分享:
分享到微信朋友圈
X
临床研究
急性缺血性脑卒中患者血管内治疗后动脉再通与磁敏感血管征的相关性研究
耿悦 张蜜 王卢佳慧 陈菊萍 李俊晨 钱芯 陈雨昂 谈炎欢

本文引用格式:耿悦, 张蜜, 王卢佳慧, 等. 急性缺血性脑卒中患者血管内治疗后动脉再通与磁敏感血管征的相关性研究[J]. 磁共振成像, 2026, 17(1): 35-41, 91. DOI:10.12015/issn.1674-8034.2026.01.006.


[摘要] 目的 研究血管内治疗后的动脉再通与磁敏感血管征(susceptibility vessel sign, SVS)的长度和宽度之间的关系,评估血管内治疗后动脉成功再通与各种风险因素的关系。材料与方法 回顾性分析接受血管内治疗前进行常规头颅磁共振成像(magnetic resonance imaging, MRI)和磁敏感加权成像(susceptibility-weighted imaging, SWI)检查的前循环缺血性脑卒中患者,并测量SVS的长度和宽度。为了减小不同部位和个体差异导致的SVS宽度变异,将患侧SVS宽度除以健侧血管的宽度,求得SVS相对宽度。血管内治疗结束时,扩展脑梗死溶栓分级(expanded thrombolysis in cerebral infarction, eTICI)评估达到2b50-3为成功再通组,未达到的为未成功再通组。采用逐步回归法筛选变量,并将差异有统计学意义的指标纳入多因素logistic回归分析,以确定血管内治疗后成功再通和首次通过再灌注(first-pass reperfusion, FPR)的独立预测因素。结果 在112例患者当中,成功再通组79例,未成功再通组33例,成功再通组中FPR共39例。成功再通组和未成功再通组SVS的中位宽度分别为4.3(4.1,4.6)mm和3.2(3.0,3.9)mm,差异有统计学意义(P<0.001);SVS的中位长度分别为10.6(9.5,13.1)mm和10.5(7.5,14.5)mm,差异无统计学意义(P=0.871)。在多因素logistic回归分析中,SVS宽度与动脉成功再通[OR=3.025,95%置信区间(confidence interval, CI)为4.895~24.564,P=0.001]和FPR(OR=9.243,95% CI为3.493~14.460,P<0.001)存在显著相关。用于预测动脉成功再通和FPR的SVS宽度的最佳截断值分别为3.95 mm和3.85 mm。结论 SVS的宽度是预测血管内治疗后动脉成功再通及FPR的潜在影像学标志物,SVS长度则无显著预测价值。
[Abstract] Objective To investigate the relationship between arterial recanalization after endovascular treatment and the length and width of the susceptibility vessel sign (SVS), and to evaluate the relationship between successful arterial recanalization after endovascular treatment and various risk factors.Materials and Methods We retrospectively analyzed the patients with anterior circulation ischemic stroke who underwent magnetic resonance imaging (MRI) of the head and susceptibility-weighted imaging (SWI) before endovascular treatment, and measured the SVS length and width. To reduce the variation of SVS width caused by different parts and individual differences, divide the width of the SVS on the affected side by the width of the healthy blood vessel to obtain the relative width of the SVS. At the end of endovascular treatment, those who achieved an assessment of 2b50-3 in the expanded thrombolysis in cerebral infarction (eTICI) were classified as the successful recanalization group, while those who did not reach this level were classified as the unsuccessful recanalization group. Stepwise regression was used to screen variables, and the indicators with statistically significant differences were included in the multivariate logistic regression analysis to determine the independent predictors of successful recanalization and first-pass reperfusion (FPR) after endovascular treatment.Results Among 112 patients, 79 cases achieved successful recanalization and 33 cases did not,within the successful recanalization group, there were 39 cases of FPR. The median width of SVS in the successful recanalization group and the unsuccessful recanalization group was 4.3 (4.1, 4.6) mm and 3.2 (3.0, 3.9) mm, respectively, with P < 0.001, indicating a statistically significant difference; the median length of SVS was 10.6 (9.5, 13.1) mm and 10.5 (7.5, 14.5) mm, respectively, with P = 0.871, indicating no statistically significant difference. In the multivariate logistic regression analysis, SVS width was associated with successful recanalization [odds ratio = 3.025; 95% confidence interval (CI): 4.895 to 24.564; P = 0.001] and FPR (odds ratio = 9.243; 95% CI: 3.493 to 14.460; P < 0.001). The optimal cutoff value for the SVS width to predict successful recanalization and FPR were 3.95mm and 3.85 mm, respectively.Conclusions The width of SVS is a potential imaging biomarker for predicting successful reperfusion of arteries and FPR after endovascular treatment. The length of SVS has no significant predictive value.
[关键词] 急性缺血性脑卒中;血管内治疗;磁共振成像;磁敏感加权成像;磁敏感血管征
[Keywords] acute ischemic stroke;endovascular treatment;magnetic resonance imaging;susceptibility-weighted imaging;susceptibility vessel sign

