分享:
分享到微信朋友圈
X
综述
多模态MRI与人工智能融合在轻度认知障碍诊断及转化预测中的研究进展
陆冰川 侯键

本文引用格式:陆冰川, 侯键. 多模态MRI与人工智能融合在轻度认知障碍诊断及转化预测中的研究进展[J]. 磁共振成像, 2025, 16(12): 184-189. DOI:10.12015/issn.1674-8034.2025.12.027.


[摘要] 轻度认知障碍(mild cognitive impairment, MCI)是阿尔茨海默病(Alzheimer's Disease, AD)的关键前驱阶段,目前AD尚无有效根治的办法。因此,早期诊断MCI对预防和延缓AD的发展具有重大意义。多模态磁共振成像技术和人工智能技术的发展为MCI研究提供了新的方法和视角,在MCI诊断及向AD转化预测方面展现出巨大潜力。然而,该领域仍面临诸多挑战,如多中心数据标准化不足、模型泛化性不足等局限。本文系统梳理了多模态磁共振成像技术结合机器学习和深度学习在MCI诊断分类及向AD转化预测中的研究现状,并指出未来应该致力于统一多中心影像数据标准化流程、构建评估模型可靠性的相关标准,同时本文提出了将多模态影像与遗传学相结合的研究新方向,旨在构建MCI更完整的生物学图谱。
[Abstract] Mild cognitive impairment (MCI) is a critical prodromal stage of Alzheimer's disease (AD), and there is no effective cure currently available for Alzheimer's disease. Consequently, early diagnosis of MCI is crucial for preventing or slowing the progression of AD. The development of multimodal MRI and artificial intelligence (AI) technologies has introduced novel methodologies and perspectives into research on MCI, demonstrating significant potential in the diagnosis of MCI and the prediction of its progression to AD. Nevertheless, several challenges remain in this field, including insufficient standardization of multi-center data and limited generalizability of computational models. This review systematically summarizes recent advances in the integration of multimodal MRI with machine learning and deep learning for MCI classification and AD conversion prediction. Furthermore, it underscores the necessity of establishing unified protocols for multi-center neuroimaging data and developing standardized frameworks for evaluating model robustness. Finally, we propose a promising future direction that integrates multimodal neuroimaging with genetic profiling, with the aim of constructing a more comprehensive biological characterization of MCI and enhancing early intervention strategies.
[关键词] 轻度认知障碍;阿尔茨海默病;多模态磁共振成像;磁共振成像;机器学习;深度学习
[Keywords] mild cognitive impairment;Alzheimer's disease;multimodal magnetic resonance imaging;magnetic resonance imaging;machine learning;deep learning

陆冰川 1   侯键 1, 2*  

1 成都中医药大学医学与生命科学学院,成都 611137

2 成都中医药大学附属医院放射科,成都 610072

通信作者:侯键,E-mail:hoj2000@126.com

作者贡献声明:侯键设计本研究的方案,对稿件重要内容进行了修改;陆冰川起草和撰写稿件,获取、分析和解释本研究的数据及文献,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-08-27
接受日期:2025-11-27
中图分类号:R445.2  R749 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.12.027
本文引用格式:陆冰川, 侯键. 多模态MRI与人工智能融合在轻度认知障碍诊断及转化预测中的研究进展[J]. 磁共振成像, 2025, 16(12): 184-189. DOI:10.12015/issn.1674-8034.2025.12.027.

0 引言

       随着医疗卫生技术不断进步,人均寿命延长,全球各个国家都面临着人口老龄化问题。人口老龄化问题不断凸显,出现越来越多的老年病患者,其中阿尔茨海默病(Alzheimer's disease, AD)是最突出的老年病之一。AD是一种以认知功能损伤为核心且不可逆的退行性神经疾病,其特征是进行性认知能力下降、记忆力减退和行为改变[1, 2]。研究表示,痴呆患者中63%~70%为AD患者,2021年我国现存的AD及其他痴呆患者数高达1699万;我国的发病率和死亡率均高于全球平均水平[3]。轻度认知障碍(mild cognitive impairment, MCI)作为AD的早期表现,被认为是认知能力处于正常衰老与痴呆之间的阶段,MCI患者通常会出现明显但不严重的记忆减退,不足以阻碍日常生活活动[4, 5]。MCI患者具有发展为AD的高风险,每年恶化率为10%~15%,因此早期诊断并及时采取干预措施可以相应延缓疾病的进展并提高患者的生存质量[6]。MRI技术具有无辐射、检测方便和分辨力高的特点,在研究MCI中具有较大优势[7]。而多模态MRI技术,包括结构、功能和脑灌注MRI等,可以从多个维度产生脑影像信息,为MCI研究提供了强大工具[8]。尽管已有相关综述探讨了MRI在AD或MCI中的应用,但多数聚焦于单一模态;此外,现有研究未能系统地将MRI技术与人工智能技术结合起来深入探讨与MCI诊断及向AD转化预测相关的神经影像生物标志物。鉴于此,本综述旨在系统探讨多模态MRI技术在MCI早期诊断与预测MCI向AD转化中的应用潜力与价值,通过结构MRI(structure MRI, sMRI)、功能MRI(functional MRI, fMRI)、扩散张量成像(diffusion tensor imaging, DTI)、动脉自旋标记成像(arterial spin labelling, ASL)、酰胺质子转移加权成像(amide proton transfer weighted, APTw)及磁共振波谱成像(magnetic resonance spectroscopy, MRS)并结合机器学习和深度学习等人工智能技术从不同角度揭示MCI相关的脑改变,从而为疾病早期诊断及转化预测提供更为丰富的神经影像学生物标志,最终为临床诊疗决策提供系统评估思路,为早期干预措施提供相应的理论依据。

