROC) curve was used to evaluate the predictive efficacy of quantitative parameters of extraocular muscles on GO activity, and the area under the curve (AUC) was compared by DeLong method. Spearman's correlation analysis was used to analyze the relationship between imaging parameters and CAS score.Results The maximal diameter, maximal cross-sectional area, T2RTmax, T2RTmean and exophthalmos in the activity group were statistically significant (P < 0.05), and the quantitative parameters in the activity group were significantly increased. ROC curve analysis shows that TRAb, T2RTmax and exophthalmos have the best diagnostic efficacy, which is higher than the single diagnostic value of the three groups. The AUC value is 0.905, the sensitivity is 91.7%, the specificity is 81.0%, and the cutoff value is 0.44. The maximumcross-sectional area (r = 0.73, P < 0.05), diameter (r = 0.70, P < 0.05), T2RT (r = 0.83, P < 0.05) and exophthalmos (r = 0.75, P < 0.05) were positively correlated with CAS score.Conclusions Multi-parameters of magnetic resonance imaging and serological indexes can evaluate the activity of GO, and the combination of them can improve the efficacy of clinical diagnosis of GO.
[关键词] T2 mapping;Graves眼病;定量参数;血清学指标;磁共振成像
[Keywords] T2 mapping;Graves's orbitopathy;quantitative parameter;serological index;magnetic resonance imaging

刘俊宏 1   盛佳曦 2   赵阳 3   张厚宁 1*  

1 华北理工大学附属医院医学影像中心,唐山 063000

2 华北理工大学附属医院内分泌代谢一科,唐山 063000

3 唐山市妇幼保健院放射科,唐山 063000

通信作者:张厚宁,E-mail:xiaohan1981001@163.com

作者贡献声明:张厚宁设计本研究方案,对稿件的重要内容进行了修改;刘俊宏获取、分析、解释本研究的数据,起草和撰写稿件;盛佳曦、赵阳参与选题和设计,分析或解释本研究的数据,对稿件的重要内容进行修改;其中,盛佳曦获得了河北省医学科学研究课题项目资助;全体作者对最终要发表的论文版本进行了全面的审阅,对修改内容已进行讨论并最终同意该文发表,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河北省医学科学研究课题项目 20250952
收稿日期:2025-09-03
接受日期:2025-11-06
中图分类号:R445.2  R581.1  R771.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.12.012
本文引用格式:刘俊宏, 盛佳曦, 赵阳, 等. 基于磁共振定量参数与血清学指标联合模型对Graves眼病活动性的应用研究[J]. 磁共振成像, 2025, 16(12): 80-86. DOI:10.12015/issn.1674-8034.2025.12.012.

0 引言

       Graves眼病(Graves's orbitopathy, GO)也叫甲状腺相关性眼病,是成人最常见的眼眶疾病[1, 2],主要临床表现为畏光、流泪、眼睑水肿、结膜充血水肿、复视等,严重者可造成失明。GO主要分为急性炎症期与慢性纤维化期。急性炎症期由于炎性细胞浸润、水肿等可致眼外肌增粗;慢性纤维化期时,炎性反应消退,纤维化程度加重,但眼外肌增粗的程度已经不可逆。临床上,通常采用临床活动性评分(Clinical Activity Score, CAS)将GO分为活动期与非活动期[3, 4]

       GO患者早期临床表现并不明显,CAS对于已经有眼部深层结构改变,却无明显眼部症状表现的患者并不能精准诊断,这更需要利用影像学检查手段明确确定。MRI能利用多参数成像,能对眼眶进行多参数成像,近年来广泛应用于GO的诊疗活动中[5]。MRI通过对眼外肌进行形态学观察及多参数测量,能准确评估眼外肌水肿及纤维化情况,大量国内外研究显示MRI在评估GO的病程进展及严重程度等方面具有重要价值[6, 7]。MRI T2 mapping技术主要利用人体组织固有的T2弛豫时间(T2 relaxation time, T2RT),通过多回波自旋回波序列和单指数拟合算法,实现对组织特性的量化分析。MRI T2 mapping检查已应用于关节软骨炎症与心肌细胞损伤[8, 9]方面的研究,而T2 mapping测得的T2RT能很好地反映组织中的含水量[10],目前应用T2 mapping序列评估GO活动性的研究多采用单一影像学数据,DAS等[11]在分析T2RT与CAS的动态变化时发现,二者并不完全同步,表明影像学指标存在一定局限性,不能精准捕捉全身免疫炎症状态。目前尚未见影像学参数与血清学指标联合评估GO活动性的相关文献报道,本研究通过对GO患者眼眶参数进行精准定量测量,并联合血清学指标系统评估两者在GO活动性诊疗中的价值,旨在联合局部影像学参数与炎症因子为精准评估GO活动性提供更加全面的量化依据。

