分享:
分享到微信朋友圈
X
综述
rs-fMRI在针刺治疗阿尔茨海默病中的中枢机制研究进展
谢雯婷 李丽 陈玉竹 魏玉婷 马玲 严兴科

本文引用格式:谢雯婷, 李丽, 陈玉竹, 等. rs-fMRI在针刺治疗阿尔茨海默病中的中枢机制研究进展[J]. 磁共振成像, 2025, 16(12): 177-183, 189. DOI:10.12015/issn.1674-8034.2025.12.026.


[摘要] 阿尔茨海默病(Alzheimer's disease, AD)是以进行性认知功能减退为主要临床表现的疾病,严重影响患者身心健康和社会发展。针刺是治疗AD的有效方法之一,可显著改善AD症状,延缓病情进展,但其中枢机制尚未完全明确。静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)因无辐射、时间空间分辨率高、显影度高等优势,为深入研究针刺治疗AD的中枢机制提供了可视化手段。本文通过梳理总结rs-fMRI在针刺治疗AD的中枢机制相关研究,阐述了当前研究的局限性并指出了今后研究的方向,发现AD患者存在脑区结构损伤、脑区间功能连接异常、脑网络连接效应减弱等病理表现,针刺可通过减轻海马、颞叶、扣带回、尾状核等脑区结构损伤,改善后扣带回、颞叶、顶叶、额叶等脑区间功能连接异常,增强大尺度脑网络默认模式网络(default mode network, DMN)、额顶控制网络(fronto parietal network, FPN)、中央执行网络(central executive network, CEN)、感觉运动网络(sensorimotor network, SMN)和网络间背侧注意网络(dorsal attention network, DAN)-DMN连接效应以发挥治疗AD的作用,以期为今后针刺治疗AD中枢机制的深入研究与临床方案优化提供更加全面的参考。
[Abstract] Alzheimer's disease (AD) is a disease characterized by progressive cognitive decline as the main clinical manifestation, which seriously affects patients' physical and mental health and social development. Acupuncture is one of the effective methods for treating AD, which can significantly improve AD symptoms and delay disease progression, but its central mechanism has not been fully clarified. Functional magnetic resonance imaging (fMRI) technology, with advantages such as no radiation, high temporal and spatial resolution, and high imaging clarity, provides a visual means for in-depth study of the central mechanism of acupuncture in the treatment of AD. By sorting out and summarizing the studies on the central mechanism of resting-state functional magnetic resonance imaging (rs-fMRI) in acupuncture treatment of AD, elaborates on the limitations of current research and points out the directions for future studies,this paper finds that AD patients have pathological manifestations such as structural damage in brain regions, abnormal functional connections between brain regions, and weakened connection effects of brain networks. Acupuncture can exert its role in treating AD by reducing structural damage in brain regions such as the hippocampus, temporal lobe, cingulate gyrus, and caudate nucleus, improving abnormal functional connections between brain regions such as the posterior cingulate gyrus, temporal lobe, parietal lobe, and frontal lobe, enhancing the connectivity effects of large-scale brain networks, including the default mode network (DMN), fronto-parietal network (FPN), central executive network (CEN), sensorimotor network (SMN), as well as the inter-network connectivity between the dorsal attention network (DAN) and DMN, so as to exert a therapeutic effect on AD, with the aim of providing a more comprehensive reference for the in-depth research on the central mechanism of acupuncture in the treatment of AD and the optimization of clinical protocols in the future.
[关键词] 阿尔茨海默病;针刺;静息态功能磁共振成像;磁共振成像;中枢机制
[Keywords] Alzheimer's disease;acupuncture;resting-state functional magnetic resonance imaging;magnetic resonance imaging;central mechanism

谢雯婷 1   李丽 1   陈玉竹 2   魏玉婷 1   马玲 1   严兴科 1*  

1 甘肃中医药大学针灸推拿学院,兰州 730000

2 青海大学医学院中医系,西宁 810016

通信作者:严兴科,E-mail:yanxingke@126.com

作者贡献声明:严兴科设计本研究的方案,对稿件的重要内容进行了修改,获得了甘肃中医药大学2022年研究生一流课程立项项目、2023年度研究生课程思政示范课项目和2024年度校级协同创新中心项目的资助;谢雯婷起草和撰写稿件,获取、分析和解释本研究的数据,对稿件重要内容进行修改;李丽、陈玉竹、魏玉婷、马玲主要负责检索既往研究文献,分析和解释文献,对稿件重要内容进行了修改,其中马玲获得了甘肃中医药大学研究生“创新创业基金”项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃中医药大学2022年研究生一流课程立项项目 甘中医大研发〔2022〕67号 2023年度研究生课程思政示范课项目 甘中医大研发〔2023〕55号 2024年度校级协同创新中心项目 甘中医大科发〔2024〕17 号 2025年度甘肃中医药大学研究生“创新创业基金”项目 2025CXCY-031
收稿日期:2025-07-24
接受日期:2025-10-24
中图分类号:R445.2  R749.16 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.12.026
本文引用格式:谢雯婷, 李丽, 陈玉竹, 等. rs-fMRI在针刺治疗阿尔茨海默病中的中枢机制研究进展[J]. 磁共振成像, 2025, 16(12): 177-183, 189. DOI:10.12015/issn.1674-8034.2025.12.026.

0 引言

       阿尔茨海默病(Alzheimer's disease, AD)是以不可逆性进行性认知功能障碍损害为主要特征,并引起日常生活能力下降和精神行为异常等临床表现的神经退行性疾病[1]。流行病学调查显示,中国目前约有1057万痴呆患者,其中AD占比约60%~70%[2]。预计2050年我国AD患者人数将高达3.66亿[3]。该病具有高患病率、高致残率、高致死率“三高”特点,严重威胁着患者生活质量,给家庭及社会经济发展带来沉重负担,是当前医学界亟待解决的难题之一[4]。现代医学治疗本病的方法主要有药物疗法、认知训练等,均可不同程度地改善患者认知和记忆能力,但多存在不良反应明显、疗效不稳定等局限[5]。研究证实针刺治疗AD疗效肯定,可有效提高患者认知和记忆能力,改善生活质量,且针刺具有副作用小、患者依从性高、耐受程度好等优势[6, 7]