1 MCI诊断分类

1.1 sMRI在MCI诊断分类中的作用

       机器学习或深度学习逐渐成为MCI影像学研究热点。MRI对AD和MCI诊断的深度学习表现出良好的敏感性和特异性,并有助于提高诊断准确性[9]。当疾病发生时,相应脑组织的体积可能会发生相应的改变。ZAMANI等[10]在一项回顾性研究中,基于AD神经影像学倡议(Alzheimer's Disease Neuroimaging Initiative, ADNI)数据库的样本,使用三种自动大脑分割方法,通过提取54名早期MCI(early mild cognitive impairment, EMCI)患者和56名正常对照(normal control, NC)组的sMRI数据中的体积参数作为优化算法的输入,实现了大于93%的分类准确率。但该结果基于有限的样本量,存在过度拟合的风险,泛化性能有待进一步确定。相关研究显示海马体积缩小与MCI成正相关,即MRI测量的海马体积越小,认知障碍越严重[11]。内嗅皮层也是诊断MCI有希望的区域,ALYOUBI等[12]利用卷积神经网络(convolutional neural network, CNN)分类器和Inception-V3体系对内嗅皮层区域结构特征进行提取,实现了较好的诊断效能。还有研究发现MRI上的脉络丛体积测量可以作为诊断MCI有价值的影像生物标志物[13]。大脑皮质形态学的改变同样有助于诊断MCI。大脑皮层的分形维数可以准确反映遗忘性MCI(amnesic MCI, aMCI)中皮质的形态变化,能将aMCI患者与健康对照区分开[14]。基于表面的形态计量学得出的回旋指数和皮质厚度是早期MCI诊断的一些关键形态生物标志物,将多种形态学指标结合在一起可以产生更好、更可靠的识别模型,这有助于MCI的临床诊断[15]。除大脑相关结构特征外,小脑相关结构特征也能帮助诊断MCI。LIN等[16]通过光梯度增强机学习模型利用小脑灰质和白质特征的组合分析发现MCI与NC分类的AUC为0.863,测试集为0.776。由此可见,sMRI技术成熟稳定,可以直观地提供与MCI相关大脑形态改变的影像学信息,如海马和内嗅皮层的萎缩,易于被临床医生理解和接受;但其反映的信息较单一,对疾病诊断的特异性较为有限。

