分享:
分享到微信朋友圈
X
综述
基于体素和节点对缺血性PSCI功能连接改变的研究进展
王杨 刘潇 李晓陵 王鹏 韩盛旺

本文引用格式:王杨, 刘潇, 李晓陵, 等. 基于体素和节点对缺血性PSCI功能连接改变的研究进展[J]. 磁共振成像, 2025, 16(12): 158-164. DOI:10.12015/issn.1674-8034.2025.12.023.


[摘要] 卒中后认知障碍(post-stroke cognitive impairment, PSCI)是由卒中事件引发认知相关脑区功能受损的一类疾病,部分进展为痴呆,严重影响患者日常生活。PSCI发病机理较复杂,涉及脑储备受损、血脑屏障破坏、肠道菌群失调及突触可塑性降低等多种因素,导致脑功能紊乱;深入探究PSCI的中枢效应是临床制订科学干预措施、提升患者生存质量的关键。近些年功能磁共振成像(functional magnetic resonance imaging, fMRI)技术获得迅猛发展,静息态fMRI(resting-state fMRI, rs-fMRI)凭借非侵入性、时空分辨率高等优势,已成为评估PSCI神经机制的重要工具;PSCI存在广泛功能连接(functional connectivity, FC)异常,包括部分静息态网络(resting-state networks, RSN)FC减低、小脑活动改变及动态功能网络连接(dynamic functional network connectivity, dFNC)下降;定向FC分析显示健侧脑区信息传递增强及卒中早期RSN受损等。本文对FC采用基于体素与节点的分析方法,系统解析PSCI局部FC异常、脑网络拓扑属性变化和定向FC动态特征的相关文献,并指出当前研究的局限性和今后研究方向,为疾病早期诊断及完善个体化诊疗方案提供参考。
[Abstract] Post-stroke cognitive impairment (PSCI) is a condition caused by stroke events leading to functional impairment in cognitive-related brain regions, with some cases progressing to dementia, severely affecting patients' daily lives. The pathological mechanism of PSCI is complex, involving various factors such as impaired brain reserve, blood-brain barrier disruption, gut microbiota dysbiosis, and reduced synaptic plasticity, leading to brain dysfunction; in-depth investigation of the central effects of PSCI is key to clinically developing scientific interventions and improving patients' quality of life. In recent years, functional magnetic resonance imaging (fMRI) technology has developed rapidly; resting-state fMRI (rs-fMRI), with its advantages of non-invasiveness and high temporal and spatial resolution, has become an important tool for evaluating the neural mechanisms of PSCI; PSCI exhibits widespread functional connectivity (FC) abnormalities, including reduced FC in some resting-state networks (RSN), altered cerebellar activity, and decreased dynamic functional network connectivity (dFNC); directed FC analysis shows enhanced information transmission in the contralateral brain regions and impaired RSN in the early stages of stroke. This paper uses voxel-based and node-based analysis methods for FC, systematically reviewing the literature on abnormal local FC, changes in brain network topological properties, and characteristics of directed FC dynamics in PSCI. It also identifies current research limitations and suggests future directions, aiming to inform early diagnosis and refine personalized treatment strategies.
[关键词] 缺血性卒中后认知障碍;静息态功能磁共振成像;磁共振成像;体素;节点;功能连接;功能网络
[Keywords] ischemic post-stroke cognitive impairment;resting-state functional magnetic resonance imaging;magnetic resonance imaging;voxel;node;functional connectivity;functional network

王杨 1, 2   刘潇 3   李晓陵 1*   王鹏 4   韩盛旺 2, 5  

1 黑龙江中医药大学附属第一医院CT磁共振科,哈尔滨 150040

2 黑龙江中医药大学研究生院,哈尔滨 150040

3 黑龙江中医药大学附属第一医院儿科,哈尔滨 150040

4 黑龙江中医药大学附属第一医院肿瘤科,哈尔滨 150040

5 黑龙江中医药大学附属第二医院康复三科,哈尔滨 150001

通信作者:李晓陵,E-mail:lixiaoling1525@163.com

作者贡献声明:李晓陵设计综述的方向和框架,对文章重要内容进行修改,获得了国家自然科学基金项目及黑龙江省自然科学基金联合引导项目的资助;王杨采集和整理数据,起草并撰写稿件,分析或解释文献;刘潇撰写稿件、解释文献;韩盛旺、王鹏采集和整理数据,对文章重要内容进行修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82074537 黑龙江省自然科学基金联合引导项目 LH2020H103
收稿日期:2025-08-31
接受日期:2025-11-29
中图分类号:R445.2  R749 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.12.023
本文引用格式:王杨, 刘潇, 李晓陵, 等. 基于体素和节点对缺血性PSCI功能连接改变的研究进展[J]. 磁共振成像, 2025, 16(12): 158-164. DOI:10.12015/issn.1674-8034.2025.12.023.

0 引言

       卒中后认知障碍(post-stroke cognitive impairment, PSCI)归属血管性认知障碍范畴,是由卒中病变引发,且于卒中后6个月仍持续存在一个或多个认知脑区损伤的临床综合征[1, 2]。近10年研究发现,约50%卒中患者出现不同程度的认知障碍;一项来自上海和北京社区人群的研究报告显示,PSCI总体患病率高达80.97%,其中发展为痴呆的几率占32.05%;PSCI这一公共卫生问题,之前并未得到足够重视,给社会、家庭及患者本人均带来沉重负担[3, 4]。由于PSCI存在注意力、语言、记忆等认知功能受损,难以有效配合认知测试,针对此问题应用静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI),能够实现PSCI疾病检测及临床疗效的量化分析;rs-fMRI因其时间空间分辨率高、重复性好、毋需执行特定任务,成为认知、精神及神经系统研究的核心方法[2, 5, 6]

