分享:
分享到微信朋友圈
X
临床研究
基于sMRI的可解释性机器学习模型在预测精神分裂症患者攻击暴力行为中的价值
刘诗晗 阚健飞 王美洁 郑长勇 陈福建

本文引用格式:刘诗晗, 阚健飞, 王美洁, 等. 基于sMRI的可解释性机器学习模型在预测精神分裂症患者攻击暴力行为中的价值[J]. 磁共振成像, 2026, 17(1): 29-34. DOI:10.12015/issn.1674-8034.2026.01.005.


[摘要] 目的 通过基于体素的形态学分析(voxel-based morphometry, VBM),比较具有攻击暴力行为与无攻击暴力行为精神分裂症(schizophrenia, SCZ)患者之间的结构磁共振成像(structural MRI, sMRI)特征差异,并构建机器学习模型,实现对攻击暴力行为SCZ患者的早期识别预测。材料与方法 回顾性分析2023年3月至2025年6月在山东省戴庄医院住院确诊为SCZ的患者146例,其中攻击暴力行为组77例,无攻击暴力行为组69例。对比两组患者的临床指标及sMRI形态学特征差异,并构建SCZ患者攻击暴力行为的机器学习预测模型。结果 两组患者之间的临床指标差异均无统计学意义(P>0.05);攻击暴力组的左侧岛叶皮层厚度、左侧梭状回皮层厚度、左侧岛盖部高斯曲率、右侧岛叶皮层厚度、左侧岛盖部平均曲率、右侧前额叶中后部皮层厚度低于无攻击暴力组(P<0.05)。在四种机器学习预测模型中,逻辑回归(logistic regression, LR)、决策树(decision tree, DT)、随机森林(random forest, RF)、支持向量机(support vector machine, SVM)的曲线下面积(area under the curve, AUC)分别为0.824、0.821、0.917、0.940;DeLong检验结果显示,SVM模型的预测效能最高(P<0.05)。SHAP(SHapley Additive exPlanations)分析表明,左侧岛叶皮层厚度是预测SCZ攻击暴力行为的核心特征。决策曲线分析(decision curve analysis, DCA)显示四种模型均具有较高的临床决策指导价值。结论 基于sMRI的机器学习模型可有效预测SCZ患者的攻击暴力行为,其中SVM模型的预测性能最优。
[Abstract] Objective Through voxel-based morphometry (VBM), the structural magnetic resonance imaging (sMRI) features of schizophrenia (SCZ) patients with and without aggressive violence were compared, and a machine learning model was constructed to realize the early identification and prediction of SCZ patients with aggressive violence.Materials and Methods A retrospective analysis of 146 patients diagnosed with SCZ in Shandong Daizhuang Hospital from March 2023 to June 2025, including 77 SCZ patients with aggressive violence and 69 SCZ patients without aggressive violence. The differences of clinical indicators and sMRI features between the aggressive violence group and the non-aggressive violence group were compared, and the prediction model of aggressive violence in SCZ patients was constructed. Among the four machine learning prediction models, the area under the curve (AUC) of logistic regression (LR), decision tree (DT), random forest (RF) and support vector machine (SVM) were 0.824, 0.821, 0.917 and 0.940, respectively. The results of DeLong test showed that the AUC of LR, DT, RF and SVM were 0.824, 0.821, 0.917 and 0.940, respectively. The predictive performance of the SVM model was the highest (P < 0.05). The SHAP (SHapley Additive exPlanations) summary map results showed that the thickness of the left insular cortex was the most important feature for predicting aggressive violence in schizophrenia. Decision curve analysis (DCA) showed that the four models had high guiding significance for clinical practice.Results There was no significant difference in clinical indicators between the aggressive violence group and the non-aggressive violence group (P > 0.05). The thickness of the left insular cortex, the thickness of the left fusiform cortex, the Gaussian curvature of the left operculum, the thickness of the right insular cortex, the mean curvature of the left operculum, and the thickness of the right middle and posterior prefrontal cortex in the aggressive violence group were lower than those in the non-aggressive violence group (P < 0.05).Conclusions Machine learning models based on sMRI can predict aggressive and violent behaviors in SCZ patients, with the SVM model exhibiting the highest predictive performance.
[关键词] 机器学习;结构磁共振成像;磁共振成像;精神分裂症;攻击暴力;预测模型
[Keywords] machine learning;structural magnetic resonance imaging;magnetic resonance imaging;schizophrenia;aggression and violence;predictive model