1.2 fMRI在MCI诊断分类中的应用

       MCI是一种伴有脑功能网络障碍的神经系统疾病,因此使用fMRI研究静息状态脑网络的改变可以为早期诊断提供有价值信息。静息态功能MRI(resting-state functional magnetic resonance imaging, rs-fMRI)技术已被广泛用于研究大脑网络,例如低频振幅(amplitude of low-frequency fluctuation, ALFF)和分数ALFF(fractional ALFF, fALFF)、局部一致性(regional homogeneity, ReHo)和功能连接(functional connectivity, FC)[17]。静息态网络包括默认模式网络(default mode network, DMN)、执行控制网络(executive control network, ECN)及突显网络(salience network, SN)。WU等[18]的研究结果显示rs-fMRI检测到MCI患者双侧颞上回、双侧颞下回、左梭状回、左眼眶额中回的ReHo值有不同程度的增加或减少,这对临床具有一定的诊断意义。IBRAHIM等[19]通过rs-fMRI检测到后扣带皮层和前扣带皮层之间DMN的FC减少,可用于区分MCI患者和NC。同时,WANG等[20]进行的荟萃分析证实了MCI患者双侧内侧前额叶皮层/前扣带回皮层和楔前叶/后扣带回皮层中DMN异常静息态FC的共同降低可能是情景记忆障碍的基础,DMN与双侧颞回和左角回异常静息态FC的改变可能反映了记忆和语言认知的神经病理学机制。MCI中ECN是负责执行功能的广泛大脑区域,相关的研究结果显示MCI患者ECN的功能连接性改变主要集中于楔前叶、舌回、额中回、后扣带皮层和小脑后叶[21]。LIU等[22]根据ADNI的执行功能(executive function, EF)综合评分将MCI患者分为MCI-highEF组和MCI-lowEF组,并通过fMRI研究两组患者和健康对照(healthy control, HC)组 ECN FC的改变。结果显示,与HC组相比,MCI-highEF组在ECN的连通性方面没有显著差异;MCI-lowEF组左侧额中回的fALFF减少,右海马旁回中ECN功能连接性降低。结果证明了由于MCI-highEF组的ECN FC没有被破坏,可能导致了MCI中EF的保留。因此,将左侧额中回作为神经调节技术的靶点,可能有助于改善MCI患者的执行功能障碍。三个大脑网络密切相互作用,在调节人类认知和情绪状态方面发挥着至关重要的作用[23]。SONG等[24]进行的一项荟萃分析的结果显示MCI患者SN中左颞上回、脑岛、中央前回和楔前叶特定大脑区域的ALFF/fALFF降低,丘脑、尾状核、颞上回、岛叶、扣带回FC升高。此外,该研究揭示了MCI患者额中回和额上回SN与DMN、ECNFC的改变。有研究表明SN和DMN之间的FC障碍可能会导致MCI的行为和情绪障碍,尤其是多动和情感综合征,这在管理MCI患者神经精神症状的应用中提供了神经生物学原理[25]。由此可见,MCI中不同主导网络的损伤及网络间相互作用的失衡能够为MCI复杂的临床表现提供可靠的神经生物学解释,详见表1

表1  MCI患者静息态脑网络与关键脑区功能改变
Tab. 1  Resting-state network and key brain area functional alterations in MCI

1.3 其他MRI技术(DTI、ASL、CEST、MRS)在MCI诊断分类中的应用

       多模态磁共振技术的进一步发展和神经生物标志物的建立将增强我们早期诊断的能力[26]。扩散MRI在区分MCI与HC和AD方面具有潜力[27]。JITSUISHI等[28]利用扩散参数建立的机器学习模型能有效地区分早期和晚期MCI。另外,从临床诊断的角度来看,DTI图像通过量化白质的完整性反映大脑微观结构的变化,可以作为EMCI的重要生物标志物[29]。使用ASL序列测量脑血流量已成为痴呆研究的重要工具,基于感兴趣区域的脑血流量测量可将MCI与NC区分开来[30]。有学者发现多参数化学交换饱和转移MRI(chemical exchange saturation transfer MRI, CEST MRI)可以促进MCI的早期发现,为MCI提供另一种影像学诊断策略[31];其中APTw成像技术在神经退行性疾病诊断中具有较好的潜力,可以间接反映海马和杏仁核蛋白质的含量,可作为区分aMCI与正常老年人群的潜在影像学标志物[32, 33]。除此之外,有学者还通过MRS测量海马和后扣带回中N-乙酰天冬氨酸(N-acetyl aspartate, NAA)、总肌酐(total creatinine, tCr)和胆碱(choline, Cho)的水平来区分MCI患者和正常对照,发现当左侧海马和右侧海马的NAA/tCr值小于1.19时,可能发生了MCI[34]。综上所述,这些技术从微观结构、脑灌注及分子生化等不同生理层面揭示了MCI的病理改变,其并非相互排斥、而是互补。DTI揭示大脑连接线路的结构性破坏、ASL反映局部脑区的能量供应、CEST与MRS则从分子层面探测神经元的改变。通过这些互补的神经生物标志物,能更好实现对MCI早期精准诊断。

       此外,多参数MRI序列的组合可以提高MCI的诊断准确性[35]。HWANG等[36]证明了比起单独使用结构体积,将FC组学特征与结构体积相结合,能更好地区分aMCI与NC。WANG等[37]的研究发现基于sMRI图像和ALFF组合的影像组学模型相较于单独基于两者数据建立的模型而言,在区分aMCI和NC上表现出相对较高的准确性。XIE等[38]通过整合sMRI与DTI图像数据能较好识别aMCI患者,突出了多模态特征整合的优势。NELSON等[39]通过扩散峰度成像和自由水成像的多模态MRI研究探索MCI患者的白质微结构改变,发现其可以作为认知障碍的早期指标,能区分MCI患者和正常对照。SUI等[40]在一项前瞻性观察研究中发现联合左侧额叶的表观扩散系数(apparent diffusion coefficient, ADC)值和相对脑血流量(relative cerebral blood flow, rCBF)值在诊断MCI中具有更高的准确度和敏感度,左侧额叶ADC和rCBF值联合诊断的曲线下面积为0.877,单独左侧额叶ADC值诊断的曲线下面积为0.839。这些研究量化了多模态整合带来的诊断价值。