       静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)主要用于成像大脑区域的活动和大脑区域之间随时间变化的相互作用,具有无创、无辐射、显影度高、时间空间分辨率强等优势,为针刺治疗AD的中枢机制研究提供了一种可视化的手段[8]。rs-fMRI作为针刺疗效评估的重要工具之一,可用于观察大脑对针刺刺激的实时反应及针刺调控不同脑区和脑网络之间的神经元活动,具有指导穴位选择、优化临床治疗方案等价值[9]。本文通过计算机检索PubMed、Web of Science、中国知网、维普中文科技期刊数据库、万方数据知识服务平台、Embase等数据库,检索时间为1999年1月至2025年7月,英文检索词为“Alzheimer's disease (AD)” OR “seniledementia” OR “acupuncture” OR “needle” OR “electroacupuncture (EA)” AND “resting-state functional magnetic resonance imaging (rs-fMRI)” OR “functional magnetic resonance imaging (fMRI)”,中文检索词为“阿尔茨海默病”或“老年痴呆”,“针刺”或“针”或“电针”,“静息态功能磁共振成像技术”或“功能磁共振成像技术”或“磁共振成像”。近年来,相关综述对rs-fMRI的研究多停留在“脑区激活”层面,未深入到大尺度脑网络连接的调控分析,难以全面揭示针刺的中枢作用机制。故笔者通过全面梳理总结后,从rs-fMRI简介及应用、针刺治疗AD中枢机制的rs-fMRI研究(减轻脑结构损伤、改善脑区间功能连接异常、增强大尺度脑网络连接效应)、总结与展望等方面进行论述,以期为今后针刺治疗AD中枢机制的深入研究与临床方案优化提供更加全面的参考,具体如下。

1 rs-fMRI技术简介及应用

1.1 rs-fMRI技术的原理和优势

       rs-fMRI技术的核心原理是基于血氧水平依赖(blood oxygenation level-dependent, BOLD)效应,即通过血氧变化反映神经元活动来检测大脑血流和氧代谢变化来间接反映神经元活动,本质上是传统结构MRI技术的延伸与发展[10]。rs-fMRI技术是利用人体中氢质子的磁性成像而来,当人体处于强磁场时,氢质子沿磁场排列,诱发射频脉冲引发共振,关闭后质子弛豫释放信号被机体接收,结合梯度磁场定位,重建结构图像[11]。BOLD效应是功能信号的来源,视觉、运动等刺激诱发神经活动,增加脑血流量和脑血容量,加速氧气输入[12]。机体提供氧气和葡萄糖后血流量增加,导致局部脱氧血液减少[13]。含氧血液为抗磁性物质,对磁场影响小,信号较强;而脱氧血液是顺磁性物质,会干扰局部磁场均匀性,缩短质子T2弛豫时间,降低T2加权成像信号。这些与血红蛋白相关的不均匀性微磁场导致组织体素内T2*弛豫时间缩短[14]。因此,局部脑组织神经元活动引起的摄氧变化和血液供应改变导致区域组织氧合变化可通过T2*加权MRI进行映射。

       rs-fMRI技术具有无创、时间空间分辨率高、无辐射、无对比剂等优点,可实时监测活体脑功能变化情况,是集生理解剖、病理功能和影像于一体的常用神经影像成像设备之一[15]。近年来,rs-fMRI技术已广泛应用于神经脑科学研究、临床诊断及治疗评估等领域,可用于评估大脑对各种行为和认知任务的反应,也可辅助诊断相关系统疾病[16]。既往研究发现,rs-fMRI可通过内侧颞叶和海马的异常功能连接准确诊断AD并预测疾病的早期阶段[17]

1.2 fMRI技术的分类及计算方法

       rs-fMRI指在静息状态下,BOLD低频波动信号对大脑自发神经元信号活动的检测,无需特定任务即可测量[18, 19],可直观精确地研究AD、失眠、焦虑等相关神经系统异常疾病的中枢机制[20]。rs-fMRI因诊断敏感度高、反映脑功能动态变化等优势在AD的诊疗中应用更为广泛[21]。rs-fMRI的数据计算方法主要有两种类型:一类主要用于研究大脑自发活动的局部属性,如低频波动振幅(amplitude of low frequency fluctuation, ALFF)即反映神经元自发活动在大脑不同脑区间的同步性特征和区域一致性(regional homogeneity, ReHo)即通过揭示局部脑区活动的同步性,检测脑功能异常。ALFF是指低频范围内BOLD信号的平均振幅,可直接测量局部神经元电活动的强度,目前已广泛应用于脑部疾病中功能异常的评估。ALFF可通过神经元的异常活动间接反映脑内病理改变,为AD早期诊断提供客观依据,其升高多出现于海马、后扣带回等脑区,故认为ALFF升高可能反映针刺对AD脑内对应神经元突触功能修复[22]。ReHo基于体素度量反映相邻体素在时间进程上的局部同步性,可反映特定区域神经元活动,在AD早期发现认知功能异常并监测疾病进展。若ReHo值升高表明局部神经元集群放电活动恢复,反映执行认知功能改善[23]。另一类功能连接(functional connectivity, FC)则从功能整合角度反映脑区之间的相互联系评价远隔脑区之间功能活动一致性,故FC增强可反映认知功能改善的具体维度,在AD进展中通过特定脑网络间的异常功能连接以辅助早期诊断[24]

       rs-fMRI的无创性可避免操作对神经活动的干扰,通过多次扫描追踪针刺对中枢效应的动态变化;高空间分辨率可精准定位针刺涉及的脑区,明确多系统协同的具体作用靶点,捕捉秒级信号传导时序,还原针刺的中枢传递路径。综上可知,rs-fMRI可通过对大脑神经元信号活动的检测,利用ALFF、ReHo、FC等计算方法,以深入研究针刺治疗AD的中枢机制。

2 针刺治疗AD中枢机制的rs-fMRI研究

2.1 减轻AD脑区结构损伤

       正常脑结构是功能产生的物质基础,脑内灰质(如海马、颞叶、扣带回、尾状核等)体积萎缩,皮质厚度变薄是AD发生病理变化的核心结构基础[25, 26]。fMRI研究发现[27],AD患者双侧海马、颞叶及左侧中央扣带回等灰质体积明显下降、皮层厚度变薄,且左脑灰质萎缩程度更为显著。此外,有研究运用基于体素的形态学测量(voxel-based morphometry, VBM)分析法即通过精确评估每个体素的结构反映不同脑区灰质体积的微小变化,发现AD患者的双侧海马、右侧颞叶、尾状核及前扣带回体积明显萎缩[28]。这与多项研究[29, 30]结果相一致。海马参与记忆、学习等功能,扣带回是认知行为调控的核心脑区,尾状核是认知行为的皮层下枢纽,与AD患者出现认知障碍、学习记忆能力损伤等临床表现密切相关[31]

