分享:
分享到微信朋友圈
X
临床研究
合成磁共振成像联合酰胺质子加权转移成像对前列腺癌分级的诊断价值
赵泽宇 张茜 胡尘翰 乔晓梦 包婕 王希明

本文引用格式:赵泽宇, 张茜, 胡尘翰, 等. 合成磁共振成像联合酰胺质子加权转移成像对前列腺癌分级的诊断价值[J]. 磁共振成像, 2025, 16(12): 125-131. DOI:10.12015/issn.1674-8034.2025.12.018.


[摘要] 目的 探究合成磁共振成像(synthetic magnetic resonance imaging, SyMRI)联合酰胺质子转移加权(amide proton transfer-weighted, APTw)成像对前列腺癌(prostate cancer, PCa)国际泌尿病理学会(International Society of Urological Pathology, ISUP)分级的诊断价值。材料与方法 回顾性分析苏州大学附属第一医院2024年4月至2025年4月经病理证实PCa的78例患者的临床及影像资料,根据病理结果对PCa进行ISUP分级,所有受试者均行常规MRI序列和SyMRI序列(MAGiC)、APTw序列成像扫描,并测量肿瘤的纵向弛豫值(T1值)、横向弛豫值(T2值)、质子密度(proton density, PD值)、酰胺质子转移(amide proton transfer, APT)率(APT值)和表观扩散系数(apparent diffusion coefficient, ADC值)。使用t检验或Mann-Whitney U检验评估低级别PCa(ISUP 1级)与中高级别PCa(ISUP≥2级)间各定量值的差异。使用Spearman相关系数检验各参数与ISUP分级的相关性。采用受试者工作特征(receive operating characteristic, ROC)曲线评价单一指标和联合模型对中高级别PCa的诊断效能。结果 中高级别PCa组T2值、ADC值均低于低级别PCa组,APT值高于低级别PCa组,差异具有统计学意义(P<0.05),T1值和PD值差异无统计学意义(P>0.05)。PCa的ISUP分级与APT值呈正相关(r=0.359,P=0.001),与T2值、ADC值呈负相关(r=-0.304,P=0.007;r=-0.535,P<0.001),与T1值和PD值无显著相关性(r=-0.158、-0.103;P>0.05)。T2值对中高级别诊断的AUC值为0.71(95% CI:0.60~0.80),APT值诊断的AUC值为0.75(95% CI:0.64~0.84)。联合T2值和APT值建立联合诊断模型,联合模型诊断的AUC值为0.78(95% CI:0.67~0.87),与ADC值的诊断效能(AUC=0.86,95% CI:0.76~0.92)差异无统计学意义(DeLong检验:P>0.05)。结论 SyMRI和APTw成像有助于PCa的分级诊断,二者联合对中高级别PCa的诊断效能与ADC值相当,有助于PCa的分级诊断和治疗决策的选择。
[Abstract] Objective To investigate the diagnostic value of synthetic magnetic resonance imaging (SyMRI) combined with amide proton transfer-weighted (APTw) imaging in the ISUP grading of prostate cancer (PCa).Materials and Methods Total 78 patients with pathologically confirmed PCa were retrospectively enrolled in The First Affiliated Hospital of Soochow University form April 2024 to April 2025. Based on pathological results, the PCa were classified according to the ISUP grade system. All patients underwent conventional MRI sequences, MAGiC, and APTw imaging scans. Longitudinal relaxation time (T1), transverse relaxation time (T2), proton density (PD), amide proton transfer rate (APT), and apparent diffusion coefficient (ADC) values were measured. Independent Student t test or Mann-Whitney U test were used to assess differences in quantitative values between low-grade PCa (ISUP grade 1) and intermediate/high-grade PCa (ISUP grade ≥ 2). Parametric variables were correlated with the ISUP grades using the Spearman rank correlation coefficient. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic efficiency of individual parameters and combined models in distinguishing intermediate/high-grade PCa.Results Intermediate/high-grade PCa group showed significantly lower T2 and ADC values but higher APT value than low-grade group (P < 0.05). There was no significant differences in T1 and PD values (P > 0.05). ISUP grade demonstrated a significant positive correlation with APT value (r = 0.359, P = 0.001) and significant negative correlations with T2 value (r = -0.304, P = 0.007) and ADC value (r = -0.535, P < 0.001). No significant correlations were found with T1 and PD values (r = -0.158, -0.103, both P > 0.05). For diagnosing intermediate/high-grade PCa, the AUCs were 0.71 (95% CI: 0.60 to 0.80) for T2 value and 0.75 (95% CI: 0.64 to 0.84) for APT value. Combined model was established by integrating T2 and APT values. AUC of the combined model was 0.78 (95% CI: 0.67 to 0.87), showing no significant difference compared with ADC value (AUC = 0.86, 95% CI: 0.76 to 0.92, DeLong test: P > 0.05).Conclusions SyMRI and APTw imaging are beneficial for grading of PCa. The combined model demonstrates diagnostic performance comparable to ADC value in distinguishing intermediate/high-grade PCa, providing valuable guidance for grading and clinical decision of PCa.
[关键词] 前列腺癌;合成磁共振成像;酰胺质子转移加权成像;国际泌尿病理分级;磁共振成像
[Keywords] prostate cancer;synthetic magnetic resonance imaging;amide proton transfer-weighted imaging;International Society of Urological Pathology grading;magnetic resonance imaging