2 MCI向AD转化预测

       深度学习和机器学习等人工智能技术在医疗领域具有重大意义,基于其构建的预测模型在预测MCI患者转化方面具有巨大潜力,为早期干预提供了技术支持[41, 42]。同时,相关TRIPOD-AI和CONSORT-AI指南的提出确保了预测模型的透明性与可重复性[43, 44]

2.1 基于机器学习的转化预测模型

       基于机器学习的方法表现优异,为MCI发展为AD的预后预测提供了更为可行的方案[45]。VECCHIO等[46]基于一个回顾性单中心队列(n=104,平均随访12个月),利用aMCI患者的T1加权脑图像来预测向AD的转化,使用随机森林进行特征选择,将识别出的七个ROI体积数据用于实现支持向量机和决策树分类算法,并进行了交叉验证,最终结果显示平均准确率达到了86%。研究结果表明右内嗅皮层和左侧枕叶的形态计量学在预测aMCI向AD转化方面展现出较好的潜力。FICIARÀ等[47]分析了来自ADNI的721名MCI患者的MRI图像,应用两态马尔可夫模型研究了MCI到AD的转换,结果表明基于MRI的皮质特征,包括沟形态测量,有助于预测从MCI到AD的转化。CHEN等[48]将MRI上血管周围间隙增大(enlarged perivascular spaces, EPVS)分级与临床和实验室数据相结合建立预测模型,结果证实了EPVS在预测MCI进展至AD中的价值,并为临床提供了一种用于早期发现和管理MCI患者AD风险的实用性工具。CIRINCIONE等[49]通过基于机器学习的集成之集成模型发现sMRI中的颞中回、扣带回和下侧脑室区域的体积可以预测MCI患者未来痴呆的发展。

2.2 基于深度学习的转化预测模型

       基于多模态神经影像学数据的深度学习在MCI与AD的研究中取得了良好效果,深度学习不仅可以准确识别老年人MCI,还能为临床提供辅助预测工具,达到延缓病情发展和改善预后的目的[50, 51]。LIAN等[52]提出了一种注意力引导的深度学习框架来提取sMRI特征,并在ADNI-1、ADNI-2和AIBL数据集进行了评估,其在MCI转化预测中显示出优异的性能。LIN等[53]设计了一种基于CNN的深度学习方法,通过使用MRI上海马体区域相关数据准确预测MCI到AD的转换,并在ADNI标准化MRI数据集上得到了验证,达到了79.9%的准确率。OCASIO等[54]第一个使用纵向和全脑3D MRI的CNN模型来预测MCI向AD的转化,达到了79.3%的准确率。结果证明这种方法可以早期预测可能进展为AD的患者,从而可以更好地管理疾病。HOANG等[55]利用ADNI数据库中598名MCI患者丘脑、内侧额叶及枕叶的中矢状位sMRI图像建立了一种预测MCI到AD转换的视觉转换器模型,达到了83.27%的准确率。

       综上所述,尽管多模态MRI技术与人工智能技术的融合在MCI向AD转化预测取得了较高的准确率,但仍然存在许多挑战。不同医疗机构的影像设备型号、扫描参数及不同医生对于图像的分割存在差异,这可能会影响最终的结果,所以开展多中心协同研究,建立统一的扫描系统和图像分割标准很有必要。此外,由于指标参数众多,不同的研究选择不同的参数和模型构建,导致研究结果的泛化性较差。同时,当样本量较小时,机器学习模型容易出现过度拟合。要提高模型的预测性能和可靠性,需要探索更有效的模型优化方法和加强多中心大样本模型的外部验证。

3 小结与展望

       综上所述,多模态MRI通过对图像信息的深入挖掘,不仅可以量化MCI的结构特征,还能揭示静息态脑网络异常改变,同时还能分析海马等区域分子层面的变化,从而实现对MCI的精准诊断。此外基于机器学习和深度学习构建模型在MCI向AD转化的预测中表现出较高效能。

       尽管该领域的研究已取得不少成果,但仍存在不少挑战:(1)模型受到年龄、受教育水平、技术设备等混杂因素的影响,需要进行标准化校正;同时,模型多在ADNI等标准化队列中验证,种族及地域差异带来的影响尚未系统评估;导致其泛化性不足;(2)多模态数据配准、跨中心标准化预处理流程依赖人工干预,自动化程度低;此外,fMRI、DTI、CEST/APTw、MRS等序列在基层医疗机构普及率低,限制了临床转化。