1 材料与方法

1.1 研究对象

       回顾性收集2024年1月至2025年2月就诊于华北理工大学附属医院内分泌科并确诊为GO的患者47人,共94只眼作为研究对象。收集同期体检健康人群15例,共30只眼作为对照组。

       GO患者纳入标准如下。(1)按照Bartly标准诊断[12]为GO的患者。① 有眼睑退缩且合并以下四点之一:a.甲状腺功能异常;b.眼球突出;c.眼外肌受累,主要表现为眼外肌活动受限,CT或MRI等影像学检查提示眼外肌增粗;d.视神经功能障碍;② 无眼睑退缩者,必须有甲功异常,且合并以下三点之一:a.眼球突出;b.眼外肌受累;c.视神经功能障碍;(2)MRI检查图像完整。(3)年龄≥18岁。排除标准:(1)接受过相关治疗后的眼疾患者;(2)合并其他眼部疾病患者;(3)患有其他自身免疫性疾病;(4)MRI图像受到伪影干扰导致质量不佳。

       对照组纳入标准:(1)年龄≥18岁的健康志愿者;(2)无任何与甲状腺相关的疾病或甲状腺功能异常;(3)无任何眼部不适,且未患有其他眼部相关疾病;(4)MRI检查图像完整。对照组排除标准:(1)近1个月内有急性感染性疾病导致组织水肿;(2)既往患有其他自身免疫性疾病;(3)MRI图像受到伪影干扰导致质量不佳。

       本研究遵守《赫尔辛基宣言》,经华北理工大学附属医院伦理委员会批准(批准文号:20250703005-01),免除受试者知情同意。

1.2 分组方法

       根据2016年EUGOGO指南[13]推荐临床活动性指南(CAS)评分标准将对GO患者进行分组:(1)自发性的眼球后疼痛;(2)眼球运动时伴有疼痛;(3)眼睑充血;(4)眼睑水肿;(5)球结膜充血;(6)球结膜水肿;(7)眼阜水肿。对患者双眼分别进行评分,1种临床表现为1分,CAS≥3分为活动组;CAS<3分为非活动组。

       将入组研究对象按照有无GO及GO活动性分为3组:(1)活动组;(2)非活动组;(3)正常对照组。

1.3 MRI检查

       所有受试者均进行德国西门子1.5 T磁共振扫描仪(Siemens aera 1.5 T)和20通道线圈检查。横断位平行于听呲线,冠状位垂直于硬腭。扫描序列及扫描参数如下:

       T1WI扫描参数:TR 390 ms,TE 6 ms,层厚3 mm,层间距0.3 mm,FOV 230 mm×173 mm,矩阵 256×169。

       T2WI扫描参数:TR 3000 ms,TE 80 ms,层厚3 mm,层间距0.3 mm,FOV 230 mm×173 mm,矩阵 256×169。

       T2 mapping 扫描参数:TR 2000 ms,TE 12 ms,层厚3 mm,层间距0.3 mm,FOV 160 mm×160 mm,矩阵256×256。

1.4 图像分析

       将MRI图像导入PASC系统及西门子后处理工作站,由2名具有10年以上放射影像工作经验的主任医师采用单盲法对眼外肌参数进行测量。在T1WI横断位及冠状位图像上,分别选取各条眼外肌肌腹显示最大的层面进行测量,记录上直肌(superior rectus, SR)、下直肌(inferior rectus, IR)、内直肌(medial rectus, MR)、外直肌(lateral rectus, LR)的最大直径(maximum extraocular muscle diameter, EMD),测量该层面下各条眼外肌最大横截面积(maximum extraocular muscle area, EMA)。在T2WI横断位图像上,选取眼球及视神经显示最清晰的最大层面后,以两侧颧弓最前缘为参照点绘制连线,再测量角膜前缘至该连线的垂直距离作为眼球突出度。T2 mapping冠状位图像上,选取显示眼外肌最大横截面积的层面,分别沿四条眼外肌外缘勾画感兴趣区(region of interest, ROI),勾画ROI时尽量避开肌肉、血管与泪腺区域,避免部分容积效应导致数值偏差,然后取四条眼外肌中T2RT最大值来代表这只眼的信号强度值,记为T2RTmax,计算四条眼外肌T2RT平均值,记为T2RTmean,见图1

