分享:
分享到微信朋友圈
X
综述
基于磁共振成像预测乳腺癌HER-2表达状态的研究进展
杜金晓 张小安

本文引用格式:杜金晓, 张小安. 基于磁共振成像预测乳腺癌HER-2表达状态的研究进展[J]. 磁共振成像, 2025, 16(12): 212-219. DOI:10.12015/issn.1674-8034.2025.12.031.


[摘要] 乳腺癌是全球女性最常见的恶性肿瘤,而人表皮生长因子受体-2(human epidermal growth factor receptor-2, HER-2)过表达显著影响乳腺肿瘤的发生、恶性转化、临床结局及转移过程,且侵袭性高,预后较差。随着分类标准的更新,HER-2表达状态已从传统的二分类(阳性/阴性)进一步细化为三分类(过表达/低表达/零表达),因此,精准评估HER-2表达状态已成为乳腺癌个体化治疗决策的重要环节。磁共振成像(magnetic resonance imaging, MRI)被广泛应用于乳腺癌的评估,包括形态学、动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)和扩散加权成像(diffusion weighted imaging, DWI)等多种序列与技术,而影像组学能将传统MRI影像中难以识别的微观信息转化为可量化的生物标志物用于研究对象评估。本文综述了MRI预测乳腺癌HER-2不同表达状态的研究进展、局限性和未来研究方向,旨在为优化乳腺癌精准诊疗策略提供理论依据和实践指导。
[Abstract] Breast cancer is the most common malignant tumor in women worldwide, and human epidermal growth factor receptor-2 (HER-2) overexpression significantly affects the occurrence, malignant transformation, clinical outcomes and metastasis of breast tumors, exhibiting high aggressiveness and poor prognosis. Recent updates in classification criteria have refined the categorization of HER-2 expression status from a traditional binary classification (positive/negative) to a tripartite classification (over-expression/low-expression/null-expression), making the precise assessment of HER-2 expression status a critical component for individualized therapeutic decision-making in breast cancer. Magnetic resonance imaging (MRI) is widely used in the evaluation of breast cancer, incorporating various sequences and techniques such as morphology, dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted image (DWI). Radiomics can convert microscopic information that is difficult to identify in traditional MRI images into quantifiable biomarkers for the evaluation of research objects. This article reviews the research progress, limitations and development directions of MRI in predicting different expression states of HER-2 in breast cancer, aiming to provide theoretical basis and practical guidance for optimizing the precise diagnosis and treatment strategies of breast cancer.
[关键词] 乳腺癌;磁共振成像;影像组学;人表皮生长因子受体-2;表达状态
[Keywords] breast cancer;magnetic resonance imaging;radiomics;human epidermal growth factor receptor-2;expression status

杜金晓 1   张小安 1, 2*  

1 河南科技大学第一附属医院影像中心,洛阳 471003

2 郑州大学第三附属医院影像科,郑州 450052

通信作者:张小安,E-mail:zxa@vip.163.com

作者贡献声明:张小安设计本研究的方案,对稿件的重要内容进行修改;杜金晓起草和撰写稿件,获取、分析和解释本研究的文献,对稿件的重要内容进行修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-07-26
接受日期:2025-10-22
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2025.12.031
本文引用格式:杜金晓, 张小安. 基于磁共振成像预测乳腺癌HER-2表达状态的研究进展[J]. 磁共振成像, 2025, 16(12): 212-219. DOI:10.12015/issn.1674-8034.2025.12.031.

0 引言

       乳腺癌是全球女性最常见的恶性肿瘤,其发病率位居全球第二,在我国位列第四[1, 2]。人表皮生长因子受体-2(human epidermal growth factor receptor-2, HER-2)作为一种受体型酪氨酸激酶(receptor tyrosine kinases, RTKs),是靶向药物研发的重要治疗靶点[3, 4]。准确评估HER-2表达水平,对制订个体化治疗策略至关重要[5, 6]。目前,HER-2状态的检测主要通过对手术或穿刺活检获取的组织样本进行免疫组织化学(immunohistochemistry, IHC)染色和荧光原位杂交(fluorescence in situ hybridization, FISH)来实现。传统分类将乳腺癌划分为HER-2阳性(IHC 3+,或IHC 2+伴FISH扩增)与HER-2阴性(IHC 0或1+,或IHC 2+且无FISH扩增)[7, 8]。而根据最新的专家共识和临床实践指南,传统HER-2阴性病例被进一步细分为HER-2低表达(IHC 1+,或IHC 2+且无FISH扩增)和HER-2零表达(IHC 0)[7, 9]。传统HER-2阴性乳腺癌中HER-2低表达型约占45%~55%,其生物学特征和临床转归不同于其他亚型[10, 11]。随着如曲妥珠单抗-多卡玛嗪(Trastuzumab-Duocarmazine)等新型抗体—药物偶联物的问世[12],HER-2低表达患者亦可能从靶向治疗中获益[9, 13, 14],该亚组的临床病理学特征及治疗反应特性已初步阐明[7, 8, 15],更凸显了将HER-2低表达乳腺癌作为独立亚型加以区分的临床价值和必要性。

       目前,HER-2表达水平的评估主要依赖于活检组织的分子病理学检测。然而一方面,乳腺癌在基因组、表观遗传及表型等多个层面均存在显著的肿瘤内异质性(intratumoral heterogeneity, ITH)[16];另一方面,穿刺活检作为一种侵入性操作可能引发乳腺炎、血肿或乳房瘘等并发症[17]。相较于有创病理检测,MRI具有高软组织分辨率、无创及可重复随访等优势[18, 19]。随着影像技术的进步,将MRI与人工智能(artificial intelligence, AI)技术相结合,能从图像中提取具有较高诊断价值的微观特征,从而实现对HER-2三种表达状态的准确判别。

       随着MRI从传统的结构成像迈向功能成像及多模态人工智能融合,其在区分乳腺癌HER-2阳性与阴性状态中的应用已被广泛探讨[17, 20]。然而,针对HER-2低表达与零表达亚型的MRI预测与评估研究相对有限,尤其是对不同MRI技术在此细分领域中的系统性能比较更为缺乏,尽管WANG等[21]的综述所引用的个别研究提及了HER-2低表达亚型,但其仍局限于二分法,对HER-2三种表达状态的探讨缺乏系统性。因此,本文旨在系统梳理MRI及其衍生技术对乳腺癌HER-2过表达、低表达和零表达状态的鉴别进展,重点探讨其应用价值、现存局限性以及未来转化研究方向,以期为乳腺癌精准医疗与个体化治疗决策提供客观影像学依据。

1 乳腺常规MRI影像学特征对HER-2表达状态的预测价值

       在MRI检查中乳腺癌病灶多表现为类圆形或不规则形肿块,边缘常伴分叶或毛刺征。有研究显示,在肿块型病灶中HER-2低表达型乳腺癌形态不规则发生率显著高于HER-2零表达型(P<0.001)及HER-2过表达型(P=0.009);同时,其边缘不规整的表现也明显多于HER-2零表达型(P<0.001)[22]。这可能归因于HER-2低表达乳腺癌有较高的激素受体阳性率,其常诱发促结缔组织增生反应,表现为肿瘤-间质交界区的成纤维细胞活化与胶原纤维大量沉积,在影像学上形成特征性的毛刺征[23]。ZHAO等[24]证实HER-2过表达组乳腺肿瘤最大径和瘤周水肿阳性率显著高于HER-2低表达组和零表达组(P均<0.05),与MAO等[25]研究结果一致。HER-2过表达型乳腺癌通常表现为更大的肿瘤体积,可能反映了其内在的分子特性,如HER-2基因扩增所驱动的细胞增殖加速、局部浸润能力增强以及治疗后高复发倾向。部分研究报道了与之相悖的结果,TEMERIK等[26]及GALATI等[27]研究未发现乳腺癌内在亚型与肿瘤大小存在显著关联。这表明HER-2过表达肿瘤的高侵袭性可能源于其固有的生物学行为,该行为独立于原发灶的肿块大小,即使在肿瘤体积较小时,也已具备早期微转移的潜能。因此,需进一步开展系统、深入的研究,以验证上述影像学特征与HER-2表达状态之间的关联,从而为乳腺癌的精准诊断与个体化治疗提供更充分、可靠的循证依据。