       fMRI是一种无创检查技术,用于测量血氧水平依赖信号(blood oxygenation level dependent, BOLD)的波动;rs-fMRI通过静息状态BOLD低频振荡信号,评估自发性或内源性脑活动状态,进而发掘功能网络体系的改变[7, 8]。各脑区组成的分布式神经网络,包括网络内和网络间均呈现神经元群体活动的协同性,由此被定义为功能连接(functional connectivity, FC);FC的分析方法主要为两类:一是基于体素分析法,通过推算脑图的连接估计值探讨网络空间结构;二是基于节点分析法,运用网络科学理论,借助功能脑区间的“边”构建连接模式[9]。基于体素分析法包括低频波动幅度(amplitude of low-frequency fluctuations, ALFF)、区域同质性(regional homogeneity, ReHo)及独立分量分析(independent component analysis, ICA);基于节点分析法则涵盖图论(graph theory, GT)、动态因果模型(dynamic causal model, DCM)和格兰杰因果分析(Granger causality analysis, GCA)[10]。依据rs-fMRI技术对FC的各种分析法在PSCI神经影像研究中均有应用,但目前多数工作侧重于单一层面分析,同时围绕“体素”和“节点”两个维度对FC进行探讨的研究鲜有报道;本文以“体素”与“节点”作为切入端口,创新性联合梳理所选PSCI的相关文献,剖析中枢机制,优化早期诊疗手段。

1 PSCI机制

       卒中后认知损伤不仅包括与发病相关的病变征象、卒中程度及卒中病史等危险因素,亦涉及个体特征、发病前认知水平与影像学表述的脑病理变化[11]。尽管这些发病因素已被逐步揭示,但PSCI潜在的病理生理机制仍待探索[12]。研究表明,缺血性损伤导致侧脑室增大、海马(hippocampus, HP)萎缩、脑白质病变及灰质厚度降低等病理改变,可作为脑储备的受损标志;认知储备是主动性储备模式,包括优化认知表现和运用替代认知策略而适应脑急性损伤的能力,通过影响脑储备发挥对认知的保护作用;认知储备指数问卷得分越低的患者,PSCI发病率越高[13]。PSCI的肠杆菌科细菌、脂多糖及外周炎症因子指标升高明显;动物模型验证,接受PSCI患者肠道菌群的PSCI小鼠,除表现出更高水平的上述指标外,还伴随粪便丁酸盐的降低加剧、肠道破坏更严重及明显的认知障碍表现[14]。PSCI肠道菌群测序结果是布劳特菌、双歧杆菌和巨单胞菌的丰度增高,拟杆菌属与短双歧杆菌丰度出现显著减低[15]。缺血性卒中损伤的神经元诱导星形胶质细胞和小胶质细胞活化,促使趋化因子、细胞因子、基质金属蛋白酶等炎症介质的生成增多,破坏血脑屏障完整性,引发神经功能障碍[16]。PSCI同型半胱氨酸、白细胞介素6水平显著升高,可被作为预测认知障碍的检验标志物[15]。卒中后的脑病理损伤可见,兴奋性氨基酸释放增多,神经营养因子水平、氧化应激、细胞凋亡及基因表达等发生改变,影响了突触可塑性,考虑是导致认知障碍的关键因素[17]。谷氨酸作为兴奋性氨基酸之一,维持缺血缺氧后谷氨酸的稳态,对突触功能及神经细胞活动尤为重要;Notch信号通路调节星形胶质细胞神经元中的谷氨酸转运蛋白,诱导突触素表达,影响囊泡释放和突触可塑性,并调控突触功能及神经细胞活性;脑源性神经营养因子在神经元发育与生存中起着重要作用,其血清水平降低与PSCI风险增高关联[18, 19]。卒中事件对脑储备、肠道菌群、血脑屏障及突触可塑性等造成损伤,诱发认知障碍。PSCI与阿尔茨海默病,在神经病理与神经生化机制方面呈现部分重叠,目前临床治疗方法参考后者相关的研究数据[1]

2 PSCI基于体素的FC分析

       基于体素FC方法的共性在于能估算出脑内每个体素FC值,依据空间分布效应描述功能连接性,从而生成包含所有体素值的脑图,通过比较受试组之间的脑图,进行组间分析,包括ALFF、ReHo及ICA等方法[20]

2.1 PSCI基于体素FC的ALFF探索

       ALFF通过量化特定脑区在一段时间内的低频振荡信号(0.01~0.08 Hz范围),用平均振幅值描绘此脑区神经元自发活动强度[21]。分数低频振幅(fraction ALFF, fALFF)是低频功率谱与全频功率谱的比率,相比于ALFF,fALFF可抑制fMRI的非特异性信号成分,对自发脑活动检测更具有敏感性和特异性;对照组与受试组间ALFF或fALFF差异显著的脑区,可作为FC分析的感兴趣区(region of interest, ROI)[22, 23]

       WANG等[24]对PSCI研究指出,同健康对照(healthy control, HC)相比,PSCI组在多个关键脑区的fALFF显著降低,主要包括额上回及基底节区;以fALFF降低脑区为ROI,在默认网络(default mode nework, DMN)和显著性网络(salience network, SN)相关区观测到FC值减低;证实PSCI存在异常的FC,DMN、SN相关脑区的FC下降,考虑为认知障碍的病理机制。有学者通过ALFF探讨慢性皮质下卒中的潜在认知缺陷;发现卒中可导致全脑FC的动态时间模式失调,且与病变侧别密切相关;与FC的静态时间模式比较,动态模式对PSCI影响力更强;脑活动的时间模式,可作为判断慢性PSCI的潜在影像标志物[25]。ZHANG等[26]研究卒中后认知障碍的小脑神经元活动指出,右小脑7b区及左小脑脚1区ALFF值升高,小脑蚓部3区fALFF值增加;右小脑8区、右小脑脚2区和左小脑脚1区ReHo增强;提取ALFF、fALFF和ReHo出现差异的脑区作为ROI进行FC分析,可见左内侧额中回和左HP与右小脑脚2区的FC减低,左内侧额中回与小脑蚓部3区的FC亦减低;提示,小脑-边缘系统之间FC的受损与认知障碍严重程度相关,小脑内神经元活动异常与认知功能降低关联。YIN等[27]观察PSCI患者的重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)治疗效果显示,左内侧前额叶ALFF增加;治疗后以ALFF变化脑区为ROI行FC分析发现,右内侧前额叶与右腹侧前扣带回(anterior cingulate cortex, ACC)的FC增强,均和认知改善相关;与非刺激治疗组相比,rTMS可提高PSCI的认知和生活能力。