图1  患者女,44岁,诊断为Graves眼病活动期。1A:T2 mapping冠状位检查图像伪彩图,四条眼外肌不同程度增粗,四条眼外肌色阶多为蓝绿色;1B:ROI勾画示意图。在T2 mapping冠状位图像上选择下直肌显示最大的层面,勾画ROI测量下直肌T2RT。ROI:感兴趣区;T2RT:T2弛豫信息。
Fig. 1  Patient: Female, 44 years old, diagnosed with active Graves's orbitopathy. 1A: Color-coded T2 mapping coronal images showing various degrees of enlargement of the four extraocular muscles, mostly in blue-green color; 1B: Illustration of ROI delineation. On the coronal T2 mapping images, the inferior rectus is selected at the slice showing the maximum cross-section, and ROI is delineated to measure the T2RT of the inferior rectus. ROI: region of interest; T2RT: T2 relaxation time information.

1.5 血清学检测

       收集所有受试者促甲状腺激素(thyroid stimulating hormone, TSH)、游离三碘甲腺原氨酸(free triiodothyronine, FT3)、游离甲状腺素(free thyroxine, FT4)、三碘甲腺原氨酸(triiodothyronine, T3)、甲状腺素(thyroxine, T4)、甲状腺素受体抗体(thyrotropin receptor antibody, TRAb)、抗甲状腺过氧化物酶抗体(anti-thyroid peroxidase utoantibody, anti-TPOAb)、抗甲状腺球蛋白抗体(anti-thyroglobulin antibody, anti-TGAb)。

1.6 统计学分析

       通过SPSS 27.0软件进行统计学分析,Ρ<0.05具有统计学意义。采用组内相关系数(intra-class correlation coefficient, ICC)对两位观察者之间的一致性进行评估,ICC>0.75,说明一致性良好。对于定量资料首先进行正态性检验,符合正态分布则以均数±标准差表示,组间比较采用单因素方差分析;反之则以MP25,P75)表示,采用Mann-Whitney U检验和Kruskal-Wallis H检验行组间比较;定性资料组间比较采用卡方检验。将差异有统计学意义的参数采用二元logistic回归方法计算并联合MRI定量参数及血清学指标。采用受试者工作特征(receiver operating characteristic, ROC)曲线评估血清学指标、眼外肌各定量参数及两种联合参数对GO活动性的预测效能,采用DeLong 法比较曲线下面积(area under the curve, AUC)。对眼外肌各定量参数与CAS评分间相关性行Spearman's检验。

2 结果

2.1 一般资料

       本研究共纳入47例GO患者和15例对照组,GO患者男17例,女30例,年龄(43.38±12.40)岁,其中活动组24例(48只眼),非活动组23例(46只眼);对照组共15例(30只眼),包括男8例,女7例,年龄(41.07±17.45)岁。性别、年龄、吸烟史在活动组、非活动组及对照组三组临床资料间差异无统计学意义(P>0.05)(表1)。

表1  三组研究对象临床资料差异性分析
Tab. 1  Analysis of differences in clinical data among three groups ofresearch subjects

2.2 实验室血清学资料分析

       TRAb、anti-TPOAb在活动组与非活动组间差异具有统计学意义(P<0.05),而TSH、FT3、FT4、T3、T4、anti-TGAb差异无统计学意义(P>0.05)(表2)。因正常组甲状腺功能均在正常范围内,不参与统计。

表2  实验室血清学参数差异性分析
Tab. 2  Analysis of differences in laboratory serological parameters

2.3 两位观察者测得各参数一致性分析

       两位观察者测量数据的一致性良好(ICC>0.75),测量数据准确可靠。结果见表3

表3  两位观察者测得各参数一致性分析
Tab. 3  Consistency test results of each parameter measured by two observers

2.4 眼眶定量参数差异分析

       EMA和EMD在活动组、非活动组及对照组间差异均具有统计学意义(P<0.05),且活动组EMA及EMD大于非活动组;三组在T2RTmax、T2RTmean及眼球突出度间差异具有统计学意义(P<0.05),活动组T2RT值及眼球突出度明显升高(表4)。

表4  眼眶定量参数差异分析
Tab. 4  Analysis of differences in orbital quantitative parameters