       有研究表明瘤内脂肪抑制T2加权像(fat-suppressed T2-weighted imaging, FS-T2WI)高信号在HER-2低表达乳腺癌中的发生率高于HER-2零表达型和HER-2过表达型(P=0.009,P=0.008)[22]。其潜在机制可能与HER-2低表达型乳腺癌具有较强的侵袭性有关,由于肿瘤细胞增殖速率超过血管供应能力,易引发中央区域缺氧坏死,在FS-T2WI上表现为高信号区[28],这也与其新辅助治疗后病理完全缓解率最低的临床行为一致[10]。然而,RAMTOHUL等[29]研究未发现瘤内FS-T2WI高信号与HER-2低表达或HER-2过表达型乳腺癌之间存在显著关联。目前关于FS-T2WI信号特征与HER-2表达状态关联性的研究报道较少,有待进一步验证。

       虽然常规MRI对HER-2表达状态,尤其是HER-2低表达相关的特征展现出一定的预测潜力,但其效能受限于肿瘤的高度异质性以及当前研究多为小样本回顾性设计。未来需要开展多中心、大样本的前瞻性研究,通过整合临床病理参数与多模态影像组学特征,并建立标准化数据库,以推动该领域的实质性进展。

2 乳腺动态对比增强MRI检查对HER-2表达状态的预测价值

       动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)能从动力学角度分析肿瘤血管生成情况[30],在乳腺癌中,病灶的强化方式通常表现为均匀强化、不均匀强化和环形强化。MUMIN等[23]及GALATI等[27]研究发现HER-2过表达乳腺癌在MRI中常表现为不均匀强化特征,这可能与HER-2过表达乳腺癌独特的血管生成特性有关。其通过上调促血管生成因子,促使大量结构异常、分布紊乱的新生血管形成,这些血管内皮连接不完整、通透性增高,导致对比剂渗漏不均,最终在影像上呈现特征性的不均匀强化。

       时间信号强度曲线(time-intensity curve, TIC)是DCE-MRI中能够直观反映乳腺癌病灶的对比剂动力学特征和血流灌注模式的非参数指标[31]。TIC分为Ⅰ型(流入型)、Ⅱ型(平台型)和Ⅲ型(流出型)。既往研究显示,HER-2过表达在乳腺癌中可促进肿瘤微血管新生,而MRI中的TIC分型可用于评估肿瘤微血管灌注情况,因此两者可能具有潜在的关联性[17]。有研究显示乳腺癌病灶的TIC分型和HER-2过表达状态及病理分级呈显著正相关(r=0.228,P=0.001)[32]。KAZAMA等[33]的一项Meta分析结果亦支持该关联,其结果表明,与HER-2低表达和零表达乳腺癌相比,HER-2过表达病例中Ⅲ型TIC的出现频率更高,合并比例差为0.08(95% CI为0.01~0.14),异质性τ2=0.00,I2=0%,总体效应Z检验值为2.40(P=0.02)。

       定量DCE-MRI通过药代动力学模型可量化分析对比剂在组织中的动力学特征,生成容积转移常数(volume transfer constant, Ktrans)、速率常数(rate constant, Kep)和血管外细胞外间隙容积比(extravascular extracellular volume ratio, Ve)等参数,这些参数可客观反映肿瘤微血管通透性及血流灌注特征[34]。在一项Meta分析中6项研究探讨了HER-2阳性与阴性乳腺癌间Ktrans值的差异,其中2项研究报道HER-2阳性组的Ktrans值显著高于阴性组,而其余4项研究则未观察到显著差异[33]。有研究证实HER-2阳性组的Kep值显著高于HER-2阴性组乳腺肿瘤患者,Ve值显著低于HER-2阴性组乳腺肿瘤患者(P<0.05)[35],这一差异可能源于HER-2阳性诱导的异常血管生成和血流动力学改变。ZHAO等[24]研究表明HER-2过表达组乳腺肿瘤的Ktrans值均高于HER-2零表达组[0.66(0.52,1.13)min-1 vs. 0.48(0.38,0.67)min-1],HER-2过表达组的Kep值[1.17(0.90,1.39)min-1]高于HER-2低表达组[1.00(0.65,1.25)min-1]和HER-2零表达组[(0.87±0.38)min-1](P<0.05)。而李思恩等[36]及ZHU等[37]研究显示HER-2不同表达状态的Kep、Ktrans及Ve的差异均无显著关联(P均>0.05)。上述差异可能受个体血流动力学差异、肿瘤生物学异质性及对比剂注射参数等多种因素影响,未来需要通过扩大样本量以进一步验证。此外,基于药代动力学模型的MRI定量分析虽能无创评估药物组织分布,但在临床应用上面临数据处理复杂、检查成本高昂及依赖跨学科协作等挑战。

       尽管强化方式、TIC及定量DCE-MRI参数与HER-2表达状态存在一定关联,但目前未能进一步有效鉴别具有重要临床意义的HER-2低表达亚型。此外,DCE-MRI在实际应用中仍存在一定局限性,包括感兴趣区勾画的主观误差、扫描时间较长、需注射对比剂所带来的安全性顾虑等。为实现对乳腺癌HER-2三种表达状态的早期精准识别以指导临床干预,未来应在统一现有定量参数采集与分析标准的基础上,进一步探索与HER-2表达状态相关的其他定量参数和多元化测量手段。

3 乳腺扩散加权成像及体素内不相干运动技术对HER-2表达状态的预测价值

       作为一种功能性MRI技术,扩散加权成像(diffusion weighted imaging, DWI)通过检测水分子扩散运动来评估组织微观结构特征,其定量参数表观扩散系数(apparent diffusion coefficient, ADC)值与病灶的大小和细胞的密度相关[38, 39, 40]。乳腺癌因其高细胞密度及核质比增大的特点,通常限制细胞内外水分子运动,导致其在DWI上呈高信号,且对应ADC值降低[41]。然而,关于ADC值与乳腺癌HER-2三种表达状态之间的相关性,现有研究结论尚不一致,仍有待进一步探讨。ZHANG等[17]研究显示HER-2阳性组ADC均值低于阴性组[(0.000 97±0.000 35)mm2/s vs.(0.001 81±0.002 30)mm2/s,t=2.059,P=0.047]。在IIMA等[38]的Meta分析中,尽管纳入的40项研究在HER-2阴性与阳性乳腺癌组间ADC平均值比较方面存在高度异质性(I2=92%),但是其汇总结果仍表明HER-2过表达乳腺癌的ADC值显著高于低表达及零表达型(P<0.01),该结论与MUMIN等[23]的Meta分析结果一致。HER-2过表达能上调血管内皮生长因子的转录与分泌,促进肿瘤血管新生,使肿瘤细胞排列更加密集,从而限制水分子扩散,理论上可引起ADC值降低。然而,在HER-2过表达病灶中,新生血管所伴随的微血管通透性升高及局部水肿效应,可能较细胞密度对水分子扩散的影响更为显著,从而导致平均ADC值相对升高[42]。这两种机制之间的动态平衡关系,可能是导致不同研究中ADC值与HER-2表达状态相关性不一致的重要原因之一。此外,技术因素如MRI场强差异(1.5 T与3.0 T)及b值选择(如500~1000 s/mm2)亦可能引入ADC测量的系统偏差,进一步加剧研究间的异质性。未来需通过统一ADC值的测量规范、优化后处理流程并开展更大规模研究来厘清ADC值与HER-2不同表达状态之间的真实关联。