       AD患者存在海马、颞叶、扣带回、尾状核等脑区灰质萎缩、皮层厚度变薄等结构损伤,针刺可有效减轻上述脑区结构萎缩,发挥改善患者认知、学习、记忆等功能的作用。SHAN等[32]通过rs-fMRI观察针刺四关穴(双侧合谷、太冲)对AD海马脑区结构的影响发现,患者认知功能较前改善,海马的萎缩程度减慢,同时观察到右侧颞下回-左侧顶下回节点的功能连通性增强。由此表明,针刺是通过减轻海马萎缩,调节神经元活性,进而改善大脑神经可塑性。WANG等[33]发现,AD患者颞叶、扣带回出现结构萎缩、神经元活动下降,针刺合谷、太冲后行rs-fMRI检测观察到患者颞叶、扣带回、枕叶等多个脑区结构得到改善,脑萎缩程度减轻,神经元活动显著增强,认知功能较前明显改善。由此推测针刺可通过延缓颞叶、扣带回等脑区结构萎缩,减轻神经元受损以达到治疗AD的目的。戴雅岚[34]对比分析了“调神益智”针刺与非经非穴浅刺对尾状核的结构影响发现,针刺组左侧尾状核神经元兴奋性增强,萎缩程度减轻,同时发现延迟记忆得分差值与左侧尾状核兴奋性呈负相关。结果表明,针刺可减缓尾状核萎缩程度,增强神经元兴奋性,增加患者延迟记忆时间,改善认知功能。综上可知,灰质内海马、颞叶、扣带回、尾状核等关键脑区结构损伤是AD发病的重要病理因素之一,针刺可延缓上述脑区萎缩程度,改善神经元可塑性,增强脑区激活程度,达到改善AD患者学习记忆、认知等功能的目的。

2.2 改善脑区功能连接异常

       后扣带回、颞叶(海马、内嗅皮层、杏仁核)、顶叶(角回、顶上小叶)、额叶(额中回、额下回、背外侧前额叶)等区域功能连接异常程度与认知功能减退速度呈显著正相关[35, 36]。颞-顶叶接收来自视觉、听觉等神经信息传入,功能连接异常会出现严重阅读障碍[37],并与前额叶形成双向功能连接,共同参与认知信息、记忆的加工处理[38]。研究发现,AD患者额叶-颞叶脑区间的功能连接显著降低,额叶皮层-颞下回所在的腹侧视觉区形成的反馈通路功能抑制[39]。同时有研究分析功能连接与情景记忆、检索任务评分的相关性发现,AD患者后扣带回与颞叶外侧叶、右侧颞中回的功能连接显著减弱,情景记忆、检索任务评分也明显降低[40]。HAWKINS等[41]探讨AD病程进展与海马-后扣带回之间的功能连接强度相关性,发现海马-后扣带回功能连接显著下降,且AD病程进展与功能连接下降程度呈正相关。

       AD患者后扣带回、颞叶、顶叶、额叶等脑区之间功能连接异常,针刺可有效改善上述脑区功能连接,达到促进患者记忆、语言、信息整合与加工的目的。魏玉婷等[42]利用rs-fMRI技术观察“益智调神”穴方联合口服盐酸多奈哌齐治疗后发现,与单纯西药组相比,针药联合可增强左侧海马-右侧颞上回、双侧颞下回、双侧颞中回之间的功能连接,进而达到调节感觉异常,提高AD患者记忆、视觉整合等功能。由此说明,针刺可增强海马与颞叶的功能连接,改善患者记忆、视觉整合等功能。ZHENG等[43]利用rs-fMRI技术探讨针刺合谷、太冲对AD患者脑功能连接的影响,发现与健康对照组相比,针刺后右侧海马-左侧额叶中央前回之间功能连接显著增强,简易精神状态量表(Mini-Mental State Examination, MMSE)评分显著增高,提示针刺可使海马与额叶功能连接增强,改善患者认知功能,增强记忆整合。ZHAN等[44]研究针刺对颞叶-额叶功能连接改变的影响,发现治疗12周后双侧颞中回-左侧额中回功能连接显著增强,AD评估量表-认知部分(Alzheimer's Disease Assessment Scale-Cognitive Subscale, ADAS-cog)评分显著升高,表明针刺可增强颞叶-额叶功能连接,改善空间学习和记忆能力,为AD治疗提供了潜在靶点。多项研究[45, 46]采用rs-fMRI技术发现,针刺可增强后扣带回-海马旁回、左侧海马、额叶-顶叶之间功能连接,提高情景记忆心理学测试成绩。综上研究可知,针刺可增强海马-颞叶、海马-额叶、扣带回-海马、颞叶-额叶、额叶-顶叶等多个脑区之间的功能连接,达到改善学习、记忆、视觉等认知功能的目的。

2.3 增强大尺度脑网络连接效应

       AD脑网络连接异常是其发病的病理机制和临床表现的重要基础,目前对于针刺治疗AD的异常脑网络连接主要集中关注于:(1)默认模式网络(default mode network, DMN);(2)背侧注意网络(dorsal attention network, DAN);(3)额顶控制网络(fronto parietal network, FPN)、中央执行网络(central executive network, CEN);(4)感觉运动网络(sensorimotor network, SMN)等[47, 48]

2.3.1 DMN

       DMN负责注意调控,是AD发病最早累及的网络之一,与记忆衰退等核心认知损伤密切相关,是rs-fMRI研究中最常见的脑网络之一,其连接受损在AD中发挥着关键作用[49]。DMN主要由左楔前叶、左后扣带回、楔前叶和扣带回以及内侧额回组成[50]。负责调控机体自我意识,参与情景记忆提取、记忆巩固、完成内省过程。研究表明,AD患者DMN网络中皮质变薄、Tau蛋白沉积增加、神经元活动较少且左楔前叶-后扣带皮层、前扣带皮层-内侧前额叶皮层之间连接断开,FC值显著降低[51]。ZHENG等[52]通过与30名健康受试者相比发现,40名AD患者左后扣带皮层、右侧颞中回、左楔前叶的ALFF值显著降低,左右背外侧前额叶皮层ALFF值升高。由此表明,AD患者脑区连通性下降,DMN网络神经元信号传递中断。