2.5 眼眶定量参数联合血清学指标诊断效能分析

       TRAb、T2RTmax、眼球突出度、影像学参数、影像学参数联合血清学指标进行ROC曲线分析,AUC值分别为0.744、0.808、0.797、0.855、0.905。采用DeLong检验显示影像学参数联合血清学指标诊断效能得到提升(图2表5),其敏感度为91.7%,特异度为81.0%,截断值为0.44。

图2  受试者工作曲线分析眼外肌定量参数联合血清学指标诊断GO活动性的效能 GO:Graves眼病;T2RTmax:T2弛豫信息最大值;TRAb:甲状腺素受体抗体;ROC:受试者工作特征。
Fig. 2  Efficacy of quantitative parameters of extraocular muscles combined with serological indexes in diagnosis of GO activity by working curve analysis of subjects. GO: Graves's orbitopathy; T2RTmax: maximum T2 relaxation information; TRAb: thyroid stimulating hormone receptor antibody; ROC: receiver operating characteristic.
表5  眼眶定量参数联合血清学指标诊断效能分析
Tab. 5  Analysis of diagnostic efficacy of combined orbital quantitative parameters and serological indicators

2.6 眼眶定量参数与CAS评分相关性分析

       EMA、EMD、T2RT与眼球突出度均与CAS呈正相关,r值分别为0.73、0.70、0.83、0.75(P<0.05)(图3)。

图3  影像学参数与CAS的相关性散点图。3A:EMA与CAS评分的相关性;3B:EMD与CAS评分的相关性;3C:T2RT与CAS评分的相关性;3D:眼球突出度与CAS评分的相关性。CAS:临床活动性评分;EMA:眼外肌最大横截面积;EMD:眼外肌最大直径;T2RT:T2弛豫时间。
Fig. 3  Scatter plot of the correlation between imaging parameters and CAS. 3A: Correlation between the maximum cross-sectional area of extraocular muscle and CAS score; 3B: Correlation between the maximum diameter of extraocular muscle and CAS score; 3C: Correlation between T2RT and CAS score; 3D: Correlation between exophthalmos and CAS score. CAS: clinical activity score; EMA: maximum cross-sectional area of extraocular muscles; EMD: maximum diameter of extraocular muscles; T2RT: T2 relaxation time.

3 讨论

       本研究主要是通过创新性引入T2 mapping序列,通过定量测量眼眶相关参数并与CAS做相关性分析,探讨眼眶各参数对于GO活动性的评估价值,结果显示活动组眼外肌T2RTmax、T2RTmean、EMD、EMA及眼球突出度均大于非活动组与对照组,进一步联合血清学检查指标对GO活动性进行评估,发现两者联合大大提高了对于GO活动性的评估效能,为临床诊断GO并且判断GO的活动性提供更多诊断依据。

3.1 临床资料与GO活动性的相关性

       GO的发病机制尚未完全阐明,大部分学者认为与自身抗体、遗传及环境因素相关[14],本研究中性别及年龄差异并无统计学意义。吸烟也被认为是导致GO恶化的重要原因[15],吸烟者GO的发病率更高且病情更严重,然而在本研究中三组之间吸烟史并无差异,这可能与研究纳入的患者类型较为单一有关。此外,在OEVERHAUS等[16]的研究中还发现男性吸烟者GO的发病率显著高于女性,这可能与性别相关的免疫机制有关。

       TRAb是GO发生发展过程中的关键抗体[17],TRAb能与促甲状腺素受体(thyrotropin receptor, TSHR)结合,刺激甲状腺分泌甲状腺激素,还能与眼眶成纤维细胞、脂肪细胞上的TSHR结合,引发眼眶炎症、脂肪增生和肌肉水肿,导致眼球突出等症状[18]。TGAb和TPOAb同样能反映甲状腺功能异常[19],在活动期时TGAb和TPOAb明显升高,GO中TGAb和TPOAb阳性检出率升高,常与TRAb三者联合诊断GO,提高诊断正确率。本研究中活动组TSH低于对照组,而FT3、FT4、T3、T4高于对照组。原因可能是TRAb持续激活TSHR,从而抑制TSH分泌,导致TSH降低,FT3、FT4、T3、T4升高,引起炎症反应,导致眼肌红肿、结膜充血及眼球活动受限等。