       DWI信号强度反映组织内水分子扩散受限程度,但其易受微灌注、细胞密度及组织结构复杂性等因素干扰,影响ADC值的准确性。为了解决这一难题,SI等[43]提出体素内不相干运动(intravoxel incoherent motion, IVIM)模型,该模型基于多b值DWI信号的双指数拟合,可得到真实扩散系数(pure diffusion coefficient, D)、灌注相关伪扩散系数(perfusion-related diffusion coefficient, D*)及灌注分数(perfusion fraction, f)等参数[44],从而实现对组织微观结构与微循环灌注的更精准评估。ZHAO等[24]研究显示HER-2过表达乳腺癌的D*值高于HER-2零表达乳腺癌[5.71(4.14,9.55)×10-3 mm2/s vs. 4.20(3.69,6.36)×10-3 mm2/s、P=0.03],而D值与f值在组间未见显著性差异(P>0.05)。IVIM技术具备双重临床优势,其一是无需对比剂即可定量评估组织细胞密度和微血管密度;其二是基于常规DWI序列的IVIM成像具备良好的可重复性与设备兼容性,便于临床推广[45]。但目前有关IVIM参数与HER-2不同表达状态之间的研究甚少,且存在参数设置异质性高、后处理方法不统一等问题,其敏感性、特异性和实用性需要通过多中心大样本临床研究进一步探索。

4 乳腺合成磁共振成像技术对HER-2表达状态的预测价值

       合成磁共振成像(synthetic magnetic resonance imaging, SyMRI)作为一种新兴的定量成像技术,兼具数据可靠性和时间效率的优势[46]。SyMRI基于多动态多回波(multiple-dynamic multiple-echo, MDME)序列技术,可在单次扫描中同步获取定量T1、T2弛豫时间和质子密度(proton density, PD)参数图,并重建出传统T1加权像、T2加权像及PD加权像,显著缩短扫描时间[47, 48],为开展多中心横断面研究提供了标准化基础。现有研究证据表明,SyMRI衍生的T2弛豫时间定量参数可用于鉴别乳腺良恶性肿瘤[49]、评估新辅助治疗反应[50]和区分分子亚型[51]。LI等[52]研究数据显示,HER-2阳性组乳腺癌患者的PD值[79.80(75.90,83.90)]显著高于HER-2阴性组[76.56(72.59,79.90)(P=0.001)]。ZHAN等[53]发现HER-2低表达组乳腺癌患者的定量MRI指标T1、T2、PD及其增强后参数T1e、T2e、PDe均低于HER-2过表达组(P<0.001),这可能与HER-2过表达上调血管内皮生长因子的表达,促进血管生成、增加微血管密度及通透性,从而加速肿瘤增殖有关[54, 55]。此外,有研究在鉴别乳腺癌HER-2的三种表达状态时发现,T2值及PD值在组间均存在显著差异(P=0.002,P=0.008)。具体而言,在HER-2低表达与零表达的对比中,低表达组的T2值低于零表达组,而其PD值则更高(P=0.028,P=0.029)[56],这一现象可能源于HER-2零表达型乳腺癌更具侵袭性,易发生坏死,微环境中自由水含量增加,从而导致T2值升高;而PD值作为氢质子含量的直接反映,提示不同HER-2状态肿瘤在水分子含量及组织构成上可能存在本质区别。

       SyMRI定量技术虽在区分乳腺癌HER-2三种表达状态方面展现出潜在价值,能够高效捕捉各亚型间的细微差异,但目前针对HER-2低表达亚型的相关研究尚处于探索阶段。此外,该技术的实际应用效果易受设备后处理能力及操作者经验的限制。未来需要通过更多研究系统评估SyMRI定量参数单独或联合临床病理特征对HER-2状态的预测效能,并建立标准化的图像采集协议与后处理规范,以推动其在乳腺癌精准诊疗中的有效转化。

5 乳腺基于MRI的人工智能技术对HER-2表达状态的预测价值

5.1 乳腺多参数MRI影像组学在HER-2表达状态中的应用

       影像组学概念最早由GILLIES研究团队于2010年提出[57],后经LAMBIN等学者[58]系统性地拓展与深化,逐步形成了完整的理论体系。影像组学采用高通量计算技术从医学影像的感兴趣区内自动提取海量定量特征[59],并借助机器学习算法筛选出最具生物学意义的特征子集,从而将传统视觉难以辨识的微观异质性信息转化为可量化的生物标志物,无创地揭示肿瘤的内在生物学特性[60, 61]

       在既往研究中,多个基于单参数或多参数MRI的影像组学模型已被开发用于鉴别HER-2阳性和HER-2阴性乳腺癌,其中单参数MRI影像组学模型的预测效能中等,受试者工作特征曲线下面积(area under the curve,AUC)范围为0.65~0.69[31, 62, 63],而多参数MRI影像组学模型展现出更优的鉴别能力,AUC范围为0.690~0.887[64, 65, 66],提示多序列信息融合有助于提升对HER-2表达状态的预测性能。近期多项研究致力于开发基于MRI的影像组学模型,以区分乳腺癌HER-2过表达、低表达和零表达状态。有研究结合DCE-MRI和ADC图像的瘤内和瘤周特征构建模型,在区分HER-2阳性与阴性乳腺癌方面AUC达0.760~0.793,进一步区分HER-2低表达与阴性乳腺癌的AUC为0.711~0.820[67]。ZHENG等[68]构建了基于DWI、ADC和DCE-MRI 的多参数影像组学模型,在外部验证中区分HER-2过表达、低表达及零表达的AUC值分别为0.725(95% CI:0.656~0.787)、0.782(95% CI:0.716~0.838)和0.813(95% CI:0.750~0.866)。ZHAN等[53]则发现,PDe参数在区分HER-2低表达与过表达乳腺癌中的AUC值为0.849(95% CI:0.760~0.915),PDe参数和ADC值在区分HER-2零表达与低表达乳腺癌中的AUC值分别为0.765(95% CI:0.652~0.855)和0.684(95% CI:0.565~0.787),当PDe参数和ADC值联合后,鉴别AUC提升至0.825(95% CI:0.719~0.903),进一步验证了多参数融合的潜力。然而,上述研究多为单中心或双中心研究,样本量有限,可能会影响模型的泛化能力。DAI等[69]采用三中心共1294例患者构建模型,在内部和外部验证中区分HER-2零表达、低表达和过表达状态的AUC值分别达0.776/0.768、0.820/0.813和0.792/0.745。该研究在队列间保留临床病理异质性,有效验证了模型在真实世界场景中的稳健性。