耿悦 1   张蜜 1   王卢佳慧 1   陈菊萍 2   李俊晨 1   钱芯 1   陈雨昂 1   谈炎欢 1*  

1 南京中医药大学常熟附属医院放射科,常熟 215500

2 南京中医药大学常熟附属医院神经内科,常熟 215500

通信作者:谈炎欢,E-mail:tanyanhuan@njucm.edu.cn

作者贡献声明:谈炎欢设计本研究的方案,对稿件重要内容进行了修改, 获得了常熟市科技计划(医学应用基础研究)项目资助;耿悦起草和撰写稿件,获取、分析和解释本研究的数据;张蜜、王卢佳慧、陈菊萍、李俊晨、钱芯、陈雨昂获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 常熟市科技计划(医学应用基础研究)项目 CY202312
收稿日期:2025-09-09
接受日期:2025-12-23
中图分类号:R445.2  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.006
本文引用格式:耿悦, 张蜜, 王卢佳慧, 等. 急性缺血性脑卒中患者血管内治疗后动脉再通与磁敏感血管征的相关性研究[J]. 磁共振成像, 2026, 17(1): 35-41, 91. DOI:10.12015/issn.1674-8034.2026.01.006.

0 引言

       大血管闭塞引发的急性缺血性脑卒中是全球致残和致死的主要原因,血管内治疗已成为大血管闭塞性急性缺血性脑卒中的一线治疗方案[1, 2],成功的再通与良好的功能预后显著相关。既往研究表明,静脉溶栓、更近端闭塞部位和良好的侧支循环等因素可提高血管内治疗后的成功再通率[3]

       磁敏感血管征(susceptibility vessel sign, SVS)是磁敏感加权成像(susceptibility-weighted imaging, SWI)序列中闭塞血管内出现的低信号区域,其直径超过对侧正常血管,主要是由于闭塞血管中红细胞内脱氧血红蛋白的磁化率效应所致[4, 5, 6]。有相关病理学研究表明SVS与红细胞优势型的血栓密切相关[7, 8],红细胞含量较高的血栓实现成功再通的可能性更高,SVS的存在及其形态学特征(如长度和宽度)可作为血管内治疗后成功再通的预测指标[9]。然而国内目前关于SVS与动脉成功再通的相关性研究较少且存在争议,虽然血栓取出术后首次通过再灌注(first-pass recanalization, FPR)与良好临床预后显著相关[10, 11],但尚不明确SVS与FPR之间的相关性。本研究拟分析血管内治疗后动脉成功再通与各种风险因素的关系,评估SWI检测到的SVS的长度和宽度对成功再通的预测价值,旨在为大血管闭塞性急性缺血性脑卒中的血管内治疗提供影像学依据。

1 材料与方法

1.1 研究对象

       回顾性分析常熟市中医院(常熟市新区医院)自2024年1月至2025年6月收治的发病24 h内的急性缺血性脑卒中患者,纳入标准:(1)发病24 h内、在血管内治疗前接受头颅磁共振成像(magnetic resonance imaging, MRI)检查及SWI的患者;(2)颈内动脉末端(internal carotid artery terminus, ICA-T)、大脑中动脉(middle cerebral artery, MCA)M1段或M2段近端闭塞的患者。排除标准:(1)SWI图像质量差;(2)SVS阴性;(3)终止血管内治疗;(4)颈内动脉和MCA同时闭塞的患者。本研究遵守《赫尔辛基宣言》,经常熟市中医院(常熟市新区医院)伦理审查委员会批准,免除受试者知情同意,批准文号:202302147。