赵泽宇    张茜    胡尘翰    乔晓梦    包婕    王希明 *  

苏州大学附属第一医院放射科,苏州 215006

通信作者:王希明,E-mail:wangximing1998@163.com

作者贡献声明:王希明设计本研究的方案,对稿件重要内容进行了修改,获得了苏州市医疗卫生科技创新项目资金资助;赵泽宇起草和撰写稿件,获取、分析和解释本研究的数据;张茜、胡尘翰、乔晓梦、包婕获取、分析或解释本研究的数据,对稿件重要内容进行了修改,包婕获得了苏州市科教兴卫青年科技项目资金资助;全部作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 苏州市医疗卫生科技创新项目 SKY2022003 苏州市科教兴卫青年科技项目 KJXW2023006
收稿日期:2025-08-17
接受日期:2025-11-10
中图分类号:R445.2  R737.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.12.018
本文引用格式:赵泽宇, 张茜, 胡尘翰, 等. 合成磁共振成像联合酰胺质子加权转移成像对前列腺癌分级的诊断价值[J]. 磁共振成像, 2025, 16(12): 125-131. DOI:10.12015/issn.1674-8034.2025.12.018.

0 引言

       前列腺癌(prostate cancer, PCa)是全球老年男性常见的恶性肿瘤,我国PCa发病率虽低于西方发达国家,但是近年来随着生活质量的提高和检查技术的提升,其发病率有逐步上升的趋势,已经成为我国男性泌尿生殖系统第一大恶性肿瘤[1, 2]。国际泌尿病理学会(International Society of Urological Pathology, ISUP)在2014年提出PCa分级系统,ISUP分级根据Gleason评分的主要评分和次要评分确定,ISUP分级越高,肿瘤恶性程度越高,患者预后较差[3]。因此,明确PCa的危险分级,对于临床决策的制订以及患者预后的程度具有重要意义[4, 5]

       前列腺特异性抗原(prostate specific antigen, PSA)指标是筛查PCa的常用实验室检查,但不同级别PCa均会导致PSA指标升高,使其特异度降低[6];穿刺活检为有创性检查,不宜重复使用[7, 8, 9];MRI检查为前列腺的主要检查方法,其中T2WI序列、扩散加权成像(diffusion weighted imaging, DWI)序列和根据其生成的表观扩散系数(apparent diffusion coefficient, ADC)是评估前列腺良恶性病灶及PCa分级的可靠指标,表现为T2WI低信号以及低ADC值[10, 11],但常规MRI检查对于前列腺病灶的诊断基于医师的主观判断和经验,这通常会造成诊断的偏差。纵向弛豫时间T1、横向弛豫时间T2,以及质子密度(proton density, PD)是组织的固有属性,能够反映组织的病理生理状态[12, 13]

       合成磁共振成像(synthetic magnetic resonance imaging, SyMRI)是近年来一种新兴的定量MRI技术,通过一次扫描能够生成多种加权图像(T1、T2、FLAIR等)及包括T1、T2、PD在内的定量图像[14]。SyMRI的适用性已在多种疾病中得到证实,包括乳腺癌、直肠癌、PCa等[15, 16, 17, 18]。化学交换饱和转移(chemical exchange saturation transfer, CEST)成像技术作为一种分子MRI技术,由磁化传递技术转变而来,其中发展最为成熟的是酰胺质子转移加权(amide proton transfer-weighted, APTw)成像[19]。APTw成像能够基于酰胺质子和水质子之间的化学交换,测量可移动蛋白质和自由水之间的质子交换,从而提供代谢水平信息[20, 21]。既往多种研究已证实APTw成像在恶性肿瘤的诊断和分级中具有良好的可重复性及较高的诊断价值[22, 23, 24, 25]。但使用SyMRI联合APTw成像对PCa进行ISUP分级诊断目前尚未见报道,因此,本研究基于SyMRI合成定量图的可视化以及APTw成像反映代谢水平,初步探究联合SyMRI以及APTw成像对不同ISUP分级PCa的诊断价值,以协助临床优化治疗方案。