       夏普利加性解释(SHapley Additive exPlanation, SHAP)是一种源于博弈论[70]的模型解释方法,用于量化各特征对模型输出的贡献,为实现人工智能模型的可解释性提供局部与全局层面的一致且无偏倚的评估[71, 72]。SHAP凭借其广泛的应用性与强大的可视化能力,能直观揭示特征在模型决策中的重要性,已成为增强模型可解释性的关键工具[73]。在先前的乳腺癌影像学研究中,SHAP已被成功应用于解析预测模型,有效识别分子亚型并评估前哨淋巴结转移风险,显著提升了模型的临床可信度[67, 72]。CHEN等[74]研究采用支持向量机(support vector machine, SVM)构建多参数影像组学评分(radiomics score, radscore)模型,在外部验证中区分HER-2阳性与阴性组的AUC为0.757,区分HER-2低表达与零表达组的AUC为0.754。该研究在全局分析中,采用SHAP蜂群图和汇总图系统识别与排序特征重要性;在局部层面,则利用SHAP瀑布图阐明各特征对个体患者预测概率的具体贡献。具体结果显示,在区分HER-2阳性与阴性组时,radscore在预测中的贡献优于瘤周水肿特征(SHAP值分别为0.93与0.39),提示影像组学特征能够捕捉传统MRI未能反映的生物学信息[75]。此外,早期DCE-MRI在模型中贡献最为显著,而在区分HER-2低表达与零表达时,DCE-MRI的相对贡献较区分HER-2阳性与阴性组时有所下降,而T2加权特征的作用增强,可能与HER-2阴性肿瘤整体微血管密度较低有关。两个任务中的关键特征均来源于高阶统计特征,与已有研究结论一致[68]

       综上,多参数MRI影像组学模型通过整合形态学、血流动力学及水分子扩散特性等多维信息,展现出良好的鉴别性能。然而,该领域仍面临训练数据不足、质量不一等挑战。未来应推动多中心数据共享、制订标准化采集与分析指南,以提升模型的临床适用性与推广价值。SHAP提供的全局与局部可解释性分析框架,其新颖的可视化呈现方式(如摘要图、瀑布图等)为未来影像组学研究成果的临床解读提供了直观模板。这种可访问、可解释的呈现格式,有望成为放射科医生理解复杂模型决策过程的有效工具,助力影像组学向临床实践的转化。

       腋窝淋巴结(axillary lymph nodes, ALN)状态是评估乳腺癌预后及制订后续治疗策略的关键指标[76]。当前,越来越多的研究致力于探索乳腺癌ALN状态的临床与影像学预测因子,旨在为无创评估淋巴结转移、指导个体化手术决策及预后判断提供依据。ZHAN等[53]统计分析结果表明,HER-2零表达组与低表达组、HER-2零表达组与过表达组在ALN状态方面存在显著差异(P=0.002,P=0.007)。有研究在训练集中通过常规MRI特征的单变量分析显示,HER-2阳性状态与ALN异常显著相关(OR=2.19,95% CI:1.42~3.38;P<0.05),多变量分析进一步表明,异常ALN状态是HER-2阳性的独立预测因素(OR=1.63,95% CI:1.02~2.60;P<0.05),而未发现异常ALN状态与HER-2低表达状态存在显著关联(P>0.05)[74],这反映了HER-2过表达亚型更具侵袭性的生物学行为。ZHAO等[24]研究也显示与HER-2过表达型乳腺癌相比,HER-2低表达型及零表达型乳腺癌患者无腋窝淋巴结转移的比例显著更高(P<0.05)。综上,ALN状态与HER-2不同表达状态之间存在一定相关性,然而其在HER-2低表达、零表达等细分亚型鉴别中的实际应用价值仍较为有限。未来研究可着眼于从淋巴结区域提取影像组学特征,并将其与原发灶特征融合,以构建更具鉴别力的预测模型,从而进一步提升对HER-2表达状态的精准评估能力。

5.2 乳腺MRI栖息地成像在HER-2表达状态中的应用

       尽管影像组学和深度学习技术在乳腺癌HER-2状态评估中表现良好[77],但其传统分析方法通常将肿瘤视为单一同质性整体,难以有效捕捉瘤内空间异质性。与之相比,生境成像(habitat imaging, HI)分析通过精准分割肿瘤内具有不同生物学特性的亚区,为无创评估ITH提供了新的技术路径[78, 79]。生境成像,亦称栖息地成像,是一种前沿的影像组学分析方法。该技术融合T1加权成像、T2加权成像、DWI及DCE-MRI等序列及其定量衍生参数(如ADC、Ktrans及Ve等),并借助K-means聚类、高斯混合模型等自动聚类算法,来提取表征组织病理特征、血流动力学特性及分子生物学表型的定量影像标志物,从而将肿瘤区域划分为若干具有独特生物学特性的功能亚区(即“栖息地”)。这一方法为乳腺癌的机制研究与临床精准诊疗提供新的见解与视角[80, 81]。有研究纳入了86例浸润性乳腺癌患者,采用模糊C均值聚类算法对其多模态MRI图像进行分析,识别出三个具有不同生物学特性的栖息地亚区:栖息地1(相对低血流灌注-高细胞增殖)、栖息地2(相对低血流灌注-低细胞增殖)和栖息地3(相对高血流灌注-低细胞增殖),研究结果显示,栖息地1的容积占比在鉴别HER-2阳性与阴性状态中效能最高(AUC=0.696);而栖息地2的容积占比在区分HER-2低表达与零表达方面表现出更好的诊断性能(AUC=0.724)[82],该发现凸显了多参数MRI栖息地成像在鉴别乳腺癌HER-2不同表达状态方面的重要潜力。CHEN等[83]研究基于栖息地成像原理提取多模态MRI中的ITH影像组学特征,并构建ITH预测模型,该模型不仅能够有效区分HER-2阳性与阴性肿瘤,还能进一步鉴别HER-2低表达与零表达亚型。在训练集、内部验证集和外部验证集中,该模型均表现出卓越且稳定的区分能力,其AUC范围为0.81~0.94,展现出优异的泛化性能和临床转化前景。有研究构建了一种基于DCE-MRI图像用于量化ITH的栖息地成像模型,在多项鉴别任务中均展现出优异性能:不仅能够准确区分HER-2阳性与阴性状态(AUC为0.842~0.855),在更具挑战性的HER-2低表达与零表达分类中也表现稳定(AUC为0.840~0.844),且在所有任务中均一致优于传统影像组学特征(AUC为0.765~0.831),进一步证实了栖息地成像在HER-2精准分型中的重要应用潜力[84]

       肿瘤栖息地成像通过精准量化乳腺癌的瘤内异质性特征,为无创预测分子分型提供了新的技术路径,尤其在HER-2表达状态的精细分层方面展现出重要的临床潜力。然而,当前相关研究主要为回顾性设计,且缺乏与组织病理学和免疫组化结果的系统对照验证。后续研究方向应致力于通过更严格的纳入排除标准、扩大样本规模以及深化多中心协作等,进一步提升研究结论的可靠性与泛化能力。