       多模态磁共振成像技术已成为破解MCI异质性、实现AD早期精准干预的核心工具。随着人工智能和医疗大数据时代的到来,以临床数据与影像生物标志物的整合为基础建立跨模态学习模型或将成为未来的研究趋势,构建评估模型可靠性的相关标准与统一多中心影像数据采集与预处理流程,有望更好地为临床诊疗提供决策依据。随着分子遗传学领域的发展,已可以通过全基因组关联分析描述与MCI相关的基因,包括载脂蛋白的ε4等位基因、BIN1、MC1R、STARD6及PVRL2[56],未来有望将遗传相关数据与影像数据深度融合开发多任务、跨模态学习模型,构建MCI更完整的生物学图谱。

[1]
YUE J H, ZHANG Q H, YANG X, et al. Magnetic resonance imaging of white matter in Alzheimer's disease: a global bibliometric analysis from 1990 to 2022[J/OL]. Front Neurosci, 2023, 17: 1163809 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/37304017/. DOI: 10.3389/fnins.2023.1163809.
[2]
MIAN M, TAHIRI J, ELDIN R, et al. Overlooked cases of mild cognitive impairment: Implications to early Alzheimer's disease[J/OL]. Ageing Res Rev, 2024, 98: 102335 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/38744405/. DOI: 10.1016/j.arr.2024.102335.
[3]
王刚, 齐金蕾, 刘馨雅, 等. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(3): 219-256. DOI: 10.16150/j.1671-2870.2024.03.001.
WANG G, QI J L, LIU X Y, et al. China Alzheimer Report 2024[J]. J Diagn Concepts Pract, 2024, 23(3): 219-256. DOI: 10.16150/j.1671-2870.2024.03.001.
[4]
CONG L, REN Y, WANG Y, et al. Mild cognitive impairment among rural-dwelling older adults in China: A community-based study[J]. Alzheimers Dement, 2023, 19(1): 56-66. DOI: 10.1002/alz.12629.
[5]
SANFORD A M. Mild Cognitive Impairment[J]. Clin Geriatr Med, 2017, 33(3): 325-337. DOI: 10.1016/j.cger.2017.02.005.
[6]
SHIGEMIZU D, AKIYAMA S, HIGAKI S, et al. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer's disease created by integrative analysis of multi-omics data[J/OL]. Alzheimers Res Ther, 2020, 12(1): 145 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/33172501/. DOI: 10.1186/s13195-020-00716-0.
[7]
韩盛旺, 李晓陵, 王杨, 等. 针刺四关穴治疗轻度认知障碍多模态MRI研究进展[J]. 磁共振成像, 2024, 15(6): 138-143. DOI: 10.12015/issn.1674-8034.2024.06.021.
HAN S W, LI X L, WANG Y, et al. Progress in multimodal MRI research on acupuncture at Siguan point for the treatment of mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2024, 15(6): 138-143. DOI: 10.12015/issn.1674-8034.2024.06.021.
[8]
CHEN Z, CHEN K, LI Y, et al. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI[J/OL]. Hum Brain Mapp, 2024, 45(1): e26529 [2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/37991144/. DOI: 10.1002/hbm.26529.
[9]
WANG L X, WANG Y Z, HAN C G, et al. Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis[J]. Arq Neuropsiquiatr, 2024, 82(8): 1-10. DOI: 10.1055/s-0044-1788657.
[10]
ZAMANI J, SADR A, JAVADI A H. Diagnosis of early mild cognitive impairment using a multiobjective optimization algorithm based on T1-MRI data[J/OL]. Sci Rep, 2022, 12(1): 1020 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/35046444/. DOI: 10.1038/s41598-022-04943-3.
[11]
RAO G, GAO H, WANG X, et al. MRI measurements of brain hippocampus volume in relation to mild cognitive impairment and Alzheimer disease: A systematic review and meta-analysis[J/OL]. Medicine (Baltimore), 2023, 102(36): e34997 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/37682140/. DOI: 10.1097/md.0000000000034997.
[12]
ALYOUBI E H, MORIA K M, ALGHAMDI J S, et al. An Optimized Deep Learning Model for Predicting Mild Cognitive Impairment Using Structural MRI[J/OL]. Sensors (Basel), 2023, 23(12): 5648 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/37420812/. DOI: 10.3390/s23125648.
[13]
UMEMURA Y, WATANABE K, KASAI S, et al. Choroid plexus enlargement in mild cognitive impairment on MRI: a large cohort study[J]. Eur Radiol, 2024, 34(8): 5297-5304. DOI: 10.1007/s00330-023-10572-9.
[14]
JAO C W, WU Y T, YEH J H, et al. Exploring cortical morphology biomarkers of amnesic mild cognitive impairment using novel fractal dimension-based structural MRI analysis[J]. Eur J Neurosci, 2024, 60(9): 6254-6266. DOI: 10.1111/ejn.16557.
[15]