刘诗晗 1   阚健飞 2   王美洁 3   郑长勇 1   陈福建 1*  

1 山东省戴庄医院影像科,济宁 272051

2 山东省戴庄医院药学部,济宁 272051

3 山东省戴庄医院精神六科,济宁 272051

通信作者:陈福建,E-mail:dzyyyxk2014@163.com

作者贡献声明:陈福建设计本研究的方案,对稿件重要内容进行了修改,获得了2025年济宁市重点研发计划项目的资助;刘诗晗起草和撰写稿件,获取、分析和解释本研究的数据;阚健飞、王美洁、郑长勇获取、分析和解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 2025年济宁市重点研发计划项目 2025YXNS114
收稿日期:2025-08-16
接受日期:2025-12-10
中图分类号:R445.2  R749.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.005
本文引用格式:刘诗晗, 阚健飞, 王美洁, 等. 基于sMRI的可解释性机器学习模型在预测精神分裂症患者攻击暴力行为中的价值[J]. 磁共振成像, 2026, 17(1): 29-34. DOI:10.12015/issn.1674-8034.2026.01.005.

0 引言

       精神分裂症(schizophrenia, SCZ)是一种严重损害认知、情感和行为功能的慢性致残性脑部疾病,全球终生患病率约为0.7%~1.0%[1, 2, 3]。研究表明,SCZ患者发生攻击暴力行为的风险是普通人群的3~4倍,不仅会造成严重人身伤害,还会引发广泛的社会焦虑,给公共卫生系统和司法体系带来沉重负担[4, 5, 6]。因此,准确识别和预测SCZ患者的潜在暴力倾向,对降低社会危害、实时精准干预及保障公共安全具有重要意义。

       既往对SCZ患者暴力行为的预测多为传统病史采集与临床量表评估,这些方法过度依赖医护人员的主观判断与患者的自我报告,易受患者信息隐瞒、评估者经验不足等因素的影响[7, 8, 9]。常规影像学检查仅能识别显著脑结构异常,无法捕捉脑细微结构改变,敏感性和特异性不足[10];功能磁共振成像(functional MRI, fMRI)虽可探测脑功能活动异常,但受限于精神疾病患者配合度低、检查成本较高等因素,难以作为常规临床工具推广应用。而基于体素的形态学分析(voxel-based morphometry, VBM)作为结构磁共振成像(structural MRI, sMRI)数据处理的核心技术之一,能够在全脑水平上无偏地量化各组间区域差异,且无需事先勾画感兴趣区(region of interest, ROI),已被广泛应用于精神疾病的预测、治疗及发病机制研究[11, 12]。近年来,机器学习技术在医学影像分析领域展现出强大潜力,其通过自动化特征提取与高效建模能力,可有效捕捉传统方法难以识别的复杂信息,显著提升预测效能[13, 14, 15]。因此本研究旨在构建基于sMRI的可解释性机器学习预测模型,实现对SCZ患者攻击暴力行为的有效预测,为早期识别高风险患者、制订个体化干预策略提供可靠的影像学依据,进而降低暴力事件发生率,减轻社会危害,具有重要的临床价值与社会意义。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经山东省戴庄医院伦理委员会批准,免除受试者知情同意,批准文号:2025科研第127号-202507KS-1。收集2023年3月至2025年6月在山东省戴庄医院住院确诊为SCZ的患者146例,根据入院前是否存在攻击暴力行为分为攻击暴力组(77例)与无攻击暴力组(69例)。纳入标准:(1)符合国际疾病分类10(International Classification of Diseases 10, ICD-10)SCZ的诊断标准;(2)年龄20~60岁,右利手,性别不限;(3)没有酒精或其他物质滥用史;(4)能够配合完成相关评估及影像学检查。排除标准:(1)合并脑器质性或其他严重躯体疾病;(2)合并其他严重精神障碍;(3)图像存在运动或其他伪影。

       攻击暴力行为定义:使用攻击暴力危险因素评估量表评估SCZ患者的攻击行为。(1)肢体攻击:有明显用肢体威胁他人的意图。如摆出攻击的姿势、拽别人衣服、挥动手臂、抬腿、握紧拳头或做出要用头顶人的样子等。(2)语言攻击:说话声音突然提高并有恐吓或威胁他人的明确意图。如语言攻击、说粗话、谩骂、以咆哮、攻击的方式表达中立看法等。(3)物品攻击:攻击对象为物品,如乱扔物品、敲打或打砸窗户、踢或用头撞击物品、砸家具等。