       PSCI边缘网络损伤,DMN和SN相关脑区的FC下降与认知障碍相关,治疗后升高则表示认知改善;FC的时间模式失衡主要取决于病变侧别。通过ALFF观察到,PSCI认知受损程度与功能网络的FC变化相关联。

2.2 PSCI基于体素FC的ReHo探索

       ReHo是描述局部FC的方法,经过计算相邻体素时间序列的肯德尔一致性系数,评估选定体素与其紧邻体素间的FC强度,以此作为区域同步程度的量化指标[28, 29]

       WANG等[30]通过ReHo分析脑局部FC的差异,判断慢性卒中患者是否伴有PSCI;与卒中后认知正常相比,认知异常组左直回(gyrus rectus, REC)ReHo降低,左REC的ReHo变化同蒙特利尔认知(montreal cognitive assessment, MoCA)评分呈显著正相关;ReHo值的高低,正向反映短程FC强度;表明,左REC局部FC减弱可能是PSCI的重要中枢机制,能作为临床干预的潜在神经靶点。PENG等[31]采用短程FC的ReHo方法,对皮质下卒中rs-fMRI数据进行分析;与HC对比,PSCI组双侧ACC、左后扣带回(posterior cingulate cortex,PCC)及楔前叶的ReHo显著降低;双侧ACC的ReHo下降与执行能力、空间记忆测试评分呈正相关,左PCC、楔前叶ReHo减低与工作记忆测试评分呈正相关;ReHo对局部FC的描述,可作为PSCI神经生物学缺陷的预测标志物。HAN等[32]测量大脑与小脑特定区域的ReHo值,评估FC强度发现,PSCI右额中回、左中央后回的ReHo降低,左小脑脚1区、4区及5区的ReHo升高;说明PSCI多个认知相关脑区的ReHo发生显著变化,小脑作为认知回路的一部分,ReHo升高反映局部FC增强,大脑通过提升神经可塑性对小脑实施补偿性激活,保持认知网络的整体效能,继而缓解其他脑区功能缺失造成的负面影响,考虑是认知下降的补偿机制。

       左REC局部FC减低可能是PSCI的关键神经机制;推测小脑局部FC升高是对PSCI的认知补偿。ReHo对局部FC的描述,能够作为PSCI神经功能缺陷的隐性标志物。

2.3 PSCI基于体素FC的ICA探索

       ICA是基于数据驱动的盲源分离技术,可将采集的fMRI信号分离成一系列独立成分[33]。fMRI信号包含脑激活信号及呼吸、心跳、仪器噪声等非自然信号,如果以上源信号存在彼此统计独立,即可通过ICA实现信号分离,随后剔除混杂信号,将余下独立成分作为节点,构建脑功能网络[34]

       WANG等[35]采用ICA探讨皮质下卒中静息态网络(resting-state networks, RSN)FC的变化,发现DMN、视觉网络(visual network, VN)、听觉网络(auditory network, AN)、感觉运动网络(sensorimotor network, SMN)、背侧注意网络(dorsal attention network, DAN)的网络内出现FC增加;额顶网络(frontoparietal network, FPN)和前默认网络(anterior DMN, aDMN)的网络内却发生FC减弱;aDMN与后默认网络(posterior DMN, pDMN)、pDMN与右FPN之间的FC减弱,AN与右FPN、pDMN与背侧SMN之间的FC减弱;皮质下卒中后可能导致多个RSN内或之间的FC改变,部分网络FC异常考虑是认知障碍的发病基础。另有学者,WANG等[36]应用ICA观察到脑干卒中患者SMN、VN、DMN及SN的网络内FC降低;VN与SMN、双侧FPN的网络间FC减低;VN与DMN、VN与FPN网络间的FC增强;VN/SMN是初级感觉网络,而DMN/FPN是高级认知控制网络;说明,脑干卒中可在全脑范围引起VN/SMN及DMN/FPN的FC异常,推论是患者出现多个领域认知障碍的神经机制。LIU等[37]将ICA聚焦卒中后记忆障碍患者DMN与DAN的FC变化,指出DMN与左额中回/额下回/中央前回/颞上回、双侧PCC及楔前叶之间的FC明显增强;DMN与右颞中回/顶下小叶及左岛叶之间的FC明显减低;DAN与左中央前回/额下回、右额下回/额中回/顶下回及岛叶之间的FC明显减低;结果发现卒中可同时影响病侧半球及对侧半球,前额叶皮层、颞叶、PCC等在认知记忆中起着关键作用。YUE等[38]利用动态ICA与K均值聚类方法,观察到PSCI背侧默认网络(dorsal DMN, dDMN)与腹侧默认网络(ventral DMN, vDMN)、vDMN与SN等网络之间的静态功能网络连接(static functional network connectivity, sFNC)降低,AN与VN、dDMN与VN等网络之间的动态功能网络连接(dynamic functional network connectivity, dFNC)下降;表明,PSCI存在sFNC和dFNC的改变。LI等[39]利用RSN之间FC改变,通过ICA预测卒中后的行为结果;间隔1个月,行前后两次rs-fMRI扫描,第一次可见DMN、DAN、VN、FPN及边缘网络(limbic network, LN)的网络内/网络间FC被破坏,第二次扫描出现以上网络的FC部分恢复;第一次扫描获取到LN与DAN之间的FC值,经回归分析准确预判卒中1个月后神经功能缺损的量表评分,已通过第二次扫描结果得到印证;结论,卒中后脑功能网络的变化对认知恢复意义重大,DAN与LN功能耦合可作为预测神经受损程度的纵向生物标记物。

       PSCI双侧半球之间多个功能网络的FC发生变化,包括SMN、DMN及DAN等;PSCI亦存在sFNC与dFNC的改变。运用ICA可以诠释PSCI所致静息态网络内或网络之间的FC异常。

3 PSCI基于节点的FC分析

       基于节点的功能网络,节点一般代表脑区,边表示FC或有效连接(effective connectivity, EC);节点分析法生成连接性矩阵,更适合阐述构成认知特定脑区之间的FC;相比之下,体素方法只能部分展示脑区之间连接模式或信息整合的结构方式;针对此类问题,可采取“节点和边”的方式进行系统解释,包括GT、DCM及GCA等[10, 20, 40]