MA Z, JING B, LI Y, et al. Identifying Mild Cognitive Impairment with Random Forest by Integrating Multiple MRI Morphological Metrics[J]. J Alzheimers Dis, 2020, 73(3): 991-1002. DOI: 10.3233/jad-190715.
[16]
LIN A, CHEN Y, CHEN Y, et al. MRI radiomics combined with machine learning for diagnosing mild cognitive impairment: a focus on the cerebellar gray and white matter[J/OL]. Front Aging Neurosci, 2024, 16: 1460293 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/39430972/. DOI: 10.3389/fnagi.2024.1460293.
[17]
WEI X, WANG L, YU F, et al. Identifying the neural marker of chronic sciatica using multimodal neuroimaging and machine learning analyses[J/OL]. Front Neurosci, 2022, 16: 1036487 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/36532276/. DOI: 10.3389/fnins.2022.1036487.
[18]
WU Y Q, WANG Y N, ZHANG L J, et al. Regional Homogeneity in Patients With Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Imaging Study[J/OL]. Front Aging Neurosci, 2022, 14: 877281 [2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/35493938/. DOI: 10.3389/fnagi.2022.877281.
[19]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.
[20]
WANG Y, LI Q, YAO L, et al. Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer's disease[J/OL]. Cereb Cortex, 2024, 34(3): bhae094 [2025-11-04]. https://pubmed.ncbi.nlm.nih.gov/38521993/. DOI: 10.1093/cercor/bhae094.
[21]
XU W, CHEN S, XUE C, et al. Functional MRI-Specific Alterations in Executive Control Network in Mild Cognitive Impairment: An ALE Meta-Analysis[J/OL]. Front Aging Neurosci, 2020, 12: 578863 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/33192472/. DOI: 10.3389/fnagi.2020.578863.
[22]
LIU W, LIU L, CHENG X, et al. Functional Integrity of Executive Control Network Contributed to Retained Executive Abilities in Mild Cognitive Impairment[J/OL]. Front Aging Neurosci, 2021, 13: 710172 [2025-11-04]. https://pubmed.ncbi.nlm.nih.gov/34899264/. DOI: 10.3389/fnagi.2021.710172.
[23]
MENON V. Large-scale brain networks and psychopathology: a unifying triple network model[J]. Trends Cogn Sci, 2011, 15(10): 483-506. DOI: 10.1016/j.tics.2011.08.003.
[24]
SONG Y, XU W, CHEN S, et al. Functional MRI-Specific Alterations in Salience Network in Mild Cognitive Impairment: An ALE Meta-Analysis[J/OL]. Front Aging Neurosci, 2021, 13: 695210 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/34381352/. DOI: 10.3389/fnagi.2021.695210.
[25]
PAN C, LI R, YUAN X, et al. Neural network disruptions between default mode network and salience network in mild cognitive impairment with neuropsychiatric symptoms[J/OL]. Int Psychogeriatr, 2025: 100092 [2025-11-04]. https://pubmed.ncbi.nlm.nih.gov/40413109/. DOI: 10.1016/j.inpsyc.2025.100092.
[26]
LIN A L, LAIRD A R, FOX P T, et al. Multimodal MRI neuroimaging biomarkers for cognitive normal adults, amnestic mild cognitive impairment, and Alzheimer's disease[J/OL]. Neurol Res Int, 2012, 2012: 907409 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/21949904/. DOI: 10.1155/2012/907409.
[27]
KNUDSEN L V, GAZERANI P, DUAN Y, et al. The role of multimodal MRI in mild cognitive impairment and Alzheimer's disease[J]. J Neuroimaging, 2022, 32(1): 148-157. DOI: 10.1111/jon.12940.
[28]
JITSUISHI T, YAMAGUCHI A. Searching for optimal machine learning model to classify mild cognitive impairment (MCI) subtypes using multimodal MRI data[J/OL]. Sci Rep, 2022, 12(1): 4284 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/35277565/. DOI: 10.1038/s41598-022-08231-y.
[29]
KANG L, JIANG J, HUANG J, et al. Identifying Early Mild Cognitive Impairment by Multi-Modality MRI-Based Deep Learning[J/OL]. Front Aging Neurosci, 2020, 12: 206 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/33101003/. DOI: 10.3389/fnagi.2020.00206.
[30]
SOMAN S, RAGHAVAN S, RAJESH P G, et al. Relationship between Cerebral Perfusion on Arterial Spin Labeling (ASL) MRI with Brain Volumetry and Cognitive Performance in Mild Cognitive Impairment and Dementia due to Alzheimer's Disease[J]. Ann Indian Acad Neurol, 2021, 24(4): 559-565. DOI: 10.4103/aian.AIAN_848_20.