1.2 检查方法

       所有MRI数据均使用德国西门子3.0 T MRI扫描系统(Magnetom Lumina, Siemens Healthineer, Germany)获取。患者取仰卧位,使用头部线圈,获取三维高分辨率T1加权序列图像。扫描参数:TR 2300 ms,TE 2.98 ms,TI 900 ms,FOV 256 mm×256 mm,FA 9°,层厚1 mm,192层,扫描时间5分20秒。

1.3 图像后处理

       将扫描获得T1加权图像以DICOM格式从PACS系统导出,通过MITK Workbench软件转换为NIFIT格式,导入Freesurfer 8.0.0软件进行处理。采用Freesurfer内置的Recon-all指令完成sMRI数据的预处理流程,包括去噪、重建、分割等步骤,最终生成每侧大脑半球31个脑区的9项结构特征(顶点数量、表面积、灰质体积、皮层厚度、厚度标准差、平均曲率、高斯曲率、折叠指数及曲率指数),共计558个sMRI结构特征。

1.4 统计学分析及机器学习模型构建

       采用SPSS 27.0软件对攻击暴力组与无攻击暴力组的临床指标(年龄、性别、受教育程度等)及sMRI特征进行组间比较。对于不符合正态分布或方差不齐的计量资料使用Mann-Whitney U检验,结果以中位数(四分位数间距)表示;对于符合正态分布及方差齐性的计量资料使用独立样本t检验,结果以均数±标准差表示;对于分类变量使用卡方检验,结果以频数表示;采用Benjamini-Hochberg法对原始P值进行错误发现率(false discovery rate, FDR)校正,校正后P<0.05表示差异具有统计学意义。以方差膨胀因子(variance inflation factor, VIF)<10作为无明显多重共线性的判断标准。差异具有统计学意义的sMRI特征用于建模。

       所有模型及分析基于R 4.5.1软件完成。采用分层随机抽样法按7∶3比例划分训练集与测试集,设置随机种子以保证结果可重复性,所有输入特征均经过中心化与标准化处理。本研究构建了以下四类机器学习模型:逻辑回归(logistic regression, LR)采用二项式logit链接函数,通过10折交叉验证优化正则化参数;决策树(decision tree, DT)以基尼系数为特征选择标准,同时控制树的深度与复杂度;随机森林(random forest, RF)设置500棵决策树,采用bootstrap抽样方法构建集成模型;支持向量机(support vector machine, SVM)选用径向基核函数,经10折交叉验证优化模型参数并输出分类概率。

       模型评估通过绘制受试者工作特征(receiver operating characteristic, ROC)曲线并计算曲线下面积(area under the curve, AUC),通过DeLong检验比较不同模型的预测效能。采用SHAP(SHapley Additive exPlanations)分析量化各特征对模型预测结果的贡献程度,以解释模型的决策机制;通过决策曲线分析(decision curve analysis, DCA)评估各模型的临床应用价值。

2 结果

2.1 临床资料比较

       本研究共纳入SCZ患者146例,其中攻击暴力组77例,无攻击暴力组69例。所有患者采用7∶3的比例随机划分为训练集与验证集。结果显示两组患者之间的年龄、性别、受教育程度、婚姻状况、家族史差异均无统计学意义(P>0.05)(表1)。

表1  攻击暴力组与无攻击暴力组临床资料比较
Tab. 1  Comparison of clinical data between the aggressive-violent group and the non-aggressive-violent group

2.2 全脑sMRI特征差异

       攻击暴力组的左侧岛叶皮层厚度、左侧梭状回皮层厚度、左侧岛盖部高斯曲率、右侧岛叶皮层厚度、左侧岛盖部平均曲率、右侧前额叶中后部皮层厚度均低于无攻击暴力组(校正P<0.05),且所有特征的VIF值<5,提示各特征间无明显共线性,独立性良好。余552个sMRI结构特征之间的差异不具有统计学意义(校正P>0.05)(图1表2)。

图1  攻击暴力组与无攻击暴力组之间差异具有统计学意义的脑区。绿色代表左侧梭状回;蓝色代表左侧岛盖部;黄色代表左侧岛叶;红色代表右侧前额叶中后部;粉色代表右侧岛叶。
Fig. 1  Brain regions with statistical differences between the violent aggression group and the non-violent group. Green represents the left fusiform gyrus; blue represents the left pars opercularis; yellow represents the left insula; red represents the mid - posterior part of the right prefrontal cortex; pink represents the right insula.
表2  全脑sMRI特征差异
Tab. 2  Whole-brain sMRI feature differences