1 材料与方法

1.1 研究对象

       回顾性收集我院2024年4月至2025年4月临床高度怀疑PCa,行MRI检查及穿刺活检或手术治疗的患者病例78例。纳入标准:(1)所有患者均行SyMRI、APTw成像以及常规MRI扫描;(2)入组患者就诊前均未进行过任何肿瘤相关治疗;(3)全部患者行MRI扫描后1月内行穿刺活检或手术切除以获取病理结果。排除标准:(1)MRI图像质量差,无法满足进一步分析要求;(2)穿刺或手术病理结果非原发性PCa。本研究严格遵守《赫尔辛基宣言》,获得苏州大学附属第一医院的伦理委员会批准,免除受试者知情同意,伦理批准文号:2025477。

1.2 仪器和方法

       本研究MRI检查使用GE SIGNA Premier 3.0 T MRI扫描仪,30通道体部魔毯线圈(GE Healthcare,美国),所有患者均行SyMRI、APTw成像和常规MRI序列扫描。SyMRI扫描采用MAGiC序列,MAGiC及APTw成像序列在动态对比增强(dynamic contrast enhanced, DCE)扫描前完成。SyMRI和APTw成像扫描时间共7 min 3 s。具体扫描参数见表1

表1  磁共振扫描序列参数
Tab. 1  Magnetic resonance scanning sequence parameters

1.3 图像处理及分析

       扫描所得数据自动传入GE AW4.7工作站,运用MAGiC后处理程序(v.100.3)对MAGiC原始图像进行分析,获得T1、T2、PD定量图;APT值由APT原始图像自动后处理获得,APT值通过以下公式测得:APT%=[Ssat(-3.5 ppm)-Ssat(+3.5 ppm)]/S0。其中Ssat(-3.5 ppm)和Ssat(+3.5 ppm)分别是施加频率偏移为-3.5 ppm和+3.5 ppm的饱和脉冲后的信号强度。S0是没有饱和脉冲的信号强度[26]。ADC值根据DWI通过后处理获得。

       随后,所有图像由两名分别具有5年(住院医师)和20年(主任医师)前列腺MRI诊断经验的放射科医师独立进行分析,就可疑病灶进行感兴趣区(region of interest, ROI)勾画以测得T1、T2、PD值、APT值以及ADC值,取两位诊断医师测量参数的平均值作为最终结果用于后续分析。ROI勾画标准:(1)以病灶最大横断面为准,尽可能将病灶全部勾画;(2)ROI放置于病灶实性区域,避开尿道及出血、坏死、囊变区。ROI勾画示例图见图1。两名医师在进行图像勾画时均不知晓病理结果。1个月后由上述住院医师重新对病灶进行ROI勾画,进行可重复性分析。

图1  感兴趣区勾画示例图。
Fig. 1  Illustration example of region of interest delineation.

1.4 统计学分析

       采用SPSS 27.0软件对数据进行统计学分析。使用Shapiro-Wilk检验分析计量数据正态分布情况,符合正态分布的数据用平均值±标准差表示,不符合正态分布的数据用中位数(上下四分位数)表示。采用组内相关系数(intra-class correlation coefficient, ICC)对各定量值的观察者间及观察者内一致性进行验证,ICC>0.80表示一致性良好。采用t检验或Mann-Whitney U检验评估低级别PCa(ISUP 1级)与中高级别PCa(ISUP≥2级)间各定量值的差异。采用Bonferroni校正的单因素ANOVA检验或Kruskal-Wallis检验以确定不同ISUP分级间各参数的差异。使用Spearman相关系数检验各参数与ISUP分级的相关性。使用MedCalc软件进行受试者工作特征(receiver operating characteristic, ROC)曲线分析,以评估各定量值以及联合模型对中高级别PCa的诊断效能。根据最大约登指数得到相应的阈值、敏感度和特异度,并计算曲线下面积(area under the curve, AUC)及95%置信区间(confidence interval, CI)。采用DeLong检验比较AUC。P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       共纳入PCa患者78例,年龄范围为54~87岁,包括低级别PCa患者17例,年龄(67.76±10.52)岁,中高级别PCa患者61例,年龄(70.39±6.58)岁(图2, 图3, 4, 5, 6)。中高级别PCa组年龄与低级别PCa组年龄差异无统计学意义(P=0.210)。中高级别PCa组血清总前列腺特异抗原(total prostate specific antigen, tPSA)高于低级别PCa组tPSA,差异具有统计学意义(P=0.040)(表2)。