1.2 临床资料采集

       从电子病历系统中收集患者的临床基线资料、血管危险因素(高血压、糖尿病、血脂异常、心房颤动和吸烟史)、冠状动脉疾病和缺血性脑卒中病史、发病至入院时间、入院至股动脉穿刺的时间、穿刺至血管再通时间,首次美国国立卫生研究院卒中量表(national institute of health stroke scale, NIHSS)评分、改良版RANKIN量表(modified rankin scale, mRS)、日常生活活动能力(activities of daily living, ADL)评定量表评分、血液检测(脑钠肽和D-二聚体水平)以及静脉注射重组型纤溶酶原激活剂(intravenous tissue-type plasminogen ativator, Ⅳ-tPA)的使用情况。缺血性脑卒中亚型根据急性卒中Org10172治疗试验(trial of org 10172 in acute stroke treatment, TOAST)分类法进行分类[12]

1.3 磁共振成像检查

       采用Siemens Avanto 1.5 T超导型磁共振成像仪,使用8通道头颅正交线圈。急性缺血性脑卒中MRI方案于20 min内的检查完成,包括了弥散加权成像(diffusion-weighted imaging, DWI)、T2加权液体抑制反转恢复(fluid attenuated inversion recovery, FLAIR)、磁共振血管造影(magnetic resonance angiography, MRA)和SWI序列。SWI的成像参数如下:重复时间为28.7 ms,有效回波时间为7.1、15.2、23.3 ms,翻转角为15°,层厚2.0 mm,视野200 mm×256 mm,矩阵大小201×384,回波数为3,总采集时间3 min 32 s。

       DWI上高信号病灶体积是通过将每个层面的梗死面积相加,然后乘以层厚得出[9]。动脉闭塞部位通过MRA来识别。SVS为在MRA上显示的闭塞部位,在SWI上表现为直径大于对侧血管的低信号区域。SVS长度即SVS的近端和远端端点之间的距离,宽度为垂直于闭塞部位贯穿SVS的最大直径(图1)。两位工作15年以上的放射诊断副主任医师接受SVS的阅片训练,采用双盲法并独立测量SVS的长度和宽度,最终求得平均值。采用组内相关系数(intra-class correlation coefficient, ICC)和95%置信区间(confidence interval, CI)评估两位评估者对SVS长度和宽度的一致性,ICC>0.75表明一致性较好。

       在血管内治疗前,由一位工作20年以上的经验丰富的神经介入主任医师及其助手在脑血管造影(digital subtraction angiography, DSA)中采用美国介入和治疗神经放射学学会/介入放射学学会(American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology, ASITN/SIR)侧支循环评估量表分级共同评估侧支循环,评分为0、1或2的患者被分为侧支循环不良组,评分为3或4的患者则分为侧支循环良好组[13]

图1  男,60岁,右侧大脑中动脉M1段供血区脑梗死患者。1A:MRA显示右侧大脑中动脉M1段闭塞(白箭)。1B:在SWI图上确定SVS宽度(黄色实线)和长度(黄色虚线)。MRA:磁共振血管造影;SWI:磁敏感加权成像;SVS:磁敏感血管征。
Fig. 1  Male, 60 years old, with cerebral infarction in the M1 segment of the right middle cerebral artery. 1A: MRA depicted occlusion of the M1 segment of the right middle cerebral artery (white arrow). 1B: On the SWI image, the method of determining the width (indicated by the solid yellow line) and length (indicated by the yellow dashed line) of the SVS is demonstrated. MRA: magnetic resonance angiography; SWI: susceptibility-weighted imaging; SVS: susceptibility vessel sign.

1.4 血管内治疗

       根据扩展脑梗死溶栓分级(expanded thrombolysis in cerebral infarction, eTICI)评估闭塞血管再灌注状态,手术结束时为最终结果,评估达到eTICI 2b50-3为血管内治疗后实现动脉成功再通[14, 15]。FPR被定义[16]为器械单次通过后接近完全再通,即eTICI 2c/3。

1.5 统计学分析

       数据分析采用Windows版IBM SPSS Statistics 31统计学软件。所有连续变量均经正态性及方差齐性检验。组间比较(成功再通组与未成功再通组、有FPR组与无FPR组)中,符合正态分布的连续变量采用独立样本t检验,非正态分布的连续变量采用Mann-Whitney U检验,分类变量采用卡方检验。采用逐步回归法筛选变量,根据膨胀因子(VIF<5)消除潜在的多重共线性风险,然后进行多因素logistic回归分析,以确定成功再通和FPR的独立预测因素。在血管内治疗之前使用Ⅳ-tPA已被确定为成功再通的潜在预测因素[9],因此被纳入多因素logistic回归分析。使用Spearman相关分析评估SVS宽度与eTICI等级之间的相关性。P<0.05认为有统计学意义。最后采用受试者工作特征(receiver operating characteristic, ROC)曲线确定区分两组的SVS宽度截断值。