2.3 模型构建及效能评估

       以上6项差异具有统计学意义的sMRI特征构建LR、DT、RF、SVM四类机器学习模型。在验证集中,LR、DT、RF、SVM模型的AUC分别为0.824、0.821、0.917、0.940。DeLong检验结果显示,SVM的AUC显著高于LR、DT、RF模型(P=0.031、0.028、0.046),具有最高的诊断效能,当阈值为0.5时,其准确度为90.9%、敏感度为81.3%、特异度为96.4%;而LR、DT、RF模型之间的AUC差异均无统计学意义(P>0.05)(表3图2)。DCA图结果表明四种模型均具有较高的临床决策指导价值,且在较宽的阈值概率区间内,SVM模型的净获益最高(图3)。SHAP分析结果显示,左侧岛叶皮层厚度为跨模型的核心预测特征,在SCZ患者攻击暴力行为的预测中发挥关键作用(图4, 图5, 图6)。

图2  四种机器学习模型在测试集中预测SCZ患者攻击暴力行为的ROC曲线。
图3  四种机器学习模型的决策曲线。SCZ:精神分裂症;ROC:受试者工作特征;AUC:曲线下面积;LR:逻辑回归;DT:决策树;RF:随机森林;SVM:支持向量机。
Fig. 2  ROC curves of four machine learning models for predicting violent aggressive behavior in SCZ patients in the test set.
Fig. 3  Decision curves of four machine learning models. SCZ: schizophrenia; ROC: receiver operating characteristic; AUC: area under the curve; LR: logistic regression; DT: decision tree; RF: random forest; SVM: support vector machine.
图4  四种机器学习预测模型的SHAP条形图。横轴代表SHAP 值绝对值的平均值。SHAP:SHapley Additive exPlanations;LR:逻辑回归;DT:决策树;RF:随机森林;SVM:支持向量机。
Fig. 4  SHAP bar plots of four machine learning prediction models. The horizontal axis represents the average of the absolute SHAP values. SHAP: SHapley Additive exPlanations; LR: logistic regression; DT: decision tree; RF: random forest; SVM: support vector machine.
图5  四种机器学习预测模型的SHAP特征依赖图。横轴代表SHAP 值;每个点代表样本的贡献;颜色区分特征值高低,红色代表高值,蓝色代表低值。SHAP:SHapley Additive exPlanations;LR:逻辑回归;DT:决策树;RF:随机森 林;SVM:支持向量机。
Fig. 5  SHAP feature dependence plot of four machine learning prediction models. The horizontal axis represents the SHAP value. Each point represents the contribution of a sample. The feature values are distinguished by color, with red representing high values and blue representing low values. SHAP: SHapley Additive exPlanations; LR: logistic regression; DT: decision tree; RF: random forest; SVM: support vector machine.
图6  SVM模型预测SCZ 患者攻击暴力行为的SHAP 单样本解释图。SVM:支持向量机;SCZ:精神分裂症;SHAP:SHapley Additive exPlanations。
Fig. 6  SHAP individual sample explanation plot for predicting aggressive and violent behaviors in SCZ patients using the SVM model. SVM: support vector machine; SCZ: schizophrenia; SHAP: SHapley Additive exPlanations.
表3  四种机器学习模型在测试集中对SCZ患者发生攻击暴力行为的预测效能
Tab. 3  The prediction performance of four machine learning models for the occurrence of violent and aggressive behaviors in SCZ patients in the test set

3 讨论

       本研究首次提出基于sMRI的机器学习算法,构建SCZ患者攻击暴力行为的可解释预测模型,以弥补现有临床评估及影像学检查的局限性。结果显示,四种机器学习模型的AUC分别为0.824、0.821、0.917、0.940,结合DCA图,表明基于sMRI的机器学习预测模型可实现高风险暴力行为患者的早期识别,且四种模型均具备良好的临床决策能力。