图2  男,74岁,前列腺癌ISUP 1级。2A:T2WI示病灶位于移行带尖部,呈低信号;2B:T2-mapping图,T2值为100 ms;2C:T1-mapping图,T1值为1499 ms;2D:PD-mapping图,PD值为81.6%;2E:APTw图,APT值为17.05%;2F:ADC图,ADC值为1.02×10-3 mm2/s。
图3  男,85岁,前列腺癌ISUP 2级。3A:T2WI示病灶位于右侧移行带,呈低信号;3B:T2-mapping图,T2值为81 ms;3C:T1-mapping图,T1值为1126 ms;3D:PD-mapping图,PD值为79.2%;3E:APTw图,APT值为18.44%;3F:ADC图,ADC值为0.70×10-3 mm2/s。
图4  男,64岁,前列腺癌ISUP 3级。4A:T2WI示病灶位于左侧外周带,呈低信号;4B:T2-mapping图,T2值为77 ms;4C:T1-mapping图,T1值为1200 ms;4D:PD-mapping图,PD值为74.3%;4E:APTw图,APT值为24.84%;4F:ADC图,ADC值为0.63×10-3 mm2/s。
图5  男,68岁,前列腺癌ISUP 4级。5A:T2WI示病灶位于左侧移行带,呈低信号;5B:T2-mapping图,T2值为75 ms;5C:T1-mapping图,T1值为1143 ms;5D:PD-mapping图,PD值为79.1%;5E:APTw图,APT值为24.24%;5F:ADC图,ADC值为0.54×10-3 mm2/s。
图6  男,72岁,前列腺癌ISUP 5级。6A:T2WI示前列腺癌弥漫型病灶;6B:T2-mapping图,T2值为76 ms;6C:T1-mapping图,T1值为1162 ms;6D:PD-mapping图,PD值为76.6%;6E:APTw图,APT值为28.44%;6F:ADC图,ADC值为0.61×10-3 mm2/s。ADC:表观扩散系数;T1:纵向弛豫时间;T2:横向弛豫时间;PD:质子密度;APT:酰胺质子转移。
Fig. 2  Male, 74 years old, with ISUP grade 1 of PCa. 2A: T2WI shows the lesion is located at the tip of the transitional zone and presents as low signal; 2B: T2-mapping image, the T2 value is 100 ms; 2C: T1-mapping image, the T1 value is 1499 ms; 2D: PD-mapping image, the PD value is 81.6%; 2E: APTw image, the APT value is 17.05%; 2F: ADC image, the ADC value is 1.02 × 10-3 mm2/s.
Fig. 3  Male, 85 years old, with ISUP grade 2 of PCa. 3A: T2WI shows the lesion is located in the right transitional zone and presents as low signal; 3B: T2-mapping image, the T2 value is 81 ms; 3C: T1-mapping image, the T1 value is 1126 ms; 3D: PD-mapping image, the PD value is 79.2%; 3E: APTw image, the APT value is 18.44%; 3F: ADC image, the ADC value is 0.70 × 10-3 mm2/s.
Fig. 4  Male, 64 years old, with ISUP grade 3 of PCa. 3A: T2WI shows the lesion is located in the left peripheral zone and presents as low signal; 4B: T2-mapping image, the T2 value is 77 ms; 4C: T1-mapping image, the T1 value is 1200 ms; 4D: PD-mapping image, the PD value is 74.3%; 4E: APTw image, the APT value is 24.84%; 4F: ADC image, the ADC value is 0.63 × 10-3 mm2/s.
Fig. 5  Male, 68 years old, with ISUP grade 4 of PCa. 5A: T2WI shows the lesion is located in the left transitional zone and presents as low signal; 5B: T2-mapping image, the T2 value is 75 ms; 5C: T1-mapping image, the T1 value is 1143 ms; 5D: PD-mapping image, the PD value is 79.1%; 5E: APTw image, the APT value is 24.24%; 5F: ADC image, the ADC value is 0.54 × 10-3 mm2/s.
Fig. 6  Male, 72 years old, with ISUP grade 2 of PCa. 6A: T2WI shows diffuse lesion of PCa; 6B: T2-mapping image, the T2 value is 76 ms; 6C: T1-mapping image, the T1 value is 1162 ms; 6D: PD-mapping image, the PD value is 76.6%; 6E: APTw image, the APT value is 28.44%; 6F: ADC image, the ADC value is 0.61 × 10-3 mm2/s. ADC: apparent diffusion coefficient; T1: longitudinal relaxation time; T2: transverse relaxation time; PD: proton density; APT: amide proton transfer.
表2  患者临床特征
Tab. 2  Clinical characteristics of patients

2.2 观察者间及观察者内测量结果一致性分析

       SyMRI各定量参数(T1值、T2值以及PD值)、APT值以及ADC值,观察者间及观察者内测量各病灶参数一致性良好(ICC>0.80)(表3)。

表3  各定量参数一致性分析
Tab. 3  The consistency analysis of parameters

2.3 各定量参数与ISUP分级的相关性

       随着PCa的ISUP分级升高,APT值呈上升趋势,T1值、T2值、PD值、ADC值呈下降趋势。ISUP分级与APT值呈正相关(r=0.359,P=0.001),与T2值、ADC值呈负相关(r=-0.304,P=0.007;r=-0.535,P<0.001)。然而,PCa的ISUP分级与T1值和PD值无显著相关性(r=-0.158、-0.103;P>0.05)。

       此外,ISUP 1级PCa的APT值低于ISUP 4级PCa(P=0.03),ISUP 1级PCa的T2值高于ISUP 4级(P=0.04),ISUP 1级PCa的ADC值高于ISUP 3、4、5级PCa(P<0.05)。然而,不同ISUP分级PCa的T1值和PD值差异没有统计学意义(P>0.05)(表4图7)。