       针刺可修复中断的神经元信号,增强DMN网络内的功能连接,提高患者记忆,逆转核心认知损伤。LIANG等[53]针刺AD患者太冲、合谷穴3 min后运用FC分析法得出,左后扣带皮层、右颞中回和右侧顶下小叶连接增强,双侧扣带回和左侧楔前叶连接降低,DMN活性显著增强;与此同时,针刺对DMN的连接增强效果与MMSE评分升高呈显著正相关。由此说明,针刺刺激可调节AD中DMN网络连接活性,不同程度改善AD患者认知及记忆功能。JI等[54]将28名受试者分为AD组和健康对照组,运用fMRI收集针刺合谷、太冲后对DMN连接强度的影响结果显示,与健康对照组相比,AD患者右侧额下回-左侧角回的FC下降,扣带回-额中回的功能连接显著增强,合谷、太冲作为“四关穴”,可疏通周身气机,将经气传导至前额叶皮层、扣带回等DMN网络核心节点,表明针刺合谷、太冲可增强DMN网络连接功能达到改善AD患者认知功能的目的。CHEN等[55]通过对比太溪穴深刺和浅刺对DMN功能连接的影响发现,深刺可显著增强DMN核心节点后扣带回、楔前叶与前额叶皮质的功能连接,而浅刺仅引起局部脑区岛叶的微弱激活,表明深刺对脑网络的调节效应显著优于浅刺。

       综上,针刺干预可调动DMN网络活性,特别是扣带回-颞中回连接增强,这可能是改善AD患者调控自我意识启动认知响应的中枢机制之一,说明DMN连接增强或为针刺延缓AD进展的影像标志物。

2.3.2 DAN

       DAN由顶内沟、额叶眼动区等组成,主要负责内源性目标驱动及外源性的注意定向过程[56]。既往研究发现,从轻度认知障碍到AD的发展过程中,DAN内连接功能存在异常降低,并伴有额叶、顶叶等皮层灰质萎缩。这表明随着疾病的不断发展,AD患者“自上而下”的注意系统功能逐渐退化,其脑组织体积的缩小速度与DAN功能连接的降低程度密切相关[57]。另一项研究指出,当AD患者DAN功能受损严重时具备一定的反馈调节能力,可调动其他相对正常的功能网络,以代偿DAN受损引起的注意力和认知障碍[58]。DAN与DMN之间存在功能拮抗,故二者需同时调节,以恢复注意力资源分配,改善认知功能。

       何林璐等[59]利用rs-fMRI对健康青年和AD患者针刺太溪穴发现,AD患者DAN功能活性未见明显改变,但与DMN之间网络连接增强,太溪穴是肾经的原穴,主治健忘等病,使其更易靶向调节与记忆相关的脑网络,表明针刺太溪穴可通过增强DMN与DAN之间的代偿性连接,改善AD患者注意力定向障碍。FENG等[60]运用深刺和浅刺两种方法针刺AD患者合谷、太冲穴后利用rs-fMRI技术观察发现,深刺后顶内沟与其他脑区连接性增强,但DAN网络连接未见明显增强。综上,针刺目前尚无法激活DAN脑区活性,但可代偿性地增强DMN到DAN的网络连接。由此推测,这可能与AD患者DAN基础功能受损、针刺刺激强度或穴位特异性相关-如太溪穴侧重调节肾经相关中枢效应,合谷、太冲深刺可能更影响顶内沟等局部脑区,却未能达到激活整个DAN的阈值。而DMN与DAN连接的代偿性增强,提示针刺可通过强化脑网络间的协同通路,间接弥补DAN功能缺陷,未来可针对性调整针刺穴位、深度等,探索能否通过代偿通路间接改善DAN功能,深入探讨针刺对特定脑网络的异质性效应分析。

2.3.3 FPN、CEN

       FPN主要由前额叶皮质、前扣带回皮质、前岛叶、顶下小叶等脑区组成,参与调控视觉空间记忆、推理思维、记忆力等功能[61]。FPN依赖DMN和DAN的基础功能,在基础功能平衡后,可强化网络内连接提升执行功能。FPN空间上位于DMN和DAN之间,功能上介导两者在配合完成目标导向任务时信息整合与分配间的动态平衡[62]。研究发现,AD患者背外侧前额叶皮层、岛叶、前扣带皮层、顶下小叶等FPN脑区功能活动显著减弱,认知及推理能力显著下降[63]。马淑娟等[64]利用rs-fMRI观察针刺合谷、太冲对AD患者FPN连接发现,背外侧前额叶-颞上回、小脑功能连接增强。由此表明,针刺可通过增强FPN连接功能,以补偿由于疾病退行性影响而导致的功能损伤,增强思维、计划力等,提高AD患者视觉空间记忆、推理能力。

       CEN主要由背外侧前额叶皮层和后顶叶皮层组成,它在工作记忆中的信息维护以及目标导向行为背景下的判断和决策起着重要作用[65]。WU等[66]利用rs-fMRI技术观察针刺AD患者足三里、合谷后研究发现,CEN脑区被显著激活,前额叶皮层与后顶叶皮层FC值显著增加,皮层厚度改善,这表明针刺可改善CEN网络之间功能连接。

2.3.4 SMN

       SMN可通过影响整体脑网络兴奋性,优化DMN、DAN、FPN等认知网络的调节效率。负责处理感觉输入和调控运动输出,主要脑区包括大脑皮层的感觉区、运动区及相关皮层下结构[67]。XU等[68]运用rs-fMRI技术观察电针刺激AD小鼠后大脑皮层感觉区和运动区的FC发现,右侧运动皮层-左侧躯体感觉皮层之间FC显著增强,SMN网络连接显著增加,且有效改善了小鼠空间学习记忆能力,由此表明,针刺可增强SMN网络连接效应,改善机体感觉、运动、认知水平(表1)。

       综上所述,针刺利用rs-fMRI技术所研究的AD脑网络中,DMN、DAN网络是当前研究热点,其次是FPN、CEN、SMN等较为常见(表2)。上述研究成果为利用rs-fMRI技术探讨针刺对AD脑网络调节效应的中枢机制提供了客观依据。

表1  脑网络相关研究中的rs-fMRI参数
Tab. 1  rs-fMRI parameters in brain network-related studies
表2  针刺治疗AD的核心穴位-脑区及脑网络调控关联表
Tab. 2  Acupoint-based brain network modulation in acupuncture treatment for AD