3.1 PSCI基于节点FC的GT探索

       GT作为数学分支致力于网络的分析,因其能够通过定义脑网络节点与边之间的连接关系构建网络模型,从而在神经影像领域中快速普及;此模型将脑描述为节点与边的集合,用作呈现脑的分布式组织结构,如小世界属性、模块化结构及枢纽节点等[41, 42, 43]

       ZHU等[44]应用GT分析基底节卒中功能与结构网络的可塑性;与HC比较,PSCI组功能和结构网络内核心连接枢纽(rich club, RC)、馈线连接(feeder connection, FEED)及局部连接(local connection, LC)均显著减少;即基底节与额叶网络内结构连接(structural connectivity, SC)减少,FPN与扣带盖网络(cingulo-opercular network, CON)FC减低;结果,可能反映基底节卒中引起自下而上的认知障碍。MIAO等[45]利用GT对PSCI的RC网络变化研究发现,PSCI组的标准化RC系数高于HC组;SN、DMN、小脑网络(cerebellum network, CN)、眶额皮层FEED及LC显著减低,伴随双侧尾状核节点效率改变;组间存在显著差异的FEED和LC,与简易精神状态量表(Mini-Mental State Examination, MMSE)及MoCA评分呈正相关,重点分布于SMN、VN、SN和DMN;结论,PSCI低层级RC的功能发生紊乱,但功能核心网络则相对保留;提示,DMN、SN等认知相关网络的FEED和LC强度下降,可能成为PSCI病理机制研究的新着眼点。BOURNONVILLE等[46]应用GT探究PSCI与特定功能网络间的关联性;PSCI组与卒中后认知健康组比较,功能网络整体拓扑结构未见明显差异,两组平均节点度、聚类系数及全局效率均保持一致;该试验使用蒙特利尔神经研究所模板将脑划分为313个区域,进行网络统计运算后发现,PSCI与由167个节点和178条边组成为特定网络的功能障碍相关,具体表现是额叶与颞叶部分脑区之间的FC中断;证明,PSCI与特定网络的FC改变相关,此改变在不同认知域之间存在共性。ZHU等[47]运用GT分析急性缺血性卒中(acute ischemic stroke, AIS)脑网络的FC;对比HC组,AIS关联的全局拓扑结构指标发生改变,而AIS最短路径长度值更低,全局效率明显增高;认知脑区可见楔前叶、额中回、额上回内侧的节点度与节点效率增高,FC减低的脑区颞横回可见节点度降低;额中回的节点中心性和异常FC值与MMSE评分呈正相关;结论,局灶性脑损伤促使信息传递异常,导致语言系统FC中断,触发其他脑网络拓扑结构的破坏,出现认知障碍。

       PSCI脑网络拓扑异常重构引起自下而上的认知障碍;PSCI与特定网络FC改变相关;卒中干扰信息传递破坏网络拓扑结构,导致PSCI。GT利用节点与边展示脑网络的FC变化,可见PSCI网络的模块化结构呈紊乱状态。

3.2 PSCI基于节点FC的DCM探索

       DCM作为EC最常用的分析方法之一,将脑组织视作受输入输出影响,且非线性的动态系统,EC是神经系统之间的交互作用,是具有方向性的FC;DCM描述的脑网络,借助外部任务刺激使相关脑区兴奋,纷扰该脑区所在网络系统,之后引发网络内其他脑区产生即时效应;DCM运用脑区每对相连信号,在不同时间点测试到的差异,推测脑区间的相互作用;此方法目前已拓展至rs-fMRI研究领域[40, 48, 49, 50]

       ZHANG等[51]通过DCM研究PSCI前额叶-基底节回路的EC观察到,与HC比较,PSCI组前额叶-基底节回路出现异常EC通路;健侧丘脑腹前核至尾状核的EC增强,与MoCA评分呈明显正相关;提示,健侧脑区EC增强考虑是对患侧认知障碍的代偿,起到功能补偿作用,前额叶-基底节回路EC模式对卒中引起的认知降低较敏感。ZHANG等[52]另一项对于PSCI认知网络的EC研究发现,患者存在对认知刺激响应敏感的认知功能网络,涵盖FPN、VN、CN及皮层下网络的部分核心节点;在认知改善状态下,部分节点间EC出现变化,对康复趋向表现为高度顺应;研究确定了对PSCI敏感的EC认知网络,为后续干预性研究提出新的见解。CHEN等[53]采用频谱动态因果模型(spectral dynamic causal modeling, spDCM)观察脑桥梗死(pontine infarction, PI)的额叶-丘脑环路EC变化;右尾状核至右内侧前额叶皮层的EC增强,与右侧PI的MoCA评分呈负相关;右尾状核至右丘脑的EC减低,与左侧PI的运动功能量表评分亦呈负相关;表明,PI相关认知障碍的额叶-丘脑回路内EC,具有成为新影像标志物的可能。RUAN等[54]应用spDCM分析PSCI动态网络的EC;PSCI患者PCC与双背外侧前额叶(dorsolateral prefrontal cortex, DLPFC)、右岛叶与右DLPFC的EC显著增强,且与认知量表评分呈明显负相关;低阶FC验证发现,PSCI存在大范围网络内与网络间的FC增加,其中网络间的EC增强以DMN、SN及执行控制网络(executive control network, ECN)为著;结论,PCC与右DLPFC参与PSCI的病理生理过程,考虑是此病发生的理论根据。

       PSCI的DMN、ECN、FPN及VN等网络内,核心节点之间的EC对认知反应较敏感,健侧脑区EC升高可能是对认知障碍的代偿作用。DCM可描述脑区之间的EC,说明PSCI存在定向的FC异常。

3.3 PSCI基于节点FC的GCA探索

       GCA可专注于定向FC(directed FC, dFC)分析,是探索性数据驱动方法;dFC即EC,通过DCM、GCA等方向性指标展示脑区间信息传递的因果关系,是FC的延伸;GCA发源于计量经济学,通过构建简约统计模型,分析时间序列之间的信息流动;在神经科学领域,因其能够揭示生理及病理生理机制成为研究热点[55]。GCA除测量脑区之间信息流的方向外,兼可推断静息状态的定向脑网络[40, 56]