图7  不同ISUP分级间各定量参数的比较。*:P<0.05;**:P<0.01;***:P<0.001;ISUP:国际泌尿病理学会;APT:酰胺质子转移;T1:纵向弛豫时间;T2:横向弛豫时间;PD:质子密度;ADC:表观扩散系数。
Fig. 7  Comparison of quantitative parameters between ISUP grades. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ISUP: International Society of Urological Pathology; APT: amide proton transfer; T1: longitudinal relaxation time; T2: transverse relaxation time; PD: proton density; ADC: apparent diffusion coefficient.
表4  不同ISUP分级间各定量参数的比较
Tab. 4  Comparison of parameters between ISUP grades

2.4 各定量参数及联合模型对中高级别PCa的诊断效能

       本研究发现中高级别PCa的APT值大于低级别PCa,相反,T2值以及ADC值小于低级别PCa,差异均具有统计学意义(P<0.05)。中高级别PCa的T1值和PD值与低级别PCa差异无统计学意义(P>0.05)(表5)。

       此外,T2值对中高级别PCa检出的AUC值为0.71(95% CI:0.60~0.80),APT值对中高级别PCa检出的AUC值为0.75(95% CI:0.64~0.84)。随后,联合T2值和APT值建立联合诊断模型,联合诊断模型的AUC值为0.78(95% CI:0.67~0.87),与单一参数的诊断效能相比,差异无统计学意义(DeLong检验:P>0.05);APT+ADC诊断模型的AUC值为0.90(95% CI:0.81~0.95),诊断效能显著高于T2值和APT值(DeLong检验:P<0.05),与ADC值相比,差异无统计学意义(DeLong检验:P>0.05)(表6图8)。

图8  T2值、APT值、ADC值和联合模型对中高级别前列腺癌诊断的ROC曲线。T2:横向弛豫时间;APT:酰胺质子转移;ADC:表观扩散系数;ROC:受试者工作特征。
Fig. 8  ROC curves of T2 value, APT value, ADC value and combined models for diagnostic performance of intermediate/high-grade prostate cancer. ROC: receiver operating characteristic; T2: transverse relaxation time; APT: amide proton transfer; ADC: apparent diffusion coefficient.
表5  低级别前列腺癌和中高级别前列腺癌各参数的比较
Tab. 5  Comparison of parameters between low-grade and intermediate/high-grade prostate cancer
表6  不同诊断模型对中高级别前列腺癌的诊断效能
Tab. 6  Diagnostic performance of models in intermediate/high-grade prostate cancer

3 讨论

       本研究将SyMRI技术联合APTw成像应用于PCa的分级诊断,采用定量、快速、无创且可重复性高的MRI定量技术和分子成像技术对PCa的ISUP分级进行预测,并且探讨了联合参数对于中高级别PCa的诊断价值,结果发现T2值和APT值与PCa的ISUP分级存在显著相关性。T2+APT诊断模型对于中高级别PCa诊断效能与ADC值相当。本研究首次将SyMRI和APTw成像联合对PCa分级进行诊断,为PCa的分级诊断提供了新思路。

3.1 SyMRI对PCa分级的价值

       T2WI是前列腺MRI扫描的重要序列之一。2019年发布的前列腺影像报告和数据系统(prostate imaging reporting and data system, PI-RADS)v2.1标准中,T2WI是评价移行带病灶的主要序列[27]。虽然DWI和ADC对前列腺良恶性病灶鉴别的良好能力已经被大量研究所证实,但考虑到T2WI出色的组织对比度和空间分辨率,在前列腺病变中的可视化和评估方面不可忽视[28, 29]。常规T2WI信号强度受诊断医师阅片经验和主观因素影响,T2-mapping能够定量反映病灶的T2值,不受诊断医师主观因素影响[18]

       我们注意到先前一些研究显示T2值与PCa分级具有显著相关性[18]。与先前的研究相似,我们的研究显示,随着PCa分级升高,T2值呈现出下降的趋势。同时,中高级别PCa的T2值显著低于低级别PCa,差异具有统计学意义。有研究证实T2值和ADC值与细胞密度有关[30]。随着PCa分级升高,细胞排列紧密,组织含水量减少,而我们的研究也印证了这一现象。在临床工作中,对中高级别PCa的诊断是必要的,这有助于临床治疗选择,我们的研究和先前研究共同证明了T2值能够有效识别中高级别PCa[18]

       T1值和PD值是SyMRI提取的反映组织弛豫特征的另外两项指标。有研究证明,T1值与组织的细胞外体积相关,PD值主要反映组织含水量[31]。先前的研究显示,T1值和PD值对于PCa的分级诊断具有一定限度[12, 32, 33]。在我们的研究中,T1值和PD值与PCa分级无显著相关性,同时对于中高级别PCa的检出无显著差异。这表明不同级别PCa的组织学差异不足以造成T1值和PD值的显著变化。