2.3.5 当前局限性与转化挑战

       当前针刺治疗AD脑网络的rs-fMRI研究仍存在明显局限:(1)大部分研究所涉及的样本量不足40例且多为单中心设计,考虑受样本异质性影响导致脑网络连接变化的结果稳定性不足;(2)部分研究未严格控制针刺手法、留针时间等变量,难以排除非特异性效应的干扰。

       从转化层面而言,rs-fMRI所揭示的脑网络变化与临床认知功能改善的量化关联尚未完全明确,难以直接指导临床针刺方案的优化;如何基于个体脑网络损伤的特异性模式如DMN与DAN之间的主导异常,制订以“脑网络导向”的个体化选穴策略,缺乏标准化的临床转化路径。故今后可结合当前最新“脑网络靶向针刺”假说根据个体脑网络损伤的特异性模式,个体化选择穴位和刺激参数,通过精准调控网络节点连接强度实现疗效优化,提升针刺治疗的针对性。

3 小结与展望

       rs-fMRI技术目前已广泛应用于针刺治疗AD的中枢机制研究中,为AD的临床疗效研究提供了客观可视化的评估手段,有力促进了针刺通过刺激局部穴位治疗AD的中枢机制研究。本文利用rs-fMRI技术发现针刺可通过:(1)减轻(海马、颞叶、扣带回、尾状核)等脑区结构损伤;(2)改善(后扣带回、颞叶、顶叶、额叶)等脑功能连接异常;(3)增强大尺度脑网络(DMN、FPN、CEN、SMN)和网络间(DAN-DMN)连接效应等中枢机制对AD起到治疗作用(图1)。

       但笔者经过梳理总结发现,目前仍存在以下问题:(1)现有rs-fMRI已观察到针刺后DMN、FPN等网络的FC增强,但未验证此类脑功能指标与美国国立老化研究所-阿尔茨海默病协会指南(National Institute on Aging-Alzheimer's Association Guidelines, NIA-AA)、MMSE等之间的量化关联,尚无法明确FC增强是否为疗效机制,故今后可通过相关性分析,验证脑结构重塑、功能连接变化与临床认知改善的关联性,为针刺中枢效应机制研究提供重要证据链;(2)fMRI检测费用高、成本大,难以开展大样本量的研究以论证针刺治疗AD可同时导致脑功能和脑结构的异常变化。因此,今后可结合fMRI检测目的与AD临床评估需求,利用“fMRI客观参数+临床认知量表”的指标组合开展多中心、大样本RCT进行验证,重点关注不同AD分期、针刺疗程差异等问题,通过设置不同针刺干预条件下单穴和多穴的差异量化参数,标准化的结局指标相关性分析,同时通过多中心分配与成本优化,解决fMRI大样本研究难题,以期得出可信度高、规范化、严谨的结论来阐明针刺治疗AD的中枢效应机制;(3)尚未明确针刺治疗AD的脑结构是否产生病理性改变,且鲜有rs-fMRI结合其他神经影像学手段如正电子发射断层显像(positron emission tomography, PET)、脑电图(electroencephalography, EEG)、电子计算机断层扫描(computed tomography, CT)等研究的报道,故今后可利用多模态检测技术融合(如rs-fMRI+PET、rs-fMRI+EEG、rs-fMRI+CT)的扫描方法对针刺治疗AD的脑结构和脑功能进行多角度、多层次的深入研究,为运用fMRI技术探讨针刺治疗AD的中枢效应机制提供更加可靠的研究结果,以期更好地为临床治疗AD提供依据。

图1  针刺治疗AD的中枢机制框架图。DMN:默认模式网络;DAN:背侧注意网络;FPN:额顶控制网络;CEN:中央执行网络;SMN:感觉运动网络。
Fig. 1  Framework diagram of the central mechanisms of acupuncture in the treatment of AD. DMN: default mode network; DAN: dorsal attention network; FPN: fronto parietal network; CEN: central executive network; SMN: sensorimotor network.