5.3 乳腺多模态影像组学在HER-2表达状态中的应用

       在乳腺癌的综合影像评估中,MRI、乳腺X线摄影及超声各具优势。MRI虽在软组织分辨率和病灶形态功能评估方面表现卓越,但其对微小钙化灶的检出敏感性相对有限,此时乳腺X线摄影可有效弥补这一劣势,尤其是可以识别乳腺组织中的簇状微钙化和部分占位性病变[85]。超声检查则凭借其在致密乳腺组织病变检测中的高敏感性与特异性,结合实时形态学及血流动力学评估优势,成为诊断侵袭性HER-2阳性乳腺癌的重要工具,其无辐射特性尤其适合年轻女性及妊娠期患者的随访[86, 87]。多模态影像组学通过系统整合上述成像模式的互补信息,能够实现对乳腺癌病灶更全面、更精准地评估。有研究采用SVM分类器分别基于乳腺X线摄影和MRI影像组学特征构建了单一模态模型及多模态融合模型来预测HER-2状态,多模态组学模型展现出最优诊断性能,其在训练集和测试集中的AUC值分别达到0.902和0.886,显著优于单一模态模型[88]。WANG等[89]开发了一种基于MRI和乳腺X线摄影的影像组学和深度学习特征的多模态无创评估框架,来预测HER-2 不同状态,在内部和外部验证集中,该模型对HER-2零表达乳腺癌病例的准确率分别为86.4%和84.4%,对HER-2低表达乳腺癌病例的准确率分别为80.8%和80%,对HER-2过表达乳腺癌病例的准确率分别为91.2%和88.15%。目前已有研究构建融合MRI、乳腺X线摄影和超声的多模态影像组学模型,在乳腺良恶性病变的鉴别中效能表现最佳,在验证集中AUC值为0.905(95% CI:0.805~1.000)[90],但其在HER-2不同表达状态预测中的应用尚未见明确报道。

       在实际诊疗过程中,患者通常接受多种影像学检查进行综合评估,因此发展融合乳腺X线摄影、超声等多模态影像组学模型,有望更全面、更精准地解析病变特征。然而,目前关于融合MRI与乳腺X线摄影或超声等的多模态影像组学模型预测HER-2三种表达状态的研究甚少。随着数字成像技术与机器学习算法的发展,为从医学图像中定量提取特征并据此对患者亚群进行划分提供了新途径。未来可以进一步整合影像学特征与免疫组织化学信息,构建一种独立于基因组图谱的、预测效能更强的评估手段,为乳腺癌HER-2表达状态的精准判定提供新的工具,从而在乳腺癌精准医疗领域发挥更重要的作用。

6 小结与展望

       基于MRI的影像技术在预测乳腺癌HER-2三种表达状态方面展现出巨大的潜力,尽管研究方法与模型架构不断创新,其在精准区分乳腺癌HER-2过表达、低表达及零表达亚型的能力仍面临诸多挑战。目前研究多属回顾性设计且样本量有限,影响研究结论的可靠性;同时,影像采集设备、处理流程及后处理算法缺乏标准化,引起研究间的异质性。因此,未来研究应致力于建立标准化的研究设计方案,通过开展大规模前瞻性研究和多中心协作研究,整合新兴人工智能算法,更深入探索MRI及其衍生技术在乳腺癌HER-2表达状态评估中的应用价值,以提高预测的准确性和可靠性,为临床制定精准化、个性化治疗方案的选择提供参考,帮助患者及时调整治疗方案,提高生存质量。