       ALLEGRA等[57]采用协方差GCA,对卒中后脑网络信息传递状态进行量化分析;与HC比较,卒中后脑半球之间、病侧半球内及病侧半球至健侧半球的信息传递明显减少,上述异常在涉及注意力和语言的RSN中表现更为显著,且与多个认知区域受损相关联;提示,卒中可引发两半球信息传输的不对称性,产生的认知障碍取决于受损侧别。ZHAO等[58]通过GCA观察卒中后痴呆(post-stroke dementia, PSD)患者HP亚区的FC变化;PSD可见明显的痴呆相关信息发生改变,包括输入减少、输出增多,与双侧HP头及左HP体关联;双侧HP体与左HP头之间的dFC同认知评分显著相关;提示,PSD的HP在各个亚区信息传递及接收出现特异性改变,考虑是PSD的神经生理机制。YAN等[59]应用GCA对亚急性卒中HP环路的结构与功能改变进行研究;指出卒中后HP环路关键脑区明显萎缩,涉及病变侧HP、杏仁核、丘脑及ACC;双侧HP体与扣带回之间EC发生变化,与PSCI关系密切;证明,卒中早期已存在显著HP环路结构受损和dFC异常,可能导致认知障碍。陈美钟等[60]基于GCA研究基底节卒中患者PSCI的脑网络EC变化;同HC相比,左中央前回、左中央后回与左颞下回EC增强;左颞下回与左中央前回、左中央后回的EC减弱,左ACC至左颞下回的EC亦减弱;提示,PSCI患者SMN、FPN及DMN等多个网络间的EC发生异常,卒中早期全脑已存在多个功能网络损伤。

       PSCI半球间信息传递不对称;PSD的HP各亚区在信息交互中出现特异性改变;卒中早期即可见HP环路dFC异常,部分RSN的EC亦出现异常改变。GCA通过分析dFC,提示PSCI存在脑网络的信息流异常。

4 小结与展望

       综上所述,与以往侧重于体素或节点的某一维度研究不同,本文通过“体素-节点”双维度整合框架,能直观展示PSCI局部FC、EC及功能网络层面的多重改变,进而确定了局部FC异常与全局网络失调的关联,为疾病早期诊疗给予支持。

       ALFF发现PSCI边缘网络损伤,FC时间模式失衡与病变的侧别关联;ReHo表明双侧ACC、左PCC及楔前叶的FC减低可用于预测PSCI,小脑局部FC升高考虑为认知功能下降的代偿;ICA证实PSCI的DMN、SMN及FPN等RSN的FC异常,可能是多个认知脑区的功能受损所致;GT显示RC、FEED及LC减弱,模块化结构破坏与PSCI相关;DCM阐明DMN、ECN、FPN等是对PSCI敏感的EC网络;GCA提示PSCI两半球的信息传输不对称,卒中早期HP环路即可出现dFC异常。

       当前,在医工交叉领域蓬勃发展的背景下,PSCI研究焦点从单变量分析向多变量建模趋进;基于体素和节点的FC研究,为构建多变量预测模型赋予数据支撑,并在独立的外部队列中进行验证与优化,重点关注AUC衰减与校准斜率,评估其可靠性与稳定性;运用支持向量机、极端梯度提升树及神经网络模型等人工智能算法,整合影像指标、检验结果和认知量表评分等多维度临床数据,实现各指标的跨模态融合,有望推动PSCI诊断时间窗前移[61, 62]。随着MRI磁场强度提升和射频线圈研发,7 T设备已经成为探讨神经疾病的高效利器;相比传统MRI,7 T技术的超高信噪比与亚毫米级成像能力,可帮助捕捉以往未被识别的脑区间FC特征,为推进PSCI中枢机制深入探索,提供极致清晰的神经影像资料[63]