3.2 APTw成像对PCa分级的价值

       理论上,随着PCa分级升高,肿瘤分化程度越来越低,增殖率、细胞密度、核质比逐渐升高,导致高级别PCa组织中蛋白质、多肽水平增加,APT值可能会呈现上升趋势[34]。我们的研究结果证明了这一现象,且中高级别PCa的APT值显著高于低级别PCa。QIN等[35]研究发现,高级别PCa的APT值显著高于低级别PCa,这与我们的研究结果一致。YIN等[23]将PCa的APT值与Gleason评分进行了相关性分析,结果显示二者呈中等程度正相关。KIDO等[36]研究结果也显示APT值与Gleason评分呈显著正相关。

       然而,TAKAYAMA等[37]研究显示,随着PCa分化程度降低,APT值呈现出先升高后降低趋势,且Gleason评分为7分的PCa的APT值高于其他Gleason评分组,该结果可能与PCa组织中细胞密度和腺体结构异质性有关。由于不同研究应用的APTw成像技术及ROI的选择存在一定差异,APT值在PCa分级中的应用价值尚需要进一步验证。

3.3 联合模型对中高级别PCa诊断的价值

       对于中高级别PCa的检出,我们的研究发现T2值诊断效能低于ADC值,APT值诊断效能与ADC值相当,APT值诊断的敏感度较高,ADC值诊断的特异度较高。与既往研究相比[18, 38],本研究的ADC值诊断效能较高,这可能与DWI序列b值的选择差异有关,相比先前研究(b=800、1000 s/mm2),本研究采用更高的b值(1400 s/mm2),该b值符合PI-RADS v2.1对图像的推荐采集标准[27]。此外,APTw成像易受运动和脂肪伪影干扰,使病变处APT值不纯粹,进而影响其诊断效能[39]

       我们发现,联合T2值和APT值建立的联合诊断模型(T2+APT),其诊断效能虽有提升,但与单一参数相比,提升效果不明显。胡文君等[40]采用T2-mapping联合APTw成像对前列腺良恶性病灶进行鉴别,结果显示联合指标的诊断效能提升效果不显著,这可能因为APTw效应与T2弛豫时间相互影响,高细胞密度使蛋白质水平升高的同时降低了细胞外液间隙,APT值升高造成T2值减低,横向弛豫速率加快,对水的直接饱和作用增大,不利于APTw效应的显示。

       此外,APT值能反映组织内源性细胞蛋白质和多肽含量,而ADC值能体现水分子的扩散情况,中高级别PCa蛋白质代谢更活跃且细胞更密集,有研究表明,联合APT值和ADC值建立的联合诊断模型(APT+ADC),其诊断效能显著高于单一参数[35, 41]。本研究中的APT+ADC联合模型诊断效能显著高于单一APT值,但与ADC值无显著性差异,这可能与肿瘤组织异质性和不同研究ROI的选取有关,但联合APT值后,APT+ADC诊断模型的敏感度较ADC值有所提升,对于中高级别PCa的诊断能够提供更多有价值的信息。

3.4 本研究的局限性和展望

       首先,本研究为单中心研究,且纳入的患者样本量有限,这可能会引起选择偏差。未来的研究应该从不同机构招募更多的患者进行更全面的分析。其次,本研究中的病理结果一部分来源于超声引导下活检穿刺,这可能会造成ROI区域与穿刺部位不完全一致。基于手术切除的病理切片可以提供更准确的信息。最后,本研究使用的APTw成像技术是二维单层扫描方案,尽管选择了病灶最具代表性的横断面,但不能完全反映病灶的整体情况。近年来,随着软硬件技术的发展和深度学习技术的成熟,3D-APTw成像逐渐运用于临床研究,能够提供更宽的覆盖范围和更高的空间分辨率,对于肿瘤的研究更加全面。

4 结论

       我们的研究证明了SyMRI和APTw成像有助于PCa的分级诊断。二者联合对中高级别PCa的诊断效能与ADC值相当。SyMRI和APTw成像作为无创性检查手段,均有可能作为评估PCa风险的新指标运用于临床,有助于PCa的分级诊断和个性化治疗。