3.2 眼眶定量参数与GO活动性的相关性

       在GO活动期时由于眼外肌炎症变化及组织液潴留导致眶内容物体积增大,而眼眶骨性结构容积固定,导致眼球向前突出,眼球突出度明显升高[20]。GO患者眼球突出度增大,且活动期患者眼球突出度大于非活动期患者,与严重程度相关,这与王嫚等[21]关于眼球突出度的研究一致,在王嫚等的研究中,眼球突出度诊断GO的效能最高,AUC约为0.906,而在本研究中眼球突出度诊断效能略低于王嫚等的结果。在非活动期时,眼球突出度常因组织水肿消退而回落,但仍高于健康对照组,这与活动期时眼眶组织结构逐渐向纤维化方向发展有关。

       眼外肌是GO最常见的受累结构,既往大部分研究仅聚焦于分析GO活动期各条眼外肌最大径线的变化[22]。本研究引入了眼外肌最大横截面积这一指标,探讨三组之间的眼外肌形态差异。在测量眼外肌最大直径时发现活动组、非活动组明显大于对照组,而活动组与非活动组差别并不明显,这表明眼外肌增粗在GO发展过程中持续存在。随着炎症程度的增加,水肿更加严重,眼外肌面积也随之增大,两者呈正相关。眼外肌在非活动期开始向纤维化程度发展,胶原纤维增生和沉积可导致肌肉组织萎缩[23],眼外肌最大横截面积在非活动组与对照组中差别并不显著。眼外肌横截面积并不能单独作为诊断GO患者活动性的因素,非活动期患者处于纤维化期时眼外肌横截面积同样增大[24],这个问题同样存在于眼外肌最大直径,由于纤维化程度不可逆,眼外肌增粗程度同样不可逆,因此眼外肌增粗亦可出现在非活动期GO患者中[25]

3.3 MRI T2 mapping技术在GO中的应用

       MRI T2 mapping序列可以定量评估眼外肌组织的细微结构变化,无需采用增强扫描或对比脑白质与眼外肌信号比值的方法,减少了主观测量误差,并且能够避免对比剂过敏的风险,为临床诊断或者治疗提供更有效的检查方法[26, 27]。LI等[28]曾探讨多参数MRI对于GO的诊断价值,相较于三维T1加权快速场回波序列(three-dimensiona T1-weighted fast field echo, 3D-T1-FFE),T2 mapping对GO的诊断更有价值。GO活动期主要是由肌纤维之间糖胺聚糖沉积和脂肪浸润引起炎性水肿从而导致眼外肌增粗,已有研究表明炎性水肿程度与CAS评分呈正相关[29, 30],本研究对GO患者双侧眼外肌进行测量,发现活动组眼外肌T2RT明显高于非活动组,既往研究也发现活动组的T2RT明显升高[31],提示T2RT可以作为反映GO活动性的指标[32, 33]。这与许多研究结果一致,王璐等[34]结果表明活动组所有眼外肌的T2RT均明显升高,且下直肌T2RT值最大,这与下直肌是最常受累的肌肉有关[35]。GO患者在非活动期炎症浸润消退,纤维化程度加重,T2RT也随着减小,非活动期T2RT与对照组差异并不显著,这表明T2RT随着CAS评分的降低而减小,与CAS评分成正比[36]

3.4 MRI参数联合血清学检查诊断GO活动性效能

       CAS评分主要观测临床表现,不能很好地反映眶后组织受累情况,目前已有许多研究采用不同的MRI检查参数来对GO活动性进行诊断[37],李德福等[32]采用了体素内不相干运动扩散加权成像与T2 mapping联合评价GO的活动性,结果显示二者联合能对GO活动性具有良好诊断价值,但MRI对于疾病早期炎性水肿变化并不敏感[38]。在ZHAO等[39]的研究中,TRAb在GO早期阶段就已呈升高趋势,为临床诊断GO活动性早期提供诊断依据。有学者将甲状腺刺激抗体/促甲状腺激素受体抗体比值对MRI诊断结果进行评价,敏感度为91%[40]。本研究通过影像学定量参数与血清学指标两者相联合诊断GO的活动性,二者联合指标的AUC值为0.905,高于单一的TRAb及影像学联合参数。影像学参数与血清学指标二者进行联合,优势互补提升了诊断GO活动性的价值,为临床识别GO早期变化,病情诊断并进行治疗提供可靠依据。

3.5 局限性与展望

       本研究存在一些的局限性:(1)样本量相对较少,可能在一定程度上影响结果的稳定性,仍需进一步扩大样本量验证研究结果,在后续的研究中将纳入更多的相关病例来进行试验研究;(2)眼外肌临床表现与病理变化并不完全平行,进行CAS评分时容易产生误差,因此需要纳入更多检查结果对患者进行分组;(3)本研究为回顾性研究,主要依赖历史医疗记录,存在数据偏倚或信息偏倚,未来应开展前瞻性研究,为临床诊疗提供新思路。