[1]
汪凯, 董强, 郁金泰, 等. 卒中后认知障碍管理专家共识2021[J]. 中国卒中杂志, 2021, 16(4): 376-389. DOI: 10.3969/j.issn.1673-5765.2021.04.011.
WANG K, DONG Q, YU J T, et al. Expert consensus on post-stroke cognitive impairment management 2021[J]. Chinese Journal of Stroke, 2021, 16(4): 376-389. DOI: 10.3969/j.issn.1673-5765.2021.04.011.
[2]
李沁, 肖端, 徐亚林. 脑卒中后认知障碍的静息态功能磁共振成像研究进展[J]. 中国康复医学杂志, 2022, 37(6): 850-854. DOI: 10.3969/j.issn.1001-1242.2022.06.025.
LI Q, XIAO D, XU Y L. Research progress on resting-state functional magnetic resonance imaging of cognitive impairment after stroke[J]. Chinese Journal of Rehabilitation Medicine, 2022, 37(6): 850-854. DOI: 10.3969/j.issn.1001-1242.2022.06.025.
[3]
PANTONI L, SALVADORI E. Location of infarcts and post-stroke cognitive impairment[J]. Lancet Neurol, 2021, 20(6): 413-414. DOI: 10.1016/S1474-4422(21)00107-1.
[4]
魏成侠, 陈昕灏, 卢根娣, 等. 基于数据挖掘构建缺血性脑卒中轻度认知障碍患者灸法干预方案及应用研究[J]. 护理管理杂志, 2025, 25(6): 461-467, 492. DOI: 10.3969/j.issn.1671-315x.2025.06.001.
WEI C X, CHEN X H, LU G D, et al. Based on data mining, a moxibustion intervention program and its application in patients with mild cognitive impairment of ischemic stroke were constructed.[J]. Journal of Nursing Management, 2025, 25(6): 461-467, 492. DOI: 10.3969/j.issn.1671-315x.2025.06.001.
[5]
BERNSTEIN-ELIAV M, TAVOR I. The Prediction of Brain Activity from Connectivity: Advances and Applications[J]. Neuroscientist, 2024, 30(3): 367-377. DOI: 10.1177/10738584221130974.
[6]
何雨洁, 闫少珍, 卢洁. 静息态功能磁共振对阿尔茨海默病早期诊断的研究进展[J]. 磁共振成像, 2024, 15(1): 173-178. DOI: 10.12015/issn.1674-8034.2024.01.029.
HE Y J, YAN S Z, LU J. Research progress of resting state functional magnetic resonance imaging in early diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(1): 173-178. DOI: 10.12015/issn.1674-8034.2024.01.029.
[7]
SCHRAMM S, BÖRNER C, REICHERT M, et al. Functional magnetic resonance imaging in migraine: A systematic review[J/OL]. Cephalalgia, 2023, 43(2): 3331024221128278 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/36751858. DOI: 10.1177/03331024221128278.
[8]
代轶楠, 郑苏, 廖旭, 等. 磁共振成像在针灸治疗脑卒中脑变化研究的应用[J]. 世界中医药, 2023, 18(11): 1628-1634. DOI: 10.3969/j.issn.1673-7202.2023.11.024.
DAI Y N, ZHENG S, LIAO X, et al. Application of magnetic resonance imaging in the study of brain changes in stroke treated by acupuncture and moxibustion[J]. World Traditional Chinese Medicine, 2023, 18(11): 1628-1634. DOI: 10.3969/j.issn.1673-7202.2023.11.024.
[9]
BIJSTERBOSCH J D, BECKMANN C F, WOOLRICH M W, et al. The relationship between spatial configuration and functional connectivity of brain regions revisited[J/OL]. Elife, 2019, 8: e44890 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/31066676. DOI: 10.7554/eLife.44890.
[10]
CATALINO M P, YAO S, GREEN D L, et al. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging[J/OL]. Neurosurg Focus, 2020, 48(2): e9 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/32006946. DOI: 10.3171/2019.11.FOCUS19773.
[11]
JIMÉNEZ-RUIZ A, AGUILAR-FUENTES V, BECERRA-AGUIAR N N, et al. Vascular cognitive impairment and dementia: a narrative review[J/OL]. Dement Neuropsychol, 2024, 18: e20230116 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/39318380. DOI: 10.1590/1980-5764-DN-2023-0116.
[12]
GUO Y-S, YUAN M, HAN Y, et al. Effects of enriched environment on microglia and functional white matter recovery in rats with post stroke cognitive impairment[J/OL]. Neurochem Int, 2022, 154: 105295 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/35121010. DOI: 10.1016/j.neuint.2022.105295.
[13]
DRAGOS H M, STAN A, POPA L L, et al. Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction-A Study Protocol[J/OL]. Life (Basel), 2025, 15(1): 131 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/39860071. DOI: 10.3390/life15010131.
[14]
WANG H, ZHANG M, LI J, et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate[J/OL]. J Neuroinflammation, 2022, 19(1): 76 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35379265. DOI: 10.1186/s12974-022-02435-9.
[15]
WU L, JIANG Y, XU W, et al. Potential Inflammatory Biomarkers and Differential Gut Microbiota in Cognitive Impairment After Ischemic Stroke[J]. Neuropsychiatr Dis Treat, 2025, 21: 965-972. DOI: 10.2147/NDT.S507156.
[16]
LU W, WEN J. Crosstalk Among Glial Cells in the Blood-Brain Barrier Injury After Ischemic Stroke[J]. Mol Neurobiol, 2024, 61(9): 6161-6174. DOI: 10.1007/s12035-024-03939-6.
[17]
CHI X, WANG L, LIU H, et al. Post-stroke cognitive impairment and synaptic plasticity: A review about the mechanisms and Chinese herbal drugs strategies[J/OL]. Front Neurosci, 2023, 17: 1123817 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/36937659. DOI: 10.3389/fnins.2023.1123817.
[18]
LI K X, LU M, CUI M X, et al. Astrocyte-neuron communication mediated by the Notch signaling pathway: focusing on glutamate transport and synaptic plasticity[J]. Neural Regen Res, 2023, 18(10): 2285-2290. DOI: 10.4103/1673-5374.369124.
[19]
CHANG X, YOU J, YANG P, et al. High-Serum Brain-Derived Neurotrophic Factor Levels Are Associated With Decreased Risk of Poststroke Cognitive Impairment[J]. Stroke, 2024, 55(3): 643-650. DOI: 10.1161/STROKEAHA.123.044698.
[20]
BIJSTERBOSCH J, SMITH S M, BECKMANN C. An introduction to resting state fMRI functional connectivity[M]. United Kingdom: Oxford University Press, 2017.
[21]
LEE T W. Framing major depressive disorder as a condition of network imbalance at the compartment level: a proof-of-concept study[J/OL]. Cereb Cortex, 2025, 35(4): bhaf089 [2025-05-20]. https://pubmed.ncbi.nlm.nih.gov/40302610. DOI: 10.1093/cercor/bhaf089.
[22]
DING J, QU X, CUI J, et al. Altered Spontaneous Brain Activity and Network Property in Patients With Congenital Monocular Blindness[J/OL]. Front Neurol, 2022, 13: 789655 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/35280267. DOI: 10.3389/fneur.2022.789655.