[31]
ZHU D, FU X, LIU J, et al. Multiparametric Chemical Exchange Saturation Transfer MRI Detects Metabolic Changes in Mild Cognitive Impairment Cases at 3.0 Tesla[J/OL]. Neurochem Res, 2024, 50(1): 51 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/39648256/. DOI: 10.1007/s11064-024-04307-5.
[32]
GUO Z, JIANG Y, QIN X, et al. Amide Proton Transfer-Weighted MRI Might Help Distinguish Amnestic Mild Cognitive Impairment From a Normal Elderly Population[J/OL]. Front Neurol, 2021, 12: 707030 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/34712196/. DOI: 10.3389/fneur.2021.707030.
[33]
王迪, 王笑男, 高平, 等. 酰胺质子转移磁共振成像在阿尔茨海默病和轻度认知障碍中的应用[J]. 中国医学影像学杂志, 2022, 30(5): 430-434. DOI: 10.3969/j.issn.1005-5185.2022.05.003.
WANG D, WANG X N, GAO P, et al. Application of Amide Proton Transfer Magnetic Resonance Imaging in Alzheimer's Disease and Mild Cognitive Impairment[J]. Chin J Med Imaging, 2022, 30(5): 430-434. DOI: 10.3969/j.issn.1005-5185.2022.05.003.
[34]
ZHAO L, TENG J, MAI W, et al. A Pilot Study on the Cutoff Value of Related Brain Metabolite in Chinese Elderly Patients With Mild Cognitive Impairment Using MRS[J/OL]. Front Aging Neurosci, 2021, 13: 617611 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/33897404/. DOI: 10.3389/fnagi.2021.617611.
[35]
PIERSSON A D, IBRAHIM B, SUPPIAH S, et al. Multiparametric MRI for the improved diagnostic accuracy of Alzheimer's disease and mild cognitive impairment: Research protocol of a case-control study design[J/OL]. PLoS One, 2021, 16(9): e0252883 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/34547018/. DOI: 10.1371/journal.pone.0252883.
[36]
HWANG H, KIM S E, LEE H J, et al. Identification of amnestic mild cognitive impairment by structural and functional MRI using a machine-learning approach[J/OL]. Clin Neurol Neurosurg, 2024, 238: 108177 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/38402707/. DOI: 10.1016/j.clineuro.2024.108177.
[37]
WANG L, FENG Q, GE X, et al. Textural features reflecting local activity of the hippocampus improve the diagnosis of Alzheimer's disease and amnestic mild cognitive impairment: A radiomics study based on functional magnetic resonance imaging[J/OL]. Front Neurosci, 2022, 16: 970245 [2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/36003964/. DOI: 10.3389/fnins.2022.970245.
[38]
XIE Y, CUI Z, ZHANG Z, et al. Identification of Amnestic Mild Cognitive Impairment Using Multi-Modal Brain Features: A Combined Structural MRI and Diffusion Tensor Imaging Study[J]. J Alzheimers Dis, 2015, 47(2): 509-522. DOI: 10.3233/jad-150184.
[39]
NELSON M R, KEELING E G, STOKES A M, et al. Exploring white matter microstructural alterations in mild cognitive impairment: a multimodal diffusion MRI investigation utilizing diffusion kurtosis and free-water imaging[J/OL]. Front Neurosci, 2024, 18: 1440653 [2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/39170682/. DOI: 10.3389/fnins.2024.1440653.
[40]
SUI H, YANG J, XIANG H, et al. Combining ADC values in DWI with rCBF values in arterial spin labeling (ASL) for the diagnosis of mild cognitive impairment (MCI)[J/OL]. Medicine (Baltimore), 2023, 102(37): e34979 [2025-09-01].https://pubmed.ncbi.nlm.nih.gov/37713879/. DOI: 10.1097/md.0000000000034979.
[41]
BAPAT R, MA D, DUONG T Q. Predicting Four-Year's Alzheimer's Disease Onset Using Longitudinal Neurocognitive Tests and MRI Data Using Explainable Deep Convolutional Neural Networks[J]. J Alzheimers Dis, 2024, 97(1): 459-469. DOI: 10.3233/jad-230893.
[42]
AI M, LIU Y, LIU D, et al. Research progress in predicting the conversion from mild cognitive impairment to Alzheimer's disease via multimodal MRI and artificial intelligence[J/OL]. Front Neurol, 2025, 16: 1596632 [2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/40529431/. DOI: 10.3389/fneur.2025.1596632.
[43]