3.1 基于体素的大脑形态学分析

       VBM是一种通过对sMRI数据进行自动化预处理与分析,实现对大脑灰质体积、皮层厚度等形态学特征进行量化的方法,目前已被广泛应用于精神疾病研究领域[16, 17, 18]。GRIEVE等[19]通过对102例抑郁症患者的研究发现,患者前扣带回、背外侧前额叶及基底节区的灰质体积较健康对照者显著减小,且这种改变已超出正常衰老过程的影响范围。另一项关于阿尔茨海默病(Alzheimer's disease, AD)的研究发现,可以通过检测内侧颞叶萎缩实现对疾病进展的有效预测,当轻度认知障碍患者向AD转化时,左侧海马和海马旁回的灰质体积减小最为显著[20]

       本研究通过基于VBM方法对SCZ患者的大脑结构特征进行量化分析,结果显示具有攻击暴力行为患者的左侧岛叶皮层厚度、左侧梭状回皮层厚度、左侧岛盖部高斯曲率、右侧岛叶皮层厚度、左侧岛盖部平均曲率、右侧前额叶中后部皮层厚度均低于无攻击暴力患者。岛叶作为情绪加工和躯体感觉整合的关键脑区,其双侧皮层厚度减少可能导致个体对自身及他人情绪的感知能力下降,进而增加情绪失控及攻击行为的发生风险,这与既往研究中“存在严重暴力行为的SCZ患者右侧岛叶区域体积显著减小”的结果一致[21, 22, 23];此外,有研究证实岛叶与背前扣带回皮层之间的功能连接异常与SCZ患者攻击行为存在显著关联,而背前扣带回在认知控制中发挥核心作用[24, 25]。上述证据共同提示情绪感知与认知控制能力失调是暴力行为发生的重要神经基础。左侧梭状回被认为是参与面部识别、情绪相关视觉刺激加工的关键脑区,其皮层厚度减小可能会导致患者对面部情绪线索识别能力下降,难以准确理解他人情绪状态,从而容易引发冲突[26, 27]。左侧岛盖部参与语言加工和运动控制,其高斯曲率和平均曲率异常可能影响情感表达与行为运动功能协调,间接与攻击暴力行为相关[28]。右侧前额叶中后部在执行功能、决策及抑制控制中起关键作用,该区域皮层厚度降低可能削弱患者的抑制控制能力和理性决策能力,使其更难抑制攻击冲动[29]。SINKO等[30]研究亦发现右侧前额叶灰质体积减小可能会导致攻击暴力行为的发生,与本研究结果一致。综上所述,多个关键脑区的结构异常可能会导致情绪调节、社会认知及抑制控制等功能受到破坏,共同构成了SCZ患者攻击暴力行为的神经基础。

3.2 机器学习模型的预测价值及可解释性分析

       机器学习可以通过整合CT、MRI、PET等多模态影像学特征及临床数据,构建全面的诊断模型,显著提高诊断效能。机器学习涵盖监督学习、无监督学习、半监督学习等多种学习模型,不同模型的算法特性存在显著差异,预测效能也明显不同,因此需要同时结合数据特性与算法优势来进行选择。SVM模型通过核函数突破了线性模型的限制,更适用于数据集中可能存在的非线性特征关系,在小样本或高维数据中展现出较强的判别能力[31];RF模型通过集成策略弥补了单一决策树的不足,但在复杂非线性建模上仍稍逊于SVM的核技巧[32];而LR和DT模型受限于线性假设或单一树结构,难以充分拟合数据中的复杂模式[33, 34]。本研究结果显示,四种机器学习模型的AUC值均高于0.8;结合DCA结果进一步表明,四种模型均具有较好的预测区分能力及临床决策能力。其中SVM模型的AUC值最高(0.940),LR和DT模型的AUC相对较低(0.824、0.821),这一结果提示攻击暴力行为与脑区结构的关联并非简单线性关系,而是由多个脑区之间的交互作用决定的。

       在机器学习中,“黑箱模型”是指内部工作机制复杂且决策过程不透明,难以被人类直观理解和解释的模型,如SVM、RF模型等。此类模型的内部运算转化过程模糊不清,限制了其临床实用性[35, 36]。SHAP方法通过量化每个特征对预测结果的SHAP值,为黑箱模型提供了可解释性:其中SHAP条形图从全局视角通过计算各特征在所有样本上SHAP绝对值的平均值,解释了影响模型预测的关键特征;SHAP依赖图则聚焦单个特征,解释其取值变化对模型预测输出的具体影响机制[37, 38]。本研究的SHAP分析结果清晰显示,左侧岛叶皮层厚度是对SCZ患者攻击暴力行为预测贡献最大的特征。相较于传统的机器学习研究,本模型显著增强了结论的解释力与可信度,更能为后续探索SCZ攻击暴力行为的神经机制提供了方向。