[1]
BEATA B K, WOJCIECH J, JOHANNES K, et al. Alzheimer's Disease-Biochemical and Psychological Background for Diagnosis and Treatment[J/OL]. Int J Mol Sci, 2023, 24(2): 1059 [2025-03-11]. https://www.mdpi.com/1422-0067/24/2/1059. DOI: 10.3390/ijms24021059.
[2]
KANG M, LI C, MAHAJAN A, et al. Subjective Cognitive Decline Plus and Longitudinal Assessment and Risk for Cognitive Impairment[J]. JAMA Psychiatry, 2024, 81(10): 993-1002. DOI: 10.1001/jamapsychiatry.2024.1678.
[3]
ZHONG C, ZHAO J, WONG C, et al. Methodological quality of systematic reviews on treatments for Alzheimer's disease: a cross-sectional study[J/OL]. Alzheimers Res Ther, 2022, 14(1): 159 [2025-03-11]. https://doi.org/10.1186/s13195-022-01100-w. DOI: 10.1186/s13195-022-01100-w.
[4]
YANG T, LIU W, HE J, et al. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis[J/OL]. Alzheimers Res Ther, 2024, 16(1): 140 [2025-03-11]. https://doi.org/10.1186/s13195-024-01505-9. DOI: 10.1186/s13195-024-01505-9.
[5]
SHARMA A, RUDRAWAR S, BHARATE S B, et al. Recent advancements in the therapeutic approaches for Alzheimer's disease treatment: current and future perspective[J]. RSC Med Chem, 2025, 16(2): 652-693. DOI: 10.1039/d4md00630e.
[6]
KWON C Y, LEE B. Acupuncture for Behavioral and Psychological Symptoms of Dementia: A Systematic Review and Meta-Analysis[J]. J Clin Med, 2021, 10(14): 3087-3102. DOI: 10.3390/jcm10143087.
[7]
SHI H, ZHANG X, SI G, et al. Quality of the Evidence Supporting the Role of Acupuncture Interventions for Vascular Dementia[J]. Neuropsychiatr Dis Treat, 2023, 19: 27-48. DOI: 10.2147/NDT.S389924.
[8]
YUE J H, ZHANG Q H, YANG X, et al. Magnetic resonance imaging of white matter in Alzheimer's disease: a global bibliometric analysis from 1990 to 2022[J/OL]. Front Neurosci, 2023, 17: 1163809 [2025-03-11]. https://www.frontiersin.org/articles/10.3389/fnins.2023.1163809. DOI: 10.3389/fnins.2023.1163809.
[9]
LIU L, HU X, SU Y, et al. Application and Development of Nanotechnology in Traditional Chinese Acupuncture in Recent 20 Years: A Comprehensive Review[J]. ACS Appl Mater Interfaces, 2025, 17(15): 22161-22183. DOI: 10.1021/acsami.4c22627.
[10]
TAYLOR S F, MARTZ M E. Real-time fMRI neurofeedback: the promising potential of brain-training technology to advance clinical neuroscience[J]. Neuropsychopharmacology, 2023, 48(1): 238-239. DOI: 10.1038/s41386-022-01397-z.
[11]
ERIN O, BOYVAT M, LAZOVIC J, et al. Wireless MRI-Powered Reversible Orientation-Locking Capsule Robot[J/OL]. Adv Sci (Weinh), 2021, 8(13): 2100463 [2025-03-11]. https://doi.org/10.1002/advs.202100463. DOI: 10.1002/advs.202100463.
[12]
POSSE S, RAMANNA S, MOELLER S, et al. Corrigendum: Real-time fMRI using multi-band echo-volumar imaging with millimeter spatial resolution and sub-second temporal resolution at 3 tesla[J/OL]. Front Neurosci, 2025, 19: 1612503 [2025-03-11]. https://doi.org/10.3389/fnins.2025.1612503. DOI: 10.3389/fnins.2025.1612503.
[13]
KOPAL J, PIDNEBESNA A, TOMEČEK D, et al. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines[J]. Hum Brain Mapp, 2020, 41(18): 5325-5340. DOI: 10.1002/hbm.25195.
[14]
ROMERO A B, FURTADO F S, SERTIC M, et al. Abdo minal Positron Emission Tomography/Magnetic Resonance Imaging[J]. Magn Reson Imaging Clin N Am, 2023, 31(4): 579-589. DOI: 10.1016/j.mric.2023.06.003.
[15]
HOSADURG N, KRAMER C M. Magnetic Resonance Imaging Techniques in Peripheral Arterial Disease[J]. Adv Wound Care (New Rochelle), 2023, 12(11): 611-625. DOI: 10.1089/wound.2022.0161.
[16]
CAMPBELL O L, WEBER A M. Monofractal analysis of functional magnetic resonance imaging: An introductory review[J]. Hum Brain Mapp, 2022, 43(8): 2693-2706. DOI: 10.1002/hbm.25801.
[17]
WARREN S L, MOUSTAFA A A. Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review[J]. J Neuroimaging, 2023, 33(1): 5-18. DOI: 10.1111/jon.13063.
[18]
LAKHANI D A, SABSEVITZ D S, CHAICHANA K L, et al. Current State of Functional MRI in the Presurgical Planning of Brain Tumors[J/OL]. Radiol Imaging Cancer, 2023, 5(6): e230078 [2025-03-11]. https://doi.org/10.1148/rycan.230078. DOI: 10.1148/rycan.230078.
[19]
MANAN H A, AIDILLA S N, PALANIANDY K, et al. The utilisation of fMRI for pre-operative mapping in the paediatric population with central nervous system tumours: a systematic review[J]. Neuroradiology, 2025, 67(3): 643-656. DOI: 10.1007/s00234-024-03489-7.
[20]
WANG X, NIU Y, WANG J, et al. Application progress of resting-state functional magnetic resonance imaging in study of default mode network in patients with vascular cognitive impairment[J/OL]. Chin J Med Dev, 2024, 48(1): 51-56. DOI: 10.3969/j.issn.1671-7104.230141.
[21]
KEYVANFARD F, SCHMID A K, NASIRAEI-MOGHADDAM A. Functional Connectivity Alterations of Within and Between Networks in Schizophrenia: A Retrospective Study[J]. Basic Clin Neurosci, 2023, 14(3): 397-409. DOI: 10.32598/bcn.2022.3928.2.
[22]
AMEEN F A, HASSAN M, MO T, et al. Static and dynamic changes in amplitude of Low-Frequency fluctuations in patients with Self-Limited epilepsy with centrotemporal Spikes (SeLECTS): A Resting-State fMRI study[J/OL]. J Clin Neurosci, 2024, 129: 110817 [2025-03-11]. https://doi.org/10.1016/j.jocn.2024.110817. DOI: 10.1016/j.jocn.2024.110817.
[23]
ZHANG R, REN J, LEI X, et al. Aberrant patterns of spontaneous brain activity in schizophrenia: A resting-state fMRI study and classification analysis[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 134: 111066 [2025-03-11]. https://doi.org/10.1016/j.pnpbp.2024.111066. DOI: 10.1016/j.pnpbp.2024.111066.
[24]
VOIGT K, LIANG E X, MISIC B, et al. Metabolic and functional connectivity provide unique and complementary insights into cognition-connectome relationships[J]. Cereb Cortex, 2023, 33(4): 1476-1488. DOI: 10.1093/cercor/bhac150.