4 结论

       综上所述,MRI定量参数及血清学检查均可有效预估GO的活动性,两者联合诊断能进一步提升GO活动性诊断的敏感度和特异度,为临床判断GO活动状态,后续制订治疗方案提供可靠依据。

[1]
BARTALENA L, KAHALY G J, BALDESCHI L, et al. The 2021 European Group on Graves' orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves' orbitopathy[J/OL]. Eur J Endocrinol, 2021, 185(4): G43-G67 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/34297684/. DOI: 10.1530/EJE-21-0479.
[2]
DEBNAM J M, KOKA K, ESMAELI B. Extrathyroidal manifestations of thyroid disease: Graves eye disease[J]. Neuroimaging Clin N Am, 2021, 31(3): 367-378. DOI: 10.1016/j.nic.2021.04.006.
[3]
KAHALY G J. Management of Graves thyroidal and extrathyroidal disease: an update[J]. J Clin Endocrinol Metab, 2020, 105(12): 3704-3720. DOI: 10.1210/clinem/dgaa646.
[4]
LIU X T, SU Y, JIANG M D, et al. Application of magnetic resonance imaging in the evaluation of disease activity in Graves' ophthalmopathy[J]. Endocr Pract, 2021, 27(3): 198-205. DOI: 10.1016/j.eprac.2020.09.008.
[5]
张应从, 毕秋, 龚霞蓉, 等. MRI在甲状腺相关性眼病活动性评估方面的研究进展[J]. 磁共振成像, 2023, 14(9): 125-130. DOI: 10.12015/issn.1674-8034.2023.09.023.
ZHANG Y C, BI Q, GONG X R, et al. Research progress of magnetic resonance imaging in the assessment of TAO activity[J]. Chin J Magn Reson Imag, 2023, 14(9): 125-130. DOI: 10.12015/issn.1674-8034.2023.09.023.
[6]
SONG C, LUO Y S, YU G F, et al. Current insights of applying MRI in Graves' ophthalmopathy[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 991588 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36267571/. DOI: 10.3389/fendo.2022.991588.
[7]
ČIVRNÝ J, KARHANOVÁ M, HÜBNEROVÁ P, et al. MRI in the assessment of thyroid-associated orbitopathy activity[J]. Clin Radiol, 2022, 77(12): 925-934. DOI: 10.1016/j.crad.2022.08.124.
[8]
TRIADYAKSA P, OUDKERK M, SIJENS P E. Cardiac T2 * mapping: Techniques and clinical applications[J]. J Magn Reson Imaging, 2020, 52(5): 1340-1351. DOI: 10.1002/jmri.27023.
[9]
RUSSO F, AMBROSIO L, GIANNARELLI E, et al. Innovative quantitative magnetic resonance tools to detect early intervertebral disc degeneration changes: a systematic review[J]. Spine J, 2023, 23(10): 1435-1450. DOI: 10.1016/j.spinee.2023.05.011.
[10]
KAKIMOTO N, WONGRATWANICH P, SHIMAMOTO H, et al. Comparison of T2 values of the displaced unilateral disc and retrodiscal tissue of temporomandibular joints and their implications[J/OL]. Sci Rep, 2024, 14(1): 1705 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38242921/. DOI: 10.1038/s41598-024-52092-6.
[11]
DAS T, ROOS J C P, PATTERSON A J, et al. T2-relaxation mapping and fat fraction assessment to objectively quantify clinical activity in thyroid eye disease: an initial feasibility study[J]. Eye (Lond), 2019, 33(2): 235-243. DOI: 10.1038/s41433-018-0304-z.
[12]
BARTLEY G B, GORMAN C A. Diagnostic criteria for Graves' ophthalmopathy[J]. Am J Ophthalmol, 1995, 119(6): 792-795. DOI: 10.1016/s0002-9394(14)72787-4.
[13]
HOANG T D, STOCKER D J, CHOU E L, et al. 2022 update on clinical management of Graves disease and thyroid eye disease[J]. Endocrinol Metab Clin North Am, 2022, 51(2): 287-304. DOI: 10.1016/j.ecl.2021.12.004.
[14]
ZHENG J Y, DUAN H H, YOU S F, et al. Research progress on the pathogenesis of Graves' ophthalmopathy: based on immunity, noncoding RNA and exosomes[J/OL]. Front Immunol, 2022, 13: 952954 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36081502/. DOI: 10.3389/fimmu.2022.952954.
[15]
CAO J M, SU Y H, CHEN Z K, et al. The risk factors for Graves' ophthalmopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(4): 1043-1054. DOI: 10.1007/s00417-021-05456-x.