3.3 局限性

       (1)本研究为单中心研究,纳入患者数量较少,未来将加大样本数量,开展多中心合作研究,提高模型适用性;(2)本研究采用的模型缺乏外部独立数据集验证,未来将在不同级别医疗机构收集独立外部验证数据集进行验证;(3)本研究所用机器学习算法种类较少,未来将纳入极端梯度提升(eXtreme gradient boosting, XGBoost)、轻量级梯度提升机(light gradient boosting machine, LightGBM)等复杂机器学习模型及深度学习模型进行预测。

4 结论

       基于sMRI的机器学习模型可有效预测SCZ患者的攻击暴力行为,其中SVM模型的预测性能最优。

[1]
ACUÑA V, GUERRA M, COBAISSE M, et al. Women with Schizophrenia: Beyond Psychosis[J]. Community Ment Health J, 2025, 61(1): 22-28. DOI: 10.1007/s10597-024-01321-3.
[2]
LV H, GUO M, GUO C, et al. The Interrelationships between Cytokines and Schizophrenia: A Systematic Review[J/OL]. Int J Mol Sci, 2024, 25(15): 8477 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11313682. DOI: 10.3390/ijms25158477.
[3]
MESSINIS A, PANTELI E, PARASKEVOPOULOU A, et al. Altered lipidomics biosignatures in schizophrenia: A systematic review[J]. Schizophr Res, 2024, 271: 380-390. DOI: 10.1016/j.schres.2024.06.043.
[4]
YU T, PEI W, XU C, et al. Investigation of peripheral inflammatory biomarkers in association with violence in schizophrenia[J/OL]. BMC Psychiatry, 2024, 24(1): 542 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11293062. DOI: 10.1186/s12888-024-05966-y.
[5]
NADER G, QURESHI M, CHAUDHARY Z, et al. Effect of personality traits, psychological resilience and life adversities on lifetime violence trajectories: A novel classification model in schizophrenia[J/OL]. Psychiatry Res, 2024, 339: 116044 [2025-08-16]. https://doi.org/10.1016/j.psychres.2024.116044. DOI: 10.1016/j.psychres.2024.116044.
[6]
YU T, PEI W, ZHANG X, et al. Associations Between Thyroid Hormones Levels and Gray Matter Volume of Frontal Lobe Involved into Violence in Male Schizophrenia Patients[J]. Neuropsychiatr Dis Treat, 2024, 20: 2169-2175. DOI: 10.2147/NDT.S481875.
[7]
HE W M, ZHANG X Y, XIE W G, et al. Expression level of myocardial enzymes in patients with schizophrenia: Predictive value in the occurrence of violence[J]. World J Psychiatry, 2024, 14(9): 1346-1353. DOI: 10.5498/wjp.v14.i9.1346.
[8]
LU J, GOU N, ZHANG S, et al. Dysfunctional striatal-temporal connectivity is associated with a higher risk for violence in patients with schizophrenia[J/OL]. Psychiatry Res, 2025, 348: 116488 [2025-08-16]. https://doi.org/10.1016/j.psychres.2025.116488. DOI: 10.1016/j.psychres.2025.116488.
[9]
HAUKVIK U K, WOLFERS T, TESLI N, et al. Individual-level deviations from normative brain morphology in violence, psychosis, and psychopathy[J/OL]. Transl Psychiatry, 2025, 15(1): 118 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11965457. DOI: 10.1038/s41398-025-03343-1.
[10]
邹科, 谭宋雯, 朱淑贤, 等. sMRI、fMRI 及 dMRI 影像特征与感音神经性耳聋患者小脑功能的关系[J]. 中国临床医学影像杂志, 2025, 36(6): 385-388, 392. DOI: 10.12117/jccmi.2025.06.002.
ZOU K, TAN S W, ZHU S X, et al. Relationships between sMRI, fMRI, and dMRI Features and Cerebellar Function in Patients with Sensorineural Hearing Loss[J]. Chin J Clin Med Imag, 2025, 36(6): 385-388, 392. DOI: 10.12117/jccmi.2025.06.002.
[11]
WANG L, XIONG X, LIU J, et al. Gray matter structural and functional brain abnormalities in Parkinson's disease: a meta-analysis of VBM and ALFF data[J/OL]. J Neurol, 2025, 272(4): 276 [2025-08-16]. https://doi.org/10.1007/s00415-025-12934-3. DOI: 10.1007/s00415-025-12934-3.
[12]
VACCA S, SURI J S, SABA L. SBM vs VBM for highlighting similarities and differences between chronotype and Parkinson's MRI scans: a preliminary analysis[J]. Int J Neurosci, 2025, 135(2): 203-212. DOI: 10.1080/00207454.2023.2292958.
[13]