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
QI J L, LI M L, WANG L J, et al. National and subnational trends in cancer burden in China, 2005-20: an analysis of national mortality surveillance data[J/OL]. Lancet Public Health, 2023, 8(12): e943-e955 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/38000889/. DOI: 10.1016/S2468-2667(23)00211-6.
[3]
FAZEKAS T, SHIM S R, BASILE G, et al. Magnetic resonance imaging in prostate cancer screening: a systematic review and meta-analysis[J]. JAMA Oncol, 2024, 10(6): 745-754. DOI: 10.1001/jamaoncol.2024.0734.
[4]
BERGENGREN O, PEKALA K R, MATSOUKAS K, et al. 2022 update on prostate cancer epidemiology and risk factors-a systematic review[J]. Eur Urol, 2023, 84(2): 191-206. DOI: 10.1016/j.eururo.2023.04.021.
[5]
WANG G C, ZHAO D, SPRING D J, et al. Genetics and biology of prostate cancer[J]. Genes Dev, 2018, 32(17/18): 1105-1140. DOI: 10.1101/gad.315739.118.
[6]
LOKANT M T, NAZ R K. Presence of PSA auto-antibodies in men with prostate abnormalities (prostate cancer/benign prostatic hyperplasia/prostatitis)[J]. Andrologia, 2015, 47(3): 328-332. DOI: 10.1111/and.12265.
[7]
WANG Y H, LIANG C, ZHU F P, et al. Improving the understanding of PI-RADS in practice: characters of PI-RADS 4 and 5 lesions with negative biopsy[J]. Asian J Androl, 2023, 25(2): 217-222. DOI: 10.4103/aja2022112.
[8]
WILLIAMS C, AHDOOT M, DANESHVAR M A, et al. Why does magnetic resonance imaging-targeted biopsy miss clinically significant cancer [J]. J Urol, 2022, 207(1): 95-107. DOI: 10.1097/JU.0000000000002182.
[9]
CHATTERJEE A, DEVARAJ A, MATHEW M, et al. Performance of T2 maps in the detection of prostate cancer[J]. Acad Radiol, 2019, 26(1): 15-21. DOI: 10.1016/j.acra.2018.04.005.
[10]
HECTORS S J, SEMAAN S, SONG C, et al. Advanced diffusion-weighted imaging modeling for prostate cancer characterization: correlation with quantitative histopathologic tumor tissue composition-a hypothesis-generating study[J]. Radiology, 2018, 286(3): 918-928. DOI: 10.1148/radiol.2017170904.
[11]
AHMED H U, BOSAILY A E, BROWN L C, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study[J]. Lancet, 2017, 389(10071): 815-822. DOI: 10.1016/S0140-6736(16)32401-1.
[12]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[13]
肖艳, 彭正伟. 合成磁共振成像在肿瘤诊断中的应用价值[J]. 检验医学与临床, 2023, 20(16): 2424-2427, 2455. DOI: 10.3969/j.issn.1672-9455.2023.16.028.
XIAO Y, PENG Z W. Review of the application of synthetic magnetic resonance imaging in tumor diagnosis[J]. Lab Med Clin, 2023, 20(16): 2424-2427, 2455. DOI: 10.3969/j.issn.1672-9455.2023.16.028.
[14]
JI S, YANG D, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[15]
LI X J, FAN Z C, JIANG H N, et al. Synthetic MRI in breast cancer: differentiating benign from malignant lesions and predicting immunohistochemical expression status[J/OL]. Sci Rep, 2023, 13: 17978 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/37864025/. DOI: 10.1038/s41598-023-45079-2.
[16]
ZHU K X, CHEN Z C, CUI L L, et al. The preoperative diagnostic performance of multi-parametric quantitative assessment in rectal carcinoma: A preliminary study using synthetic magnetic resonance imaging[J/OL]. Front Oncol, 2022, 12: 682003 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/35707367/. DOI: 10.3389/fonc.2022.682003.
[17]
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579.
[18]
MAI J L, ABUBRIG M, LEHMANN T, et al. T2 mapping in prostate cancer[J]. Invest Radiol, 2019, 54(3): 146-152. DOI: 10.1097/rli.0000000000000520.
[19]
ZHOU J Y, HONG X H, ZHAO X N, et al. APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses[J]. Magn Reson Med, 2013, 70(2): 320-327. DOI: 10.1002/mrm.24784.
[20]
VAN ZIJL P C M, YADAV N N. Chemical exchange saturation transfer (CEST): what is in a name and what isn't [J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
[21]
姜涵, 李自强, 孟楠, 等. 化学交换饱和转移在临床的应用进展[J]. 临床放射学杂志, 2023, 42(8): 1368-1371. DOI: 10.13437/j.cnki.jcr.2023.08.022.
JIANG H, LI Z Q, MENG N, et al. Progress in clinical application of chemical exchange saturation transfer[J]. J Clin Radiol, 2023, 42(8): 1368-1371. DOI: 10.13437/j.cnki.jcr.2023.08.022.
[22]
JU Y, LIU A L, WANG Y, et al. Amide proton transfer magnetic resonance imaging to evaluate renal impairment in patients with chronic kidney disease[J]. Magn Reson Imaging, 2022, 87: 177-182. DOI: 10.1016/j.mri.2021.11.015.