[16]
OEVERHAUS M, WINKLER L, STÄHR K, et al. Influence of biological sex, age and smoking on Graves' orbitopathy - a ten-year tertiary referral center analysis[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1160172 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37082130/. DOI: 10.3389/fendo.2023.1160172.
[17]
YANG Y, CHEN H. Clinical application of thyrotropin receptor antibodies[J]. Horm Metab Res, 2025, 57(2): 79-87. DOI: 10.1055/a-2498-8050.
[18]
KALRA S, SELIM S, SHRESTHA D, et al. Best practices in the laboratory diagnosis, prognostication, prediction, and monitoring of Graves' disease: role of TRAbs[J/OL]. BMC Endocr Disord, 2024, 24(1): 274 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/39707289/. DOI: 10.1186/s12902-024-01809-9.
[19]
ALHUBAISH E S, ALIBRAHIM N T, MANSOUR A A. The clinical implications of anti-thyroid peroxidase antibodies in Graves' disease in basrah[J/OL]. Cureus, 2023, 15(3): e36778 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37123800/. DOI: 10.7759/cureus.36778.
[20]
LANZOLLA G, MARINÒ M, MENCONI F. Graves disease: latest understanding of pathogenesis and treatment options[J]. Nat Rev Endocrinol, 2024, 20(11): 647-660. DOI: 10.1038/s41574-024-01016-5.
[21]
王嫚, 沈中原, 阚宏, 等. 3 T MRI定量测量眼眶结构在Graves眼病分期中的诊断价值[J]. 磁共振成像, 2024, 15(5): 61-67. DOI: 10.12015/issn.1674-8034.2024.05.011.
WANG M, SHEN Z Y, KAN H, et al. Diagnostic value of quantitative measurement of orbital structure by 3 T MRI in staging of Graves ophthalmopathy[J]. Chin J Magn Reson Imag, 2024, 15(5): 61-67. DOI: 10.12015/issn.1674-8034.2024.05.011.
[22]
HANAI K R, TABUCHI H, NAGASATO D, et al. Automated detection of enlarged extraocular muscle in Graves' ophthalmopathy with computed tomography and deep neural network[J/OL]. Sci Rep, 2022, 12(1): 16036 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36163451/. DOI: 10.1038/s41598-022-20279-4.
[23]
LIXI F, CUCCU A, GIANNACCARE G, et al. Subclinical ocular motility dysfunction and extraocular muscle changes in inactive Graves' orbitopathy[J/OL]. J Pers Med, 2024, 14(8): 848 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/39202039/. DOI: 10.3390/jpm14080848.
[24]
LENNERSTRAND G, TIAN S N, ISBERG B, et al. Magnetic resonance imaging and ultrasound measurements of extraocular muscles in thyroid-associated ophthalmopathy at different stages of the disease[J]. Acta Ophthalmol Scand, 2007, 85(2): 192-201. DOI: 10.1111/j.1600-0420.2006.00807.x.
[25]
RANA K, JUNIAT V, PATEL S, et al. Extraocular muscle enlargement[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(11): 3419-3435. DOI: 10.1007/s00417-022-05727-1.
[26]
YANG L B, DAI X M, SU J W, et al. Performance of T2 mapping in the staging of Graves' ophthalmopathy based on different region of interest selection methods[J]. Acta Radiol, 2024, 65(7): 835-840. DOI: 10.1177/02841851241248640.
[27]
ZHANG H Y, LU T, LIU Y T, et al. Application of quantitative MRI in thyroid eye disease: imaging techniques and clinical practices[J]. J Magn Reson Imaging, 2024, 60(3): 827-847. DOI: 10.1002/jmri.29114.
[28]
LI D F, GUO X J, ZENG J G, et al. T2 relaxation time in extraocular muscles of patients with mild thyroid- associated ophthalmopathy: comparing T2 mapping with and without fat suppression using different measurement methods[J/OL]. Curr Med Imaging, 2024, 20: e15734056299907 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38639286/. DOI: 10.2174/0115734056299907240404064636.
[29]