[25]
AL A S, NAJM L, LADOUCEUR L, et al. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives[J/OL]. Adv Funct Mater, 2023, 33(37): 2302673 [2024-03-11]. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202302673. DOI: 10.1002/adfm.202302673.
[26]
刘海, 陈士新, 许华, 等. 阿尔茨海默病脑血流灌注、海马体积与认知功能相关性分析[J]. 临床军医杂志, 2022, 50(3): 289-291. DOI: 10.16680/j.1671-3826.2022.03.18.
LIU H, CHEN S X, XU H, et al. Correlation analysis among cerebral blood flow perfusion, hippocampal volume, and cognitive function in Alzheimer's disease[J]. Clin J Med Off, 2022, 50(3): 289-291. DOI: 10.16680/j.1671-3826.2022.03.18.
[27]
BRACCA V, PREMI E, COTELLI M S, et al. Loss of Insight in Syndromes Associated with Frontotemporal Lobar Degeneration: Clinical and Imaging Features[J]. Am J Geriatr Psychiatry, 2025, 33(4): 450-462. DOI: 10.1016/j.jagp.2024.12.005.
[28]
MASCARENHAS F L, SAGE C N, OLUFADI Y, et al. Intraindividual Cognitive Variability and Magnetic Resonance Imaging in Aging American Indians: Data from the Strong Heart Study[J]. J Alzheimers Dis, 2023, 91(4): 1395-1407. DOI: 10.3233/JAD-220825.
[29]
XIONG Y, YE C, SUN R, et al. Disrupted Balance of Gray Matter Volume and Directed Functional Connectivity in Mild Cognitive Impairment and Alzheimer's Disease[J]. Curr Alzheimer Res, 2023, 20(3): 161-174. DOI: 10.2174/1567205020666230602144659.
[30]
BACHMANN T, SCHROETER M L, CHEN K, et al. Longitudinal changes in surface based brain morphometry measures in amnestic mild cognitive impairment and Alzheimer's Disease[J/OL]. Neuroimage Clin, 2023, 38: 103371 [2025-03-11]. https://doi.org/10.1016/j.nicl.2023.103371. DOI: 10.1016/j.nicl.2023.103371.
[31]
WU M, SCHWEITZER N, IORDANOVA B E, et al. In Pre-Clinical AD Small Vessel Disease is Associated With Altered Hippocampal Connectivity and Atrophy[J]. Am J Geriatr Psychiatry, 2023, 31(2): 112-123. DOI: 10.1016/j.jagp.2022.09.011.
[32]
SHAN Y, WANG J J, WANG Z Q, et al. Neuronal Specificity of Acupuncture in Alzheimer's Disease and Mild Cognitive Impairment Patients: A Functional MRI Study[J/OL]. Evid Based Complement Alternat Med, 2018, 2018: 7619197 [2025-03-11]. https://doi.org/10.1155/2018/7619197. DOI: 10.1155/2018/7619197.
[33]
WANG Z, NIE B, LI D, et al. Effect of acupuncture in mild cognitive impairment and Alzheimer disease: a functional MRI study[J/OL]. PLoS One, 2012, 7(8): e42730 [2025-03-11]. https://doi.org/10.1371/journal.pone.0042730. DOI: 10.1371/journal.pone.0042730.
[34]
戴雅岚. 基于后扣带回功能连接探讨调神益智针法调节aMCI情景记忆的默认网络机制[D]. 福州: 福建中医药大学, 2023.
DAI Y L. Exploration of the Default Network Mechanism of "Tiaoshen Yizhi" Acupuncture in Regulating Episodic Memory in aMCI Based on Posterior Cingulate Cortex Functional Connectivity[D]. Fuzhou: Fujian University of Traditional Chinese Medicine, 2023.
[35]
JENSEN D, EBMEIER K P, AKBARALY T, et al. Association of Diet and Waist-to-Hip Ratio With Brain Connectivity and Memory in Aging[J/OL]. JAMA Netw Open, 2025, 8(3): e250171 [2025-03-11]. https://doi.org/10.1001/jamanetworkopen.2025.0171. DOI: 10.1001/jamanetworkopen.2025.0171.
[36]
LIAO Z, TILLEY S, MOURAVIEV A, et al. Pubertal Testosterone and Brain Response to Faces in Young Adulthood: An Interplay between Organizational and Activational Effects in Young Men[J]. J Neurosci, 2021, 41(13): 2990-2999. DOI: 10.1523/JNEUROSCI.0190-20.2021.
[37]
KEITH C M, HAUT M W, VIEIRA L T C, et al. Memory consolidation, temporal and parietal atrophy, and metabolism in amyloid-beta positive and negative mild cognitive impairment[J]. J Alzheimers Dis, 2024, 102(3): 778-791. DOI: 10.1177/13872877241291223.
[38]
DECETY J, LAMM C. The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition[J]. Neuroscientist, 2007, 13(6): 580-593. DOI: 10.1177/1073858407304654.
[39]
MARTINEZ-TRUJILLO J. Visual Attention in the Prefrontal Cortex[J]. Annu Rev Vis Sci, 2022, 8: 407-425. DOI: 10.1146/annurev-vision-100720-031711.
[40]
SOHN W S, YOO K, NA D L, et al. Progressive changes in hippocampal resting-state connectivity across cognitive impairment: a cross-sectional study from normal to Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 2014, 28(3): 239-246. DOI: 10.1097/WAD.0000000000000027.
[41]
HAWKINS K A, EMADI N, PEARLSON G D, et al. The effect of age and smoking on the hippocampus and memory in late middle age[J]. Hippocampus, 2018, 28(11): 846-849. DOI: 10.1002/hipo.23014.
[42]
魏玉婷, 苏明莉, 朱田田, 等. 针刺"益智调神"穴方对阿尔茨海默病患者海马与全脑功能连接的影响[J]. 中国针灸, 2023, 43(12): 1351-1357. DOI: 10.13703/j.0255-2930.20230405-0002.
WEI Y T, SU M L, ZHU T T, et al. Effect of Acupuncture at "Yizhi Tiaoshen" Acupoint - prescription on Functional Connectivity between Hippocampus and Whole - brain in Alzheimer's Disease Patients[J]. Chinese Acupuncture & Moxibustion, 2023, 43(12): 1351-1357. DOI: 10.13703/j.0255-2930.20230405-0002.
[43]
ZHENG W, SU Z, LIU X, et al. Modulation of functional activity and connectivity by acupuncture in patients with Alzheimer disease as measured by resting-state fMRI[J/OL]. PLoS One, 2018, 13(5): e0196933 [2025-03-11]. https://doi.org/10.1371/journal.pone.0196933. DOI: 10.1371/journal.pone.0196933.
[44]
ZHAN Y, FU Q, PEI J, et al. Modulation of Brain Activity and Functional Connectivity by Acupuncture Combined With Donepezil on Mild-to-Moderate Alzheimer's Disease: A Neuroimaging Pilot Study[J/OL]. Front Neurol, 2022, 13: 912923 [2025-03-11]. https://doi.org/10.3389/fneur.2022.912923. DOI: 10.3389/fneur.2022.912923.
[45]
ZHANG Z, CHAN M Y, HAN L, et al. Dissociable Effects of Alzheimer's Disease-Related Cognitive Dysfunction and Aging on Functional Brain Network Segregation[J]. J Neurosci, 2023, 43(46): 7879-7892. DOI: 10.1523/JNEUROSCI.0579-23.2023.
[46]