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
邬昊, 吕青. 全球及中国乳腺癌的流行病学趋势及防控启示: 2018—2022年《全球癌症统计报告》解读[J]. 中国普外基础与临床杂志, 2024, 31(7): 796-802. DOI: 10.7507/1007-9424.202407031.
WU H, LÜ Q. Epidemiological trends and implications of breast cancer prevention and control in China and the world: an interpretation of the Global Cancer Statistics Report 2018—2022[J]. Chin J Bases Clin Gen Surg, 2024, 31(7): 796-802. DOI: 10.7507/1007-9424.202407031.
[3]
SITIA L, SEVIERI M, SIGNATI L, et al. HER-2-targeted nanoparticles for breast cancer diagnosis and treatment[J/OL]. Cancers (Basel), 2022, 14(10): 2424 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35626028/. DOI: 10.3390/cancers14102424.
[4]
BANERJI U, VAN HERPEN C M L, SAURA C, et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study[J]. Lancet Oncol, 2019, 20(8): 1124-1135. DOI: 10.1016/S1470-2045(19)30328-6.
[5]
SMIT E F, FELIP E, UPRETY D, et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial[J]. Lancet Oncol, 2024, 25(4): 439-454. DOI: 10.1016/S1470-2045(24)00064-0.
[6]
OUYANG Q C, WANG Y, ZHANG J, et al. HS-10352 in hormone receptor-positive, HER2-negative advanced breast cancer: a phase 1 dose-escalation trial[J]. Cancer Med, 2023, 12(24): 21849-21860. DOI: 10.1002/cam4.6755.
[7]
MODI S N, JACOT W, YAMASHITA T, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer[J]. N Engl J Med, 2022, 387(1): 9-20. DOI: 10.1056/NEJMoa2203690.
[8]
TARANTINO P, VIALE G, PRESS M F, et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer[J]. Ann Oncol, 2023, 34(8): 645-659. DOI: 10.1016/j.annonc.2023.05.008.
[9]
TARANTINO P, HAMILTON E, TOLANEY S M, et al. HER2-low breast cancer: pathological and clinical landscape[J]. J Clin Oncol, 2020, 38(17): 1951-1962. DOI: 10.1200/JCO.19.02488.
[10]
ZHANG G C, REN C Y, LI C, et al. Distinct clinical and somatic mutational features of breast tumors with high-, low-, or non-expressing human epidermal growth factor receptor 2 status[J/OL]. BMC Med, 2022, 20(1): 142 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35484593/. DOI: 10.1186/s12916-022-02346-9.
[11]
DAI L J, MA D, XU Y Z, et al. Molecular features and clinical implications of the heterogeneity in Chinese patients with HER2-low breast cancer[J/OL]. Nat Commun, 2023, 14(1): 5112 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/37607916/. DOI: 10.1038/s41467-023-40715-x.
[12]
MODI S N, PARK H, MURTHY R K, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase ib study[J]. J Clin Oncol, 2020, 38(17): 1887-1896. DOI: 10.1200/JCO.19.02318.
[13]
MIGLIETTA F, GRIGUOLO G, BOTTOSSO M, et al. HER2-low-positive breast cancer: evolution from primary tumor to residual disease after neoadjuvant treatment[J/OL]. NPJ Breast Cancer, 2022, 8(1): 66 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35595761/. DOI: 10.1038/s41523-022-00434-w.
[14]
PRAT A, BARDIA A, CURIGLIANO G, et al. An overview of clinical development of agents for metastatic or advanced breast cancer without ERBB2 amplification (HER2-low)[J/OL]. JAMA Oncol, 2022 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/36107417/. DOI: 10.1001/jamaoncol.2022.4175.
[15]
DENKERT C, SEITHER F, SCHNEEWEISS A, et al. Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials[J]. Lancet Oncol, 2021, 22(8): 1151-1161. DOI: 10.1016/S1470-2045(21)00301-6.
[16]
FAN P C, XU K. Antibody-drug conjugates in breast cancer: Marching from HER2-overexpression into HER2-low[J/OL]. Biochim Biophys Acta Rev Cancer, 2023, 1878(1): 188849 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/36502928/. DOI: 10.1016/j.bbcan.2022.188849.
[17]
ZHANG X D, KOU M, ZOU W Y, et al. HER-2 expression is correlated with multimodal imaging features in breast cancer: a pilot study[J/OL]. Ann Med, 2024, 56(1): 2434182 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/39618080/. DOI: 10.1080/07853890.2024.2434182.
[18]
WITOWSKI J, HEACOCK L, REIG B, et al. Improving breast cancer diagnostics with deep learning for MRI[J/OL]. Sci Transl Med, 2022, 14(664): eabo4802 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/36170446/. DOI: 10.1126/scitranslmed.abo4802.
[19]
SHETH D, GIGER M L. Artificial intelligence in the interpretation of breast cancer on MRI[J]. J Magn Reson Imaging, 2020, 51(5): 1310-1324. DOI: 10.1002/jmri.26878.
[20]
SHANG Y Y, WANG Y X, GUO Y X, et al. The clinical study of intratumoral and peritumoral radiomics based on DCE-MRI for HER-2 positive and low expression prediction in breast cancer[J/OL]. Breast Cancer (Dove Med Press), 2024, 16: 957-972 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/39703346/. DOI: 10.2147/BCTT.S497770.
[21]
WANG Q X, ZHENG N, YU Q Q, et al. Multimodal imaging and advanced quantitative techniques for HER-2 status prediction in breast cancer[J/OL]. Discov Oncol, 2025, 16(1): 1820 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/41051612/. DOI: 10.1007/s12672-025-03627-4.
[22]
SHEN Y Y, ZHANG X, ZHENG J L, et al. Distinguishing low expression levels of human epidermal growth factor receptor 2 in breast cancer: insights from qualitative and quantitative magnetic resonance imaging analysis[J/OL]. Tomography, 2025, 11(3): 31 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/40137571/. DOI: 10.3390/tomography11030031.
[23]
MUMIN N A, RAMLI HAMID M T, WONG J H D, et al. Magnetic resonance imaging phenotypes of breast cancer molecular subtypes: a systematic review[J/OL]. Acad Radiol, 2022, 29(Suppl 1): S89-S106 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/34481705/. DOI: 10.1016/j.acra.2021.07.017.
[24]
ZHAO S Q, WANG S Y, LI Y F, et al. Quantitative parameters of intravoxel incoherent movement imaging and dynamic contrast enhancement MRI for the prediction of HER2-zero, -low, and-positive breast cancers[J]. Acad Radiol, 2025, 32(4): 1851-1860. DOI: 10.1016/j.acra.2024.11.011.
[25]
MAO C P, HU L X, JIANG W, et al. Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models[J]. Eur Radiol, 2024, 34(4): 2546-2559. DOI: 10.1007/s00330-023-10198-x.
[26]
TEMERIK S M, ELWAHAB S M A, WAHMAN M M, et al. Relation between morphological features of initial breast MRI and breast cancer molecular subtypes[J/OL]. Egypt J Radiol Nucl Med, 2023, 54(1): 147 [2025-07-30]. https://ejrnm.springeropen.com/articles/10.1186/s43055-023-01087-w. DOI: 10.1186/s43055-023-01087-w.
[27]
GALATI F, RIZZO V, MOFFA G, et al. Radiologic-pathologic correlation in breast cancer: do MRI biomarkers correlate with pathologic features and molecular subtypes?[J/OL]. Eur Radiol Exp, 2022, 6(1): 39 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35934721/. DOI: 10.1186/s41747-022-00289-7.
[28]
JING X M, YANG F M, SHAO C C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment[J/OL]. Mol Cancer, 2019, 18(1): 157 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/31711497/. DOI: 10.1186/s12943-019-1089-9.
[29]
RAMTOHUL T, DJERROUDI L, LISSAVALID E, et al. Multiparametric MRI and radiomics for the prediction of HER2-zero, -low, and-positive breast cancers[J/OL]. Radiology, 2023, 308(2): e222646 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/37526540/. DOI: 10.1148/radiol.222646.
[30]
LAI T F, CHEN X F, YANG Z Q, et al. Quantitative parameters of dynamic contrast-enhanced magnetic resonance imaging to predict lymphovascular invasion and survival outcome in breast cancer[J/OL]. Cancer Imaging, 2022, 22(1): 61 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/36273200/. DOI: 10.1186/s40644-022-00499-7.
[31]
LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 54(3): 703-714. DOI: 10.1002/jmri.27651.
[32]
YUAN C R, JIN F, GUO X L, et al. Correlation analysis of breast cancer DWI combined with DCE-MRI imaging features with molecular subtypes and prognostic factors[J/OL]. J Med Syst, 2019, 43(4): 83 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/30810823/. DOI: 10.1007/s10916-019-1197-5.