LI Z F, LUO Y S, FENG X T, et al. Application of multiparameter quantitative magnetic resonance imaging in the evaluation of Graves' ophthalmopathy[J]. J Magn Reson Imaging, 2023, 58(4): 1279-1289. DOI: 10.1002/jmri.28642.
[30]
YAMAGUCHI S, ODA S, KIDOH M, et al. Cardiac MRI T1 and T2 mapping as a quantitative imaging biomarker in transthyretin amyloid cardiomyopathy[J/OL]. Acad Radiol, 2024, 31(2): 514-522 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/37775448/. DOI: 10.1016/j.acra.2023.08.045.
[31]
BURCH H B, PERROS P, BEDNARCZUK T, et al. Management of thyroid eye disease: a consensus statement by the American thyroid association and the European thyroid association[J/OL]. Eur Thyroid J, 2022, 11(6): e220189 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/36479875/. DOI: 10.1530/ETJ-22-0189.
[32]
李德福, 温伟春, 李红兵, 等. 体素内不相干运动扩散加权成像与T2 mapping评估甲状腺相关性眼病活动性的临床研究[J]. 磁共振成像, 2021, 12(10): 66-69, 73. DOI: 10.12015/issn.1674-8034.2021.10.015.
LI D F, WEN W C, LI H B, et al. Clinical study of intravoxel incoherent motion diffusion-weighted imaging and T2 mapping in evaluating the activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imag, 2021, 12(10): 66-69, 73. DOI: 10.12015/issn.1674-8034.2021.10.015.
[33]
CHENG J Y, ZHANG X Y, LIAN J X, et al. Evaluation of activity of Graves' orbitopathy with multiparameter orbital magnetic resonance imaging (MRI)[J]. Quant Imaging Med Surg, 2023, 13(5): 3040-3049. DOI: 10.21037/qims-22-814.
[34]
王璐, 樊瑶, 龙健, 等. 磁共振T2-mapping评估Graves眼病活动性的价值[J]. 解放军医学杂志, 2024, 49(1): 70-74. DOI: 10.11855/j.issn.0577-7402.1757.2023.0619.
WANG L, FAN Y, LONG J, et al. Value of evaluating Graves ophthalmopathy motiliny by MRI T2-mapping[J]. Med J Chin People's Liberation Army, 2024, 49(1): 70-74. DOI: 10.11855/j.issn.0577-7402.1757.2023.0619.
[35]
BARTALENA L, GALLO D, TANDA M L, et al. Thyroid eye disease: epidemiology, natural history, and risk factors[J/OL]. Ophthalmic Plast Reconstr Surg, 2023, 39(6s): S2-S8 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/38054980/. DOI: 10.1097/iop.0000000000002467.
[36]
CHEN W, HU H, CHEN H H, et al. Utility of T2 mapping in the staging of thyroid-associated ophthalmopathy: efficiency of region of interest selection methods[J]. Acta Radiol, 2020, 61(11): 1512-1519. DOI: 10.1177/0284185120905032.
[37]
濮雄鹰, 胡昊, 陆金灵, 等. 动态对比增强MRI在甲状腺相关性眼病眼外肌微循环及活动性分期中的评估价值[J]. 磁共振成像, 2024, 15(7): 99-104. DOI: 10.12015/issn.1674-8034.2024.07.017.
PU X Y, HU H, LU J L, et al. Value of dynamic contrast-enhanced MRI in evaluating the microcirculation of extraocular muscle and stage of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imag, 2024, 15(7): 99-104. DOI: 10.12015/issn.1674-8034.2024.07.017.
[38]
ESPOSITO A, FRANCONE M, FALETTI R, et al. Lights and shadows of cardiac magnetic resonance imaging in acute myocarditis[J]. Insights Imaging, 2016, 7(1): 99-110. DOI: 10.1007/s13244-015-0444-7.
[39]
ZHAO S D, SHI S S, YANG W C, et al. RhoA with associated TRAb or FT3 in the diagnosis and prediction of Graves' ophthalmopathy[J/OL]. Dis Markers, 2022, 2022: 8323946 [2025-09-02]. https://pubmed.ncbi.nlm.nih.gov/35937945/. DOI: 10.1155/2022/8323946.
[40]
NAKANO M, KONISHI H, KOSHIBA M. Thyroid-stimulating antibody/thyroid-stimulating hormone receptor antibody ratio as a sensitive screening test for active Graves' orbitopathy[J]. Endocr Pract, 2022, 28(10): 1050-1054. DOI: 10.1016/j.eprac.2022.07.007.

上一篇 基于DCE-MRI的影像组学对高级别胶质瘤与单发脑转移瘤的预测价值
下一篇 全身磁共振成像对乳腺癌术后偶发病变的诊断价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2