COLLINS G S, DHIMAN P, ANDAUR NAVARRO C L, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence[J/OL]. BMJ Open, 2021, 11(7): e048008 [2025-11-04]. https://pubmed.ncbi.nlm.nih.gov/38521993/. DOI: 10.1136/bmjopen-2020-048008.
[44]
LIU X, CRUZ RIVERA S, MOHER D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension[J]. Lancet Digit Health, 2020, 2(10): e537-e548. DOI: 10.1016/s2589-7500(20)30218-1.
[45]
王荣, 陈帅, 赵彩丽, 等. 多基因风险评分与机器学习建模策略下轻度认知障碍发展为阿尔茨海默病的预后研究[J]. 中华疾病控制杂志, 2023, 27(6): 684-690. DOI: 10.16462/j.cnki.zhjbkz.2023.06.012.
WANG R, CHEN S, ZHAO C L, et al. Prognostic study of mild cognitive impairment progressing to Alzheimer's disease based on polygenic risk score and machine learning modeling strategy[J]. Chin J Dis Control Prev, 2023, 27(6): 684-690. DOI: 10.16462/j.cnki.zhjbkz.2023.06.012.
[46]
VECCHIO D, PIRAS F, NATALIZI F, et al. Evaluating conversion from mild cognitive impairment to Alzheimer's disease with structural MRI: a machine learning study[J/OL]. Brain Commun, 2025, 7(1): fcaf027 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/39886067/. DOI: 10.1093/braincomms/fcaf027.
[47]
FICIARÀ E, CRESPI V, GADEWAR S P, et al. Predicting Progression from Mild Cognitive Impairment to Alzheimer's Disease using MRI-based Cortical Features and a Two-State Markov Model[J]. Proc IEEE Int Symp Biomed Imaging, 2021, 2021: 1145-1149. DOI: 10.1109/isbi48211.2021.9434143.
[48]
CHEN J, YANG J, SHEN D, et al. A Predictive Model of the Progression to Alzheimer's Disease in Patients with Mild Cognitive Impairment Based on the MRI Enlarged Perivascular Spaces[J]. J Alzheimers Dis, 2024, 101(1): 159-173. DOI: 10.3233/jad-240523.
[49]
CIRINCIONE A, LYNCH K, BENNETT J, et al. Prediction of future dementia among patients with mild cognitive impairment (MCI) by integrating multimodal clinical data[J/OL]. Heliyon, 2024, 10(17): e36728 [2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/39281465/. DOI: 10.1016/j.heliyon.2024.e36728.
[50]
JO T, NHO K, SAYKIN A J. Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data[J/OL]. Front Aging Neurosci, 2019, 11: 220 [2025-06-26]. https://pubmed.ncbi.nlm.nih.gov/31481890/. DOI: 10.3389/fnagi.2019.00220.
[51]
吴晓晖, 蒋雷, 朱静茹, 等. 深度学习在老年人轻度认知障碍诊断中应用的Scoping综述[J]. 中国康复理论与实践, 2025, 31(6): 674-681. DOI: 10.3969/j.issn.1006-9771.2025.06.008.
WU X H, JIANG L, ZHU J R, et al. Deep learning for diagnosis of mild cognitive impairment in older adults:a scoping review[J]. Chin J Rehabil Theory Pract, 2025, 31(6): 674-681. DOI: 10.3969/j.issn.1006-9771.2025.06.008.
[52]
LIAN C, LIU M, PAN Y, et al. Attention-Guided Hybrid Network for Dementia Diagnosis With Structural MR Images[J]. IEEE Trans Cybern, 2022, 52(4): 1992-2003. DOI: 10.1109/tcyb.2020.3005859.
[53]
LIN W, TONG T, GAO Q, et al. Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer's Disease Prediction From Mild Cognitive Impairment[J/OL]. Front Neurosci, 2018, 12: 777 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/30455622/. DOI: 10.3389/fnins.2018.00777.
[54]
OCASIO E, DUONG T Q. Deep learning prediction of mild cognitive impairment conversion to Alzheimer's disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI[J/OL]. PeerJ Comput Sci, 2021, 7: e560 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/34141888/. DOI: 10.7717/peerj-cs.560.
[55]
HOANG G M, KIM U H, KIM J G. Vision transformers for the prediction of mild cognitive impairment to Alzheimer's disease progression using mid-sagittal sMRI[J/OL]. Front Aging Neurosci, 2023, 15: 1102869 [2025-09-01]. https://pubmed.ncbi.nlm.nih.gov/37122374/. DOI: 10.3389/fnagi.2023.1102869.
[56]
WU Y, YIN J, YANG B, et al. Association Analysis of Polymorphisms in BIN1, MC1R, STARD6 and PVRL2 with Mild Cognitive Impairment in Elderly Carrying APOE ε4 Allele[J]. Neuropsychiatr Dis Treat, 2021, 17: 1125-1133. DOI: 10.2147/ndt.S296144.

上一篇 rs-fMRI在针刺治疗阿尔茨海默病中的中枢机制研究进展
下一篇 基于DTI-ALPS评估睡眠障碍患者类淋巴系统功能的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2