[23]
YIN H J, WANG D D, YAN R F, et al. Comparison of diffusion kurtosis imaging and amide proton transfer imaging in the diagnosis and risk assessment of prostate cancer[J/OL]. Front Oncol, 2021, 11: 640906 [2025-08-10]. https://pubmed.ncbi.nlm.nih.gov/33937041/. DOI: 10.3389/fonc.2021.640906.
[24]
KAMITANI T, SAGIYAMA K, YAMASAKI Y, et al. Amide proton transfer (APT) imaging of breast cancers and its correlation with biological status[J]. Clin Imaging, 2023, 96: 38-43. DOI: 10.1016/j.clinimag.2023.02.002.
[25]
GUO Z X, QIN X Y, MU R H, et al. Amide proton transfer could provide more accurate lesion characterization in the transition zone of the prostate[J]. J Magn Reson Imaging, 2022, 56(5): 1311-1319. DOI: 10.1002/jmri.28204.
[26]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J]. Radiology, 2022, 305(1): 127-134. DOI: 10.1148/radiol.211804.
[27]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[28]
OTO A, KAYHAN A, JIANG Y L, et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging[J]. Radiology, 2010, 257(3): 715-723. DOI: 10.1148/radiol.10100021.
[29]
PENG Y H, JIANG Y L, YANG C, et al. Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score: a computer-aided diagnosis development study[J]. Radiology, 2013, 267(3): 787-796. DOI: 10.1148/radiol.13121454.
[30]
LANGER D L, VAN DER KWAST T H, EVANS A J, et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2: sparse versus dense cancers[J]. Radiology, 2008, 249(3): 900-908. DOI: 10.1148/radiol.2493080236.
[31]
GRACIEN R M, REITZ S C, HOF S M, et al. Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex[J]. Eur Radiol, 2016, 26(8): 2578-2586. DOI: 10.1007/s00330-015-4072-x.
[32]
AL-BOURINI O, HOSSEINI A S A, GIGANTI F, et al. T1 mapping of the prostate using single-shot T1FLASH: a clinical feasibility study to optimize prostate cancer assessment[J]. Invest Radiol, 2023, 58(6): 380-387. DOI: 10.1097/RLI.0000000000000945.
[33]
CAO H Y, XU W J, XU Y, et al. Value of synthetic MRI quantitative parameters in preprocedural evaluation for TRUS/MRI fusion-guided biopsy of the prostate[J]. Prostate, 2023, 83(11): 1089-1098. DOI: 10.1002/pros.24550.
[34]
CHOI Y S, AHN S S, LEE S K, et al. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume[J]. Eur Radiol, 2017, 27(8): 3181-3189. DOI: 10.1007/s00330-017-4732-0.
[35]
QIN X Y, MU R H, ZHENG W, et al. Comparison and combination of amide proton transfer magnetic resonance imaging and the apparent diffusion coefficient in differentiating the grades of prostate cancer[J]. Quant Imaging Med Surg, 2023, 13(2): 812-824. DOI: 10.21037/qims-22-721.
[36]
KIDO A, TAMADA T, UEDA Y, et al. Comparison between amide proton transfer magnetic resonance imaging using 3-dimensional acquisition and diffusion-weighted imaging for characterization of prostate cancer: a preliminary study[J]. J Comput Assist Tomogr, 2023, 47(2): 178-185. DOI: 10.1097/RCT.0000000000001398.
[37]
TAKAYAMA Y, NISHIE A, SUGIMOTO M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. MAGMA, 2016, 29(4): 671-679. DOI: 10.1007/s10334-016-0537-4.
[38]
YAMAUCHI F I, PENZKOFER T, FEDOROV A, et al. Prostate cancer discrimination in the peripheral zone with a reduced field-of-view T(2)-mapping MRI sequence[J]. Magn Reson Imaging, 2015, 33(5): 525-530. DOI: 10.1016/j.mri.2015.02.006.
[39]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[40]
胡文君, 刘爱连, 陈丽华, 等. 酰胺质子转移成像联合T2-mapping鉴别前列腺癌与前列腺增生的价值[J]. 放射学实践, 2022, 37(11): 1416-1421. DOI: 10.13609/j.cnki.1000-0313.2022.11.015.
HU W J, LIU A L, CHEN L H, et al. The value of amide proton transfer imaging combined with T2-mapping for differentiating prostate cancer from benign prostatic hyperplasia[J]. Radiol Pract, 2022, 37(11): 1416-1421. DOI: 10.13609/j.cnki.1000-0313.2022.11.015.
[41]
YANG L, WANG L, TAN Y C, et al. Amide Proton Transfer-weighted MRI combined with serum prostate-specific antigen levels for differentiating malignant prostate lesions from benign prostate lesions: a retrospective cohort study[J/OL]. Cancer Imaging, 2023, 23(1): 3 [2025-10-04]. https://pubmed.ncbi.nlm.nih.gov/36611191/. DOI: 10.1186/s40644-022-00515-w.

上一篇 基于多参数MRI生境成像预测前列腺癌病理分级
下一篇 基于多序列MRI的影像组学评估子宫内膜癌脉管侵犯状态
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2