JUNG Y H, JANG H, PARK S, et al. Effectiveness of Personalized Hippocampal Network-Targeted Stimulation in Alzheimer Disease: A Randomized Clinical Trial[J/OL]. JAMA Netw Open, 2024, 7(5): e249220 [2025-03-11]. https://doi.org/10.1001/jamanetworkopen.2024.9220. DOI: 10.1001/jamanetworkopen.2024.9220.
[47]
TONDELLI M, BALLOTTA D, MARAMOTTI R, et al. Resting-state networks and anosognosia in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2024, 16: 1415994 [2025-03-11]. https://doi.org/10.3389/fnagi.2024.1415994. DOI: 10.3389/fnagi.2024.1415994.
[48]
GUAN Z, ZHANG M, ZHANG Y, et al. Distinct Functional and Metabolic Alterations of DMN Subsystems in Alzheimer's Disease: A Simultaneous FDG-PET/fMRI Study[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3443-3446. DOI: 10.1109/EMBC46164.2021.9629472.
[49]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.
[50]
GIORGIO J, ADAMS J N, MAASS A, et al. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation[J/OL]. Neuron, 2024, 112(4): 676-686.e4 [2025-03-11]. https://www.sciencedirect.com/science/article/pii/S089662732300974X. DOI: 10.1016/j.neuron.2023.11.014.
[51]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[52]
ZHENG W, CUI B, HAN Y, et al. Disrupted Regional Cerebral Blood Flow, Functional Activity and Connectivity in Alzheimer's Disease: A Combined ASL Perfusion and Resting State fMRI Study[J/OL]. Front Neurosci, 2019, 13: 738 [2025-03-11]. https://doi.org/10.3389/fnins.2019.00738. DOI: 10.3389/fnins.2019.00738.
[53]
LIANG P, WANG Z, QIAN T, et al. Acupuncture stimulation of Taichong (Liv3) and Hegu (LI4) modulates the default mode network activity in Alzheimer's disease[J]. Am J Alzheimers Dis Other Demen, 2014, 29(8): 739-748. DOI: 10.1177/1533317514536600.
[54]
JI S, ZHANG H, QIN W, et al. Effect of Acupuncture Stimulation of Hegu (LI4) and Taichong (LR3) on the Resting-State Networks in Alzheimer's Disease: Beyond the Default Mode Network[J/OL]. Neural Plast, 2021, 2021: 8876873 [2025-03-11]. https://doi.org/10.1155/2021/8876873. DOI: 10.1155/2021/8876873.
[55]
CHEN X. Deep vs. Shallow Needling at Taixi (KI3) Modulates Default Mode Network Connectivity in Alzheimer's Disease: A Randomized Controlled Trial[J]. J Alzheimers Dis, 2022, 86(3): 1235-1248. DOI: 10.3233/JAD-211345.
[56]
LIN L, CHEN Y, FAN Z, et al. Hierarchical Organization of Bilateral Prefrontal-Basal Ganglia Circuits for Response Inhibition Control[J/OL]. Hum Brain Mapp, 2025, 46(8): e70235 [2025-03-11]. https://doi.org/10.1002/hbm.70235. DOI: 10.1002/hbm.70235.
[57]
WU H, SONG Y, YANG X, et al. Functional and structural alterations of dorsal attention network in preclinical and early-stage Alzheimer's disease[J]. CNS Neurosci Ther, 2023, 29(6): 1512-1524. DOI: 10.1111/cns.14092.
[58]
BENITEZ-LUGO M L, VAZQUEZ-MARRUFO M, PINERO-PINTO E, et al. Analysis of Physical-Cognitive Tasks Including Feedback-Based Technology for Alzheimer's Disorder in a Randomized Experimental Pilot Study[J]. J Clin Med, 2023, 12(17): 5484-5498. DOI: 10.3390/jcm12175484.
[59]
何林璐. 基于fMRI研究: 针刺太溪穴对健康青年和老年人脑网络的异质针刺效应[D]. 泸州: 西南医科大学, 2021.
HE L L. Exploration of Heterogeneous Acupuncture Effects of Acupuncture at Taixi (KI3) on Brain Networks in Healthy Young Adults and Elderly Adults Based on fMRI[D]. Luzhou: Southwest Medical University, 2021.
[60]
FENG Y, BAI L, REN Y, et al. FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients[J]. Magn Reson Imaging, 2012, 30(5): 672-682. DOI: 10.1016/j.mri.2012.01.003.
[61]
ZHAO Q, SANG X, METMER H, et al. Functional segregation of executive control network and frontoparietal network in Alzheimer's disease[J]. Cortex, 2019, 120: 36-48. DOI: 10.1016/j.cortex.2019.04.026.
[62]
YANG X, WU H, SONG Y, et al. Functional MRI-specific alterations in frontoparietal network in mild cognitive impairment: an ALE meta-analysis[J/OL]. Front Aging Neurosci, 2023, 15: 1165908 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37448688/. DOI: 10.3389/fnagi.2023.1165908.
[63]
ZACHAROPOULOS G, OHMANN K, IHSSEN N, et al. The role of outgroup homogeneity and the neurodynamics of the frontal cortex during beauty comparisons[J]. Soc Neurosci, 2023, 18(6): 382-392. DOI: 10.1080/17470919.2023.2242098.
[64]
马淑娟, 程玮涛, 王宁, 等. 意识障碍患者静息态脑网络对针刺合谷、太冲穴的反应性研究[J]. 中国中医基础医学杂志, 2017, 23(4): 528-531. DOI: 10.19945/j.cnki.issn.1006-3250.2017.04.033.
MA S J, CHENG W T, WANG N, et al. Study on the responsiveness of resting-state brain networks to acupuncture at Hegu (LI4) and Taichong (LR3) points in patients with disorders of consciousness[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2017, 23(4): 528-531. DOI: 10.19945/j.cnki.issn.1006-3250.2017.04.033.
[65]
LUCIANA M, COLLINS P F. Neuroplasticity, the Prefrontal Cortex, and Psychopathology-Related Deviations in Cognitive Control[J]. Annu Rev Clin Psychol, 2022, 18: 443-469. DOI: 10.1146/annurev-clinpsy-081219-111203.
[66]
WU M T, HSIEH J C, XIONG J, et al. Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain--preli minary experience[J]. Radiology, 1999, 212(1): 133-141. DOI: 10.1148/radiology.212.1.r99jl04133.
[67]
LOHMAN T, KAPOOR A, ENGSTROM A C, et al. Central autonomic network dysfunction and plasma Alzheimer's disease biomarkers in older adults[J/OL]. Alzheimers Res Ther, 2024, 16(1): 124 [2025-03-11]. https://doi.org/10.1186/s13195-024-01486-9. DOI: 10.1186/s13195-024-01486-9.
[68]
XU M, LIN R, WEN H, WANG Y, et al. Electroacupuncture Enhances the Functional Connectivity of Limbic System to Neocortex in the 5xFAD Mouse Model of Alzheimer's Disease[J]. Neuroscience, 2024, 544: 28-38. DOI: 10.1016/j.neuroscience.2024.02.025.

上一篇 慢性下腰痛与认知功能下降相关性的脑MRI研究进展
下一篇 多模态MRI与人工智能融合在轻度认知障碍诊断及转化预测中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2