[33]
KAZAMA T, TAKAHARA T, HASHIMOTO J. Breast cancer subtypes and quantitative magnetic resonance imaging: a systemic review[J/OL]. Life (Basel), 2022, 12(4): 490 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35454981/. DOI: 10.3390/life12040490.
[34]
WANG W W, LV S Q, XUN J, et al. Comparison of diffusion kurtosis imaging and dynamic contrast enhanced MRI in prediction of prognostic factors and molecular subtypes in patients with breast cancer[J/OL]. Eur J Radiol, 2022, 154: 110392 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35679701/. DOI: 10.1016/j.ejrad.2022.110392.
[35]
WANG Z, REN G Y, YIN Q, et al. Correlation of magnetic resonance imaging quantitative parameters and apparent diffusion coefficient value with pathological breast cancer[J]. World J Clin Cases, 2022, 10(21): 7333-7340. DOI: 10.12998/wjcc.v10.i21.7333.
[36]
李思恩, 杨志企, 林裕霖, 等. 基于临床及MRI特征预测HER-2阳性型和低表达型乳腺癌的价值[J]. 国际医学放射学杂志, 2025, 48(3): 306-311. DOI: 10.19300/j.2025.L21656.
LI S E, YANG Z Q, LIN Y L, et al. Value of clinical and MRI features in predicting HER-2-positive and HER-2-low expression breast cancer[J]. Int J Med Radiol, 2025, 48(3): 306-311. DOI: 10.19300/j.2025.L21656.
[37]
ZHU G M, DONG Y D, ZHU R T, et al. Dynamic contrast-enhanced magnetic resonance imaging parameters combined with diffusion-weighted imaging for discriminating malignant lesions, molecular subtypes, and pathological grades in invasive ductal carcinoma patients[J/OL]. PLoS One, 2025, 20(4): e0320240 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/40233046/. DOI: 10.1371/journal.pone.0320240.
[38]
IIMA M, KATAOKA M, HONDA M, et al. Diffusion-weighted MRI for the assessment of molecular prognostic biomarkers in breast cancer[J]. Korean J Radiol, 2024, 25(7): 623-633. DOI: 10.3348/kjr.2023.1188.
[39]
汪群, 侯唯姝, 李小虎, 等. 基于MRI人工智能预测乳腺癌分子分型的研究进展[J]. 国际医学放射学杂志, 2025, 48(1): 96-101. DOI: 10.19300/j.2025.Z21524.
WANG Q, HOU W S, LI X H, et al. Research progress on MRI-based artificial intelligence in predicting breast cancer molecular subtypes[J]. Int J Med Radiol, 2025, 48(1): 96-101. DOI: 10.19300/j.2025.Z21524.
[40]
LE N N, LI W, ONISHI N, et al. Effect of inter-reader variability on diffusion-weighted MRI apparent diffusion coefficient measurements and prediction of pathologic complete response for breast cancer[J]. Tomography, 2022, 8(3): 1208-1220. DOI: 10.3390/tomography8030099.
[41]
NIU S X, WANG X Y, ZHAO N N, et al. Radiomic evaluations of the diagnostic performance of DM, DBT, DCE MRI, DWI, and their combination for the diagnosisof breast cancer[J/OL]. Front Oncol, 2021, 11: 725922 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/34568055/. DOI: 10.3389/fonc.2021.725922.
[42]
LIU Y P, BU H, YANG W T. Interpretation of 2019 update of Chinese breast cancer HER2 detection guidelines[J]. Chin J Pathol, 2019, 48(3): 182-185. DOI: 10.3760/cma.j.issn.0529-5807.2019.03.003.
[43]
SI L F, LIU X J, LI X Y, et al. Diffusion kurtosis imaging and intravoxel incoherent motion imaging parameters in breast lesions: Effect of radiologists' experience and region-of-interest selection[J/OL]. Eur J Radiol, 2023, 158: 110633 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/36470051/. DOI: 10.1016/j.ejrad.2022.110633.
[44]
MENDEZ A M, FANG L K, MERIWETHER C H, et al. Diffusion breast MRI: current standard and emerging techniques[J/OL]. Front Oncol, 2022, 12: 844790 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35880168/. DOI: 10.3389/fonc.2022.844790.
[45]
USLU H, ÖNAL T, TOSUN M, et al. Intravoxel incoherent motion magnetic resonance imaging for breast cancer: a comparison with molecular subtypes and histological grades[J/OL]. Magn Reson Imaging, 2021, 78: 35-41 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/33556485/. DOI: 10.1016/j.mri.2021.02.005.
[46]
SAJUST DE BERGUES DE ESCALUP A, DURON L, KOSKAS P, et al. Synthetic MRI for detecting abnormal signals in the optic nerves: an exploratory study[J/OL]. Invest Radiol, 2025 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/40667842/. DOI: 10.1097/RLI.0000000000001226.
[47]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[48]
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J/OL]. Cancer Imaging, 2020, 20(1): 88 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/33317609/. DOI: 10.1186/s40644-020-00365-4.
[49]
LI X J, FAN Z C, JIANG H N, et al. Synthetic MRI in breast cancer: differentiating benign from malignant lesions and predicting immunohistochemical expression status[J/OL]. Sci Rep, 2023, 13(1): 17978 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/37864025/. DOI: 10.1038/s41598-023-45079-2.
[50]
JIANG W H, DU S Y, GAO S, et al. Correlation between synthetic MRI relaxometry and apparent diffusion coefficient in breast cancer subtypes with different neoadjuvant therapy response[J/OL]. Insights Imaging, 2023, 14(1): 162 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/37775610/. DOI: 10.1186/s13244-023-01492-9.
[51]
KAZAMA T, TAKAHARA T, KWEE T C, et al. Quantitative values from synthetic MRI correlate with breast cancer subtypes[J/OL]. Life (Basel), 2022, 12(9): 1307 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/36143344/. DOI: 10.3390/life12091307.
[52]
LI Q, XIAO Q, YANG M, et al. Histogram analysis of quantitative parameters from synthetic MRI: Correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J/OL]. Eur J Radiol, 2021, 139: 109697 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/33857828/. DOI: 10.1016/j.ejrad.2021.109697.
[53]
ZHAN T, DAI J K, LI Y. Noninvasive identification of HER2-zero, -low, or-overexpressing breast cancers: multiparametric MRI-based quantitative characterization in predicting HER2-low status of breast cancer[J/OL]. Eur J Radiol, 2024, 177: 111573 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/38905803/. DOI: 10.1016/j.ejrad.2024.111573.
[54]
DU S Y, GAO S, ZHANG L N, et al. Improved discrimination of molecular subtypes in invasive breast cancer: Comparison of multiple quantitative parameters from breast MRI[J/OL]. Magn Reson Imaging, 2021, 77: 148-158 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/33309922/. DOI: 10.1016/j.mri.2020.12.001.
[55]
GOLDHIRSCH A, WOOD W C, COATES A S, et al. Strategies for subtypes: dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011[J]. Ann Oncol, 2011, 22(8): 1736-1747. DOI: 10.1093/annonc/mdr304.
[56]
梁童, 唐文伟, 周鹤鸣, 等. 合成MRI鉴别乳腺癌HER-2表达状态的应用研究[J]. 中国CT和MRI杂志, 2025, 23(6): 91-94. DOI: 10.3969/j.issn.1672-5131.2025.06.027.
LIANG T, TANG W W, ZHOU H M, et al. Application research on the use of synthetic MRI to identify HER-2 expression status in breast cancer[J]. Chin J CT MRI, 2025, 23(6): 91-94. DOI: 10.3969/j.issn.1672-5131.2025.06.027.
[57]
GILLIES R J, ANDERSON A R, GATENBY R A, et al. The biology underlying molecular imaging in oncology: from genome to anatome and back again[J]. Clin Radiol, 2010, 65(7): 517-521. DOI: 10.1016/j.crad.2010.04.005.
[58]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[59]
WANG Z P, FANG M J, ZHANG J, et al. Radiomics and deep learning in nasopharyngeal carcinoma: a review[J/OL]. IEEE Rev Biomed Eng, 2024, 17: 118-135 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/37097799/. DOI: 10.1109/RBME.2023.3269776.
[60]
CONTI A, DUGGENTO A, INDOVINA I, et al. Radiomics in breast cancer classification and prediction[J/OL]. Semin Cancer Biol, 2021, 72: 238-250 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/32371013/. DOI: 10.1016/j.semcancer.2020.04.002.
[61]
AERTS H J W L. The potential of radiomic-based phenotyping in precision medicine: a review[J]. JAMA Oncol, 2016, 2(12): 1636-1642. DOI: 10.1001/jamaoncol.2016.2631.
[62]
LI H, ZHU Y T, BURNSIDE E S, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set[J/OL]. NPJ Breast Cancer, 2016, 2: 16012 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/27853751/. DOI: 10.1038/npjbcancer.2016.12.