GUAN C, GONG A, ZHAO Y, et al. Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study[J/OL]. Crit Care, 2024, 28(1): 349 [2025-08-16]. https://doi.org/10.1186/s13054-024-05138-0. DOI: 10.1186/s13054-024-05138-0.
[14]
XU J, CHEN T, FANG X, et al. Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization--XGBoost machine learning model can be interpreted based on SHAP[J/OL]. Intensive Crit Care Nurs, 2024, 83: 103715 [2025-08-16]. https://doi.org/10.1016/j.iccn.2024.103715. DOI: 10.1016/j.iccn.2024.103715.
[15]
PAREEK A, RO D H, KARLSSON J, et al. Machine learning/artificial intelligence in sports medicine: state of the art and future directions[J]. J ISAKOS, 2024, 9(4): 635-644. DOI: 10.1016/j.jisako.2024.01.013.
[16]
JUAN Q, SHIWAN T, YURONG S, et al. Brain structural and functional abnormalities in affective network are associated with anxious depression[J/OL]. BMC Psychiatry, 2024, 24(1): 533 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11270941. DOI: 10.1186/s12888-024-05970-2.
[17]
PANG J, XU J, CHEN L, et al. Family history, inflammation, and cerebellum in major depression: a combined VBM and dynamic functional connectivity study[J/OL]. Transl Psychiatry, 2025, 15(1): 188 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC12137595. DOI: 10.1038/s41398-025-03409-0.
[18]
陈苗, 张岗, 王文佳, 等. 合成MRI联合VBM脑分区在早期帕金森病诊断中的应用[J]. 磁共振成像, 2023, 14(10): 20-25. DOI: 10.12015/issn.1674-8034.2023.10.004.
CHEN M, ZHANG G, WANG W J, et al. Application of Synthetic MRI Combined with VBM Brain Partitioning in the Diagnosis of Early Parkinson's Disease[J]. Chin J Magn Reson Imag, 2023, 14(10): 20-25. DOI: 10.12015/issn.1674-8034.2023.10.004.
[19]
GRIEVE S M, KORGAONKAR M S, KOSLOW S H, et al. Widespread reductions in gray matter volume in depression[J]. Neuroimage Clin, 2013, 3: 332-339. DOI: 10.1016/j.nicl.2013.08.016.
[20]
李晓陵, 蔡丽娜, 崔璇, 等. 遗忘型轻度认知障碍的磁共振成像研究进展[J]. 磁共振成像, 2021, 12(11): 94-96. DOI: 10.12015/issn.1674-8034.2021.11.023.
LI X L, CAI L N, CUI X, et al. Research Progress of Magnetic Resonance Imaging in Amnestic Mild Cognitive Impairment[J]. Chin J Magn Reson Imag, 2021, 12(11): 94-96. DOI: 10.12015/issn.1674-8034.2021.11.023.
[21]
ZHANG R, DENG H, XIAO X. The Insular Cortex: An Interface Between Sensation, Emotion and Cognition[J]. Neurosci Bull, 2024, 40(11): 1763-1773. DOI: 10.1007/s12264-024-01211-4.
[22]
KUROKI N, KASHIWAGI H, OTA M, et al. Brain structure differences among male schizophrenic patients with history of serious violent acts: an MRI voxel-based morphometric study[J/OL]. BMC Psychiatry, 2017, 17(1): 105 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5361832. DOI: 10.1186/s12888-017-1263-9.
[23]
IEZZI D, CÁCERES-RODRÍGUEZ A, PEREIRA-SILVA J, et al. Gestational CBD Shapes Insular Cortex in Adulthood[J/OL]. Cells, 2024, 13(17): 1486 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11394289. DOI: 10.3390/cells13171486.
[24]
TIKÀSZ A, POTVIN S, DUGRÉ J R, et al. Violent Behavior Is Associated With Emotion Salience Network Dysconnectivity in Schizophrenia[J/OL]. Front Psychiatry, 2020, 11: 143 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7059347. DOI: 10.3389/fpsyt.2020.00143.
[25]
FORTIER A, DUMAIS A, ATHANASSIOU M, et al. Dysconnectivity between the anterior insula and the dorsal anterior cingulate cortex during an emotion go/nogo paradigm is associated with aggressive behaviors in male schizophrenia patients[J/OL]. Psychiatry Res Neuroimaging, 2023, 328: 111579 [2025-08-16]. https://doi.org/10.1016/j.pscychresns.2022.111579. DOI: 10.1016/j.pscychresns.2022.111579.