[23]
ZHOU J, MA X, LI C, et al. Frequency-Specific Changes in the Fractional Amplitude of the Low-Frequency Fluctuations in the Default Mode Network in Medication-Free Patients With Bipolar II Depression: A Longitudinal Functional MRI Study[J/OL]. Front Psychiatry, 2020, 11: 574819 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/33488415. DOI: 10.3389/fpsyt.2020.574819.
[24]
WANG S, RAO B, CHEN L, et al. Using Fractional Amplitude of Low-Frequency Fluctuations and Functional Connectivity in Patients With Post-stroke Cognitive Impairment for a Simulated Stimulation Program[J/OL]. Front Aging Neurosci, 2021, 13: 724267 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/34483891. DOI: 10.3389/fnagi.2021.724267.
[25]
WANG C, LIU J, GUO J, et al. Dynamic brain activity states of memory impairment in stroke patients with varying motor outcomes[J/OL]. Front Aging Neurosci, 2023, 15: 1294009 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/38046468. DOI: 10.3389/fnagi.2023.1294009.
[26]
ZHANG H, LU J, ZHANG L, et al. Abnormal cerebellar activity and connectivity alterations of the cerebellar-limbic system in post-stroke cognitive impairment: a study based on resting state functional magnetic resonance imaging[J/OL]. Front Neurosci, 2025, 19: 1543760 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/40177371. DOI: 10.3389/fnins.2025.1543760.
[27]
YIN M, LIU Y, ZHANG L, et al. Effects of rTMS Treatment on Cognitive Impairment and Resting-State Brain Activity in Stroke Patients: A Randomized Clinical Trial[J/OL]. Front Neural Circuits, 2020, 14: 563777 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/33117131. DOI: 10.3389/fncir.2020.563777.
[28]
WANG L, ZHU R, ZHOU X, et al. Altered local and remote functional connectivity in mild Alzheimer's disease patients with sleep disturbances[J/OL]. Front Aging Neurosci, 2023, 15: 1269582 [2025-05-20]. https://pubmed.ncbi.nlm.nih.gov/37920381. DOI: 10.3389/fnagi.2023.1269582.
[29]
FASCHER M, NOWACZYNSKI S, MUEHLHAN M. Substance use disorders are characterised by increased voxel-wise intrinsic measures in sensorimotor cortices: An ALE meta-analysis[J/OL]. Neurosci Biobehav Rev, 2024, 162: 105712 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/38733896. DOI: 10.1016/j.neubiorev.2024.105712.
[30]
WANG Y, LIU W, YANG W, et al. Differential Abnormality in Regional Brain Spontaneous Activity and Functional Connectivity in Patients of Non-Acute Subcortical Stroke With Versus Without Global Cognitive Functional Impairment[J/OL]. Brain Behav, 2025, 15(2): e70356 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/40001287. DOI: 10.1002/brb3.70356.
[31]
PENG C Y, CHEN Y C, CUI Y, et al. Regional Coherence Alterations Revealed by Resting-State fMRI in Post-Stroke Patients with Cognitive Dysfunction[J/OL]. PLoS One, 2016, 11(7): e0159574 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/27454170. DOI: 10.1371/journal.pone.0159574.
[32]
HAN K, DONG L, LIAO X, et al. Alterations in brain function in patients with post-stroke cognitive impairment: a resting-state functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2025, 17: 1501082 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/40046780. DOI: 10.3389/fnagi.2025.1501082.
[33]
胡冰, 谭萱羽, 刘婉晴, 等. 基于链接独立成分分析的神经精神疾病多模态MRI研究进展[J]. 磁共振成像, 2022, 13(3): 129-133. DOI: 10.12015/issn.1674-8034.2022.03.032.
HU B, TAN X Y, LIU W Q, et al. Advances in multimodal MRI of neuropsychiatric disorders based on link independent component analysis[J]. Chin J Magn Reson Imaging, 2022, 13(3): 129-133. DOI: 10.12015/issn.1674-8034.2022.03.032.
[34]
DIAO Y, YIN T, GRUETTER R, et al. PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain[J/OL]. Front Neurosci, 2021, 15: 602170 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/33841071. DOI: 10.3389/fnins.2021.602170.
[35]
WANG C, QIN W, ZHANG J, et al. Altered functional organization within and between resting-state networks in chronic subcortical infarction[J]. J Cereb Blood Flow Metab, 2014, 34(4): 597-605. DOI: 10.1038/jcbfm.2013.238.
[36]
WANG Y, WANG C, WEI Y, et al. Abnormal functional connectivities patterns of multidomain cognitive impairments in pontine stroke patients[J]. Hum Brain Mapp, 2022, 43(15): 4676-4688. DOI: 10.1002/hbm.25982.
[37]
LIU J, WANG Q, LIU F, et al. Altered functional connectivity in patients with post-stroke memory impairment: A resting fMRI study[J]. Exp Ther Med, 2017, 14(3): 1919-1928. DOI: 10.3892/etm.2017.4751.
[38]
YUE X, LI Z, LI Y, et al. Altered static and dynamic functional network connectivity in post-stroke cognitive impairment[J/OL]. Neurosci Lett, 2023, 799: 137097 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/36716911. DOI: 10.1016/j.neulet.2023.137097.
[39]
LI Y, YU Z, WU P, et al. Ability of an altered functional coupling between resting-state networks to predict behavioral outcomes in subcortical ischemic stroke: A longitudinal study[J/OL]. Front Aging Neurosci, 2022, 14: 933567 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/36185473. DOI: 10.3389/fnagi.2022.933567.
[40]
FRISTON K, MORAN R, SETH A K. Analysing connectivity with Granger causality and dynamic causal modelling[J]. Curr Opin Neurobiol, 2013, 23(2): 172-178. DOI: 10.1016/j.conb.2012.11.010.
[41]
SEMMEL E S, QUADRI T R, KING T Z. Graph Theoretical Analysis of Brain Network Characteristics in Brain Tumor Patients: A Systematic Review[J]. Neuropsychology Review, 2021, 32(3): 651-675. DOI: 10.1007/s11065-021-09512-5.
[42]
FASKOWITZ J, BETZEL R F, SPORNS O. Edges in brain networks: Contributions to models of structure and function[J]. Network Neuroscience, 2022, 6(1): 1-28. DOI: 10.1162/netn_a_00204.
[43]