[63]
SONG L R, LI C L, YIN J D. Texture analysis using semiquantitative kinetic parameter maps from DCE-MRI: preoperative prediction of HER2 status in breast cancer[J/OL]. Front Oncol, 2021, 11: 675160 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/34168994/. DOI: 10.3389/fonc.2021.675160.
[64]
FANG C Y, ZHANG J T, LI J Z, et al. Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: a multicenter study[J/OL]. Front Oncol, 2022, 12: 922185 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/36158700/. DOI: 10.3389/fonc.2022.922185.
[65]
XU A Q, CHU X F, ZHANG S J, et al. Development and validation of a clinicoradiomic nomogram to assess the HER2 status of patients with invasive ductal carcinoma[J/OL]. BMC Cancer, 2022, 22(1): 872 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35945526/. DOI: 10.1186/s12885-022-09967-6.
[66]
ZHOU J, TAN H N, LI W, et al. Radiomics signatures based on multiparametric MRI for the preoperative prediction of the HER2 status of patients with breast cancer[J]. Acad Radiol, 2021, 28(10): 1352-1360. DOI: 10.1016/j.acra.2020.05.040.
[67]
ZHANG G S, SHI Y, YIN P P, et al. A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP[J/OL]. Front Oncol, 2022, 12: 944569 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/35957890/. DOI: 10.3389/fonc.2022.944569.
[68]
ZHENG S Y, YANG Z H, DU G Z, et al. Discrimination between HER2-overexpressing, -low-expressing, and-zero-expressing statuses in breast cancer using multiparametric MRI-based radiomics[J]. Eur Radiol, 2024, 34(9): 6132-6144. DOI: 10.1007/s00330-024-10641-7.
[69]
DAI Y, LIAN C, ZHANG Z, et al. Development and validation of a deep learning system to differentiate HER2-zero, HER2-low, and HER2-positive breast cancer based on dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2025, 61(5): 2212-2220. DOI: 10.1002/jmri.29670.
[70]
EJIYI C J, QIN Z, MONDAY H, et al. Breast cancer diagnosis and management guided by data augmentation, utilizing an integrated framework of SHAP and random augmentation[J]. Biofactors, 2024, 50(1): 114-134. DOI: 10.1002/biof.1995.
[71]
HU J L, XU J, LI M, et al. Identification and validation of an explainable prediction model of acute kidney injury with prognostic implications in critically ill children: a prospective multicenter cohort study[J/OL]. EClinicalMedicine, 2024, 68: 102409 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/38273888/. DOI: 10.1016/j.eclinm.2023.102409.
[72]
MA M W, LIU R Y, WEN C J, et al. Predicting the molecular subtype of breast cancer and identifying interpretable imaging features using machine learning algorithms[J]. Eur Radiol, 2022, 32(3): 1652-1662. DOI: 10.1007/s00330-021-08271-4.
[73]
HUANG Y, WANG X X, CAO Y, et al. Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis[J]. Diagn Interv Imag, 2024, 105(5): 191-205. DOI: 10.1016/j.diii.2024.01.004.
[74]
CHEN Y X, CHEN S Y, TANG W J, et al. Multiparametric MRI radiomics with machine learning for differentiating HER2-zero, -low, and-positive breast cancer: model development, testing, and interpretability analysis[J/OL]. AJR Am J Roentgenol, 2025, 224(1): e2431717 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/39413232/. DOI: 10.2214/AJR.24.31717.
[75]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[76]
孙绍梅, 王若兰, 毕承柳, 等. 人工智能MRI在乳腺癌诊断与疗效预测中的研究进展[J]. 磁共振成像, 2025, 16(2): 193-197, 228. DOI: 10.12015/issn.1674-8034.2025.02.031.
SUN S M, WANG R L, BI C L, et al. Research progress on artificial intelligence in MRI for breast cancer diagnosis and treatment response prediction[J]. Chin J Magn Reson Imag, 2025, 16(2): 193-197, 228. DOI: 10.12015/issn.1674-8034.2025.02.031.
[77]
FRANCHINA M, PIZZIMENTI C, FIORENTINO V, et al. Low and ultra-low HER2 in human breast cancer: an effort to define new neoplastic subtypes[J/OL]. Int J Mol Sci, 2023, 24(16): 12795 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/37628975/. DOI: 10.3390/ijms241612795.
[78]
GILLIES R J, BALAGURUNATHAN Y. Perfusion MR imaging of breast cancer: insights using "habitat imaging"[J]. Radiology, 2018, 288(1): 36-37. DOI: 10.1148/radiol.2018180271.
[79]
LI S L, DAI Y M, CHEN J Y, et al. MRI-based habitat imaging in cancer treatment: current technology, applications, and challenges[J/OL]. Cancer Imaging, 2024, 24(1): 107 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/39148139/. DOI: 10.1186/s40644-024-00758-9.
[80]
薛雨菲, 王唯伟, 马姝, 等. 磁共振栖息地成像在乳腺癌诊疗中的应用进展[J]. 磁共振成像, 2025, 16(7): 154-159. DOI: 10.12015/issn.1674-8034.2025.07.025.
XUE Y F, WANG W W, MA S, et al. Advances in the application of magnetic resonance habitat imaging for the diagnosis and treatment of breast cancer[J]. Chin J Magn Reson Imag, 2025, 16(7): 154-159. DOI: 10.12015/issn.1674-8034.2025.07.025.
[81]
SUJIT S J, AMINU M, KARPINETS T V, et al. Enhancing NSCLC recurrence prediction with PET/CT habitat imaging, ctDNA, and integrative radiogenomics-blood insights[J/OL]. Nat Commun, 2024, 15(1): 3152 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/38605064/. DOI: 10.1038/s41467-024-47512-0.
[82]
李志恒, 陈晓燕, 张晓磊, 等. 多参数MRI栖息地影像预测乳腺癌人表皮生长因子受体2不同表达状态的研究[J]. 中华放射学杂志2024(9): 909-915. DOI: 10.3760/cma.j.cn112149-20240228-00091.
LI Z H, CHEN X Y, ZHANG X L, et al. Prediction of different expression status of human epidermal growth factor receptor 2 in breast cancer by multi-parameter MRI habitat images[J]. Chin J Radiol, 2024(9): 909-915. DOI: 10.3760/cma.j.cn112149-20240228-00091.
[83]
CHEN H Q, LIU Y L, ZHAO J Q, et al. Quantification of intratumoral heterogeneity using habitat-based MRI radiomics to identify HER2-positive, -low and-zero breast cancers: a multicenter study[J/OL]. Breast Cancer Res, 2024, 26(1): 160 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/39578913/. DOI: 10.1186/s13058-024-01921-7.
[84]
LI Q Y, LIANG Y, ZHANG L, et al. MRI-based habitat analysis for Intratumoral heterogeneity quantification combined with deep learning for HER2 status prediction in breast cancer[J/OL]. Magn Reson Imaging, 2025, 122: 110429 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/40414575/. DOI: 10.1016/j.mri.2025.110429.
[85]
DUFFY S W, TABÁR L, YEN A M, et al. Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549, 091 women[J]. Cancer, 2020, 126(13): 2971-2979. DOI: 10.1002/cncr.32859.
[86]
ARIBAL E, ASADOV R, RAMAZAN A, et al. Multiparametric breast MRI with 3T: effectivity of combination of contrast enhanced MRI, DWI and 1H single voxel spectroscopy in differentiation of breast tumors[J]. Eur J Radiol, 2016, 85(5): 979-986. DOI: 10.1016/j.ejrad.2016.02.022.
[87]
CLAUSER P, KRUG B, BICKEL H, et al. Diffusion-weighted imaging allows for downgrading MR BI-RADS 4 lesions in contrast-enhanced MRI of the breast to avoid unnecessary biopsy[J]. Clin Cancer Res, 2021, 27(7): 1941-1948. DOI: 10.1158/1078-0432.CCR-20-3037.
[88]
杨静茹, 赵楠楠, 张舒妮, 等. 多模态影像组学列线图在预测乳腺癌患者HER-2表达水平中的价值[J]. 临床放射学杂志, 2024, 43(9): 1471-1477. DOI: 10.13437/j.cnki.jcr.2024.09.011.
YANG J R, ZHAO N N, ZHANG S N, et al. Application of multimodal radiomics nomogram in predicting HER-2 expression in breast cancer patients[J]. J Clin Radiol, 2024, 43(9): 1471-1477. DOI: 10.13437/j.cnki.jcr.2024.09.011.
[89]
WANG Q, ZHANG Z Q, HUANG C C, et al. Dual-modality virtual biopsy system integrating MRI and MG for noninvasive predicting HER2 status in breast cancer[J]. Acad Radiol, 2025, 32(7): 3858-3869. DOI: 10.1016/j.acra.2025.02.039.
[90]
WU J, LI Y X, GONG W Q, et al. Multi-modality radiomics diagnosis of breast cancer based on MRI, ultrasound and mammography[J/OL]. BMC Med Imaging, 2025, 25(1): 265 [2025-07-30]. https://pubmed.ncbi.nlm.nih.gov/40615781/. DOI: 10.1186/s12880-025-01767-1.

上一篇 影像组学预测乳腺癌肿瘤浸润淋巴细胞的研究进展
下一篇 基于MR扩散成像技术的人工智能在评估宫颈癌中的研究进展与现状
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2