[26]
PLAZA P L, RENIER L, ROSEMANN S, et al. Sound-encoded faces activate the left fusiform face area in the early blind[J/OL]. PLoS One, 2023, 18(11): e0286512 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10664868. DOI: 10.1371/journal.pone.0286512.
[27]
WU D, ZHANG P, LIU N, et al. Effects of High-Definition Transcranial Direct Current Stimulation Over the Left Fusiform Face Area on Face View Discrimination Depend on the Individual Baseline Performance[J/OL]. Front Neurosci, 2021, 15: 704880 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8639859. DOI: 10.3389/fnins.2021.704880.
[28]
WELLER M. Anterior opercular cortex lesions cause dissociated lower cranial nerve palsies and anarthria but no aphasia: Foix-Chavany-Marie syndrome and "automatic voluntary dissociation" revisited[J]. J Neurol, 1993, 240(4): 199-208. DOI: 10.1007/BF00818705.
[29]
DACOSTA-AGUAYO R, PUIG J, LAMONJA-VICENTE N, et al. Reduced Cortical Thickness Correlates of Cognitive Dysfunction in Post-COVID-19 Condition: Insights from a Long-Term Follow-up[J]. AJNR Am J Neuroradiol, 2024, 45(5): 647-654. DOI: 10.3174/ajnr.A8167.
[30]
SINKO L, REGIER P, CURTIN A, et al. Neural correlates of cognitive control in women with a history of sexual violence suggest altered prefrontal cortical activity during cognitive processing[J/OL]. Womens Health (Lond), 2022, 18: 17455057221081326 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8883288. DOI: 10.1177/17455057221081326.
[31]
SANZ H, VALIM C, VEGAS E, et al. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels[J/OL]. BMC Bioinformatics, 2018, 19(1): 432 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6245920. DOI: 10.1186/s12859-018-2451-4.
[32]
CHEN D, LIU J, ZHANG L, et al. Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients[J]. Int J Biol Sci, 2022, 18(1): 360-373. DOI: 10.7150/ijbs.66913.
[33]
ELKAHWAGY DMAS, KIRIACOS C J, MANSOUR M. Logistic regression and other statistical tools in diagnostic biomarker studies[J]. Clin Transl Oncol, 2024, 26(9): 2172-2180. DOI: 10.1007/s12094-024-03413-8.
[34]
LORENZ R C, JENNY M, JACOBS A, et al. Fast-and-frugal decision tree for the rapid critical appraisal of systematic reviews[J]. Res Synth Methods, 2024, 15(6): 1049-1059. DOI: 10.1002/jrsm.1754.
[35]
BUDHKAR A, SONG Q, SU J, et al. Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics[J]. Comput Struct Biotechnol J, 2025, 27: 346-359. DOI: 10.1016/j.csbj.2024.12.027.
[36]
FAA G, FRASCHINI M, BARBERINI L. Reproducibility and explainability in digital pathology: The need to make black-box artificial intelligence systems more transparent[J/OL]. J Public Health Res, 2024, 13(4): 22799036241284898 [2025-08-16]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11528586. DOI: 10.1177/22799036241284898.
[37]
LIU J, LI X, ZHU P. Effects of Various Heavy Metal Exposures on Insulin Resistance in Non-diabetic Populations: Interpretability Analysis from Machine Learning Modeling Perspective[J]. Biol Trace Elem Res, 2024, 202(12): 5438-5452. DOI: 10.1007/s12011-024-04126-3.
[38]
HASAN M, WU W, ZHAO X. SHAP-Driven Feature Analysis Approach for Epileptic Seizure Prediction[J/OL]. J Med Syst, 2025, 49(1): 77 [2025-08-16]. https://doi.org/10.1007/s10916-025-02211-1. DOI: 10.1007/s10916-025-02211-1.

上一篇 基于rs-fMRI的伴童年创伤青少年抑郁症患者眼动脱敏与再加工联合舍曲林治疗的脑网络连接研究
下一篇 急性缺血性脑卒中患者血管内治疗后动脉再通与磁敏感血管征的相关性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2