LI Z, HAN Y, JIANG J. Different brain functional networks between subjective cognitive decline and health control based on graph theory[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 5752-5755. DOI: 10.1109/EMBC46164.2021.9630421.
[44]
ZHU H, ZUO L, ZHU W, et al. The distinct disrupted plasticity in structural and functional network in mild stroke with basal ganglia region infarcts[J]. Brain Imaging Behav, 2022, 16(5): 2199-2219. DOI: 10.1007/s11682-022-00689-8.
[45]
MIAO G, RAO B, WANG S, et al. Decreased Functional Connectivities of Low-Degree Level Rich Club Organization and Caudate in Post-stroke Cognitive Impairment Based on Resting-State fMRI and Radiomics Features[J/OL]. Front Neurosci, 2021, 15: 796530 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35250435. DOI: 10.3389/fnins.2021.796530.
[46]
BOURNONVILLE C, HENON H, DONDAINE T, et al. Identification of a specific functional network altered in poststroke cognitive impairment[J/OL]. Neurology, 2018, 90(21): e1879-e1888 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/29678937. DOI: 10.1212/WNL.0000000000005553.
[47]
ZHU Y, BAI L, LIANG P, et al. Disrupted brain connectivity networks in acute ischemic stroke patients[J]. Brain Imaging Behav, 2017, 11(2): 444-453. DOI: 10.1007/s11682-016-9525-6.
[48]
黄可忻, 张体江. 基于MRI连接组在中枢神经系统疾病中的研究进展[J]. 磁共振成像, 2025, 16(2): 114-118. DOI: 10.12015/issn.1674-8034.2025.02.018.
HUANG K X, ZHANG T J. Research progress of MRI-based connectivity group in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2025, 16(2): 114-118. DOI: 10.12015/issn.1674-8034.2025.02.018.
[49]
ROLLS E T, DECO G, HUANG C C, et al. The human language effective connectome[J/OL]. Neuroimage, 2022, 258: 119352 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35659999. DOI: 10.1016/j.neuroimage.2022.119352.
[50]
梁赛兰, 王多琎. 动态因果模型在脑网络研究中的应用进展[J]. 中国生物医学工程学报, 2022, 41(1): 86-99. DOI: 10.3969/j.issn.0258-8021.2022.01.010.
LIANG S L, WANG D J. Application progress of dynamic causal model in brain network research[J]. Chinese Journal of Biomedical Engineering, 2022, 41(1): 86-99. DOI: 10.3969/j.issn.0258-8021.2022.01.010.
[51]
ZHANG J, LI Z, CAO X, et al. Altered Prefrontal-Basal Ganglia Effective Connectivity in Patients With Poststroke Cognitive Impairment[J/OL]. Front Neurol, 2020, 11: 577482. [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/33391148. DOI: 10.3389/fneur.2020.577482.
[52]
ZHANG J, TANG H, ZUO L, et al. Identification of a cognitive network with effective connectivity to post-stroke cognitive impairment[J]. Cognitive Neurodynamics, 2024, 18(6): 3741-3756. DOI: 10.1007/s11571-024-10139-4.
[53]
CHEN H, MAO Q, ZHANG Y, et al. Disrupted Effective Connectivity within the Fronto-Thalamic Circuit in Pontine Infarction: A Spectral Dynamic Causal Modeling Study[J/OL]. Brain Sci, 2024, 14(1): 45 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/38248260. DOI: 10.3390/brainsci14010045.
[54]
RUAN Z, ZHOU X, RAO B, et al. Network dynamics in post-stroke cognitive impairment: insights from effective connectivity analysis[J]. Brain Imaging Behav, 2025, 19(2): 346-356. DOI: 10.1007/s11682-025-00972-4.
[55]
GÜNTHER M, KANTELHARDT J W, BARTSCH R P. The Reconstruction of Causal Networks in Physiology[J/OL]. Front Netw Physiol, 2022, 2: 893743 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/36926108. DOI: 10.3389/fnetp.2022.893743.
[56]
HAO Z, SHI Y, HUANG L, et al. The Atypical Effective Connectivity of Right Temporoparietal Junction in Autism Spectrum Disorder: A Multi-Site Study[J/OL]. Front Neurosci, 2022, 16: 927556 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35924226. DOI: 10.3389/fnins.2022.927556.
[57]
ALLEGRA M, FAVARETTO C, METCALF N, et al. Stroke-related alterations in inter-areal communication[J/OL]. Neuroimage Clin, 2021, 32: 102812 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/34544032. DOI: 10.1016/j.nicl.2021.102812.
[58]
ZHAO Z, CAI H, HUANG M, et al. Altered Functional Connectivity of Hippocampal Subfields in Poststroke Dementia[J]. J Magn Reson Imaging, 2021, 54(4): 1337-1348. DOI: 10.1002/jmri.27691.
[59]
YAN S, LI Y, LU J, et al. Structural and functional alterations within the Papez circuit in subacute stroke patients[J]. Brain Imaging Behav, 2022, 16(6): 2681-2689. DOI: 10.1007/s11682-022-00727-5.
[60]
陈美钟, 王志敏, 邬裕樊, 等. 基于度中心度和格兰杰因果分析对基底节区早期缺血性卒中患者的脑网络有效连接变化研究[J]. 临床放射学杂志, 2022, 41(3): 410-414. DOI: 10.13437/j.cnki.jcr.2022.03.040.
CHEN M Z, WANG Z M, WU Y F, et al. Based on degree centrality and Granger causality analysis, the changes of effective connectivity of brain network in patients with early ischemic stroke in basal ganglia were studied.[J]. Journal of Clinical Radiology, 2022, 41(3): 410-414. DOI: 10.13437/j.cnki.jcr.2022.03.040.
[61]
李峻豪, 罗钰鼎, 段川西, 等. 卒中后认知障碍的预测指标的研究进展[J]. 神经损伤与功能重建, 2025, 20(8): 478-482. DOI: 10.16780/j.cnki.sjssgncj.20241366
LI J H, LUO Y D, DUAN C X, et al. Research progress on predictors of post-stroke cognitive impairment[J]. Nerve injury and functional reconstruction, 2025, 20(8): 478-482. DOI: 10.16780/j.cnki.sjssgncj.20241366
[62]
LEE M, YEO N Y, AHN H J, et al. Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning[J/OL]. Alzheimers Res Ther, 2023, 15(1): 147 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/37653560. DOI: 10.1186/s13195-023-01289-4.
[63]
虞烽伟, 陈品珍, 黎子龙, 等. 7T磁共振成像在神经系统疾病中的应用进展[J]. 中国医学影像学杂志, 2025, 33(5): 519-524, 536. DOI: 10.3969/j.issn.1005-5185.2025.05.012.
YU F W, CHEN P Z, LI Z L, et al. Application progress of 7T magnetic resonance imaging in nervous system diseases[J]. Chinese Journal of Medical Imaging, 2025, 33(5): 519-524, 536. DOI: 10.3969/j.issn.1005-5185.2025.05.012.

上一篇 FTO基因与肥胖关联的神经机制的fMRI研究进展
下一篇 慢性颈痛脑机制的研究进展:聚焦急性期转化的神经影像学证据
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2