2 结果

2.1 一般资料

       共收集120例患者资料,其中5例患者MRI图像质量不佳被排除,3例患者脑钠肽数据缺失被排除,最终112例被纳入研究。其中,男74例,女38例,中位年龄为69(60,79)岁,中位初始NIHSS、mRS、ADL评分分别为13(12,18)分,1(1,2)分,90(75,100)分,中位DWI病灶体积17.62(12.29,34.57)mL,中位发病至入院时间、入院至穿刺时间、穿刺手术时间分别为185.00(145.00,235.00)min,70.00(66.00,78.00)min,35.00(28.00,41.50)min。70例(62.5%)患者术前接受了Ⅳ-tPA治疗。

       头颅MRA显示,11例(9.8%)患者为颈内动脉末段闭塞,90例(80.4%)为大脑中动脉M1段闭塞,11例(9.8%)为大脑中动脉M2段近端闭塞。

2.2 一致性分析

       评估者间SVS长度和SVS宽度的一致性分别为0.990(95% CI:0.984~0.998)和0.980(95% CI:0.948~0.994),SVS的中位长度和宽度分别为10.5(8.6,13.5)mm和4.2(3.7,4.5)mm。79例(70.5%)患者成功实现血管再通,血管内治疗的一线策略包括支架取栓42例(37.5%)、抽吸取栓7例(6.3%)、联合取栓63例(56.3%)。所有患者均未接受球囊血管成形术作为补救治疗。

2.3 成功再通的预测因素

2.3.1 成功再通的单因素分析结果

       入组患者基线临床特征与成功再通的单因素分析结果见表1。成功再通组SVS宽度大于未成功再通组(图2图3),差异具有统计学意义(P<0.001)。成功再通组与未成功再通组SVS长度差异无统计学意义(P=0.871)。

图2  男,60岁,右侧大脑中动脉M1段供血区脑梗死患者。2A:MRA显示右侧大脑中动脉M1段闭塞(箭);2B:SWI图显示SVS宽度为4.2 mm(箭);2C:DSA显示右侧大脑中动脉M1段闭塞(箭);2D:血管内治疗后显示成功再通(箭)。MRA:磁共振血管造影;SWI:磁敏感加权成像;SVS:磁敏感血管征;DSA:脑血管造影。
Fig. 2  Male, 60 years old, with cerebral infarction in the M1 segment of the right middle cerebral artery. 2A: MRA shows occlusion of the M1 segment of the right middle cerebral artery (arrow); 2B: The SVS is shown in the SWI graph, with a width of 4.2 mm (arrow); 2C: DSA shows occlusion of the M1 segment of the right middle cerebral artery (arrow); 2D: Endovascular treatment (EVT) shows successful recanalization (arrow). MRA: magnetic resonance angiography; SVS: susceptibility vessel sign; SWI: susceptibility weighted imaging; DSA: digital subtraction angiography.
图3  女,68岁,左侧大脑中动脉M1段供血区脑梗死患者。3A:MRA显示左侧大脑中动脉M1段闭塞(箭);3B:SWI图显示SVS宽度为3.8 mm(箭);3C:DSA显示左侧大脑中动脉M1段闭塞(箭);3D:血管内治疗后显示未成功再通(箭)。MRA:磁共振血管造影;SWI:磁敏感加权成像;SVS:磁敏感血管征;DSA:脑血管造影。
Fig. 3  Female, 68 years old, with cerebral infarction in the M1 segment of the left middle cerebral artery. 3A: MRA shows occlusion of the M1 segment of the left middle cerebral artery (arrow); 3B: The SVS is shown in the SWI graph, with a width of 3.8 mm (arrow); 3C: DSA shows occlusion of the M1 segment of the left middle cerebral artery (arrow); 3D: Endovascular treatment shows no successful recanalization (arrow). MRA: magnetic resonance angiography; SVS: susceptibility vessel sign; SWI: susceptibility weighted imaging; DSA: digital subtraction angiography.
表1  成功再通组和未成功再通组患者基线临床特征
Tab. 1  Baseline clinical characteristics of patients in the successful recanalization group and the unsuccessful recanalization group

2.3.2 SVS相对宽度的单因素分析

       SVS相对宽度的单因素分析结果(表2)显示成功再通组和未成功再通组的SVS相对宽度差异具有统计学意义(P<0.001)。

表2  SVS绝对宽度与是否成功再通、FPR的影响关系分析
Tab. 2  Analysis of the influence of SVS absolute width on successful recanalization and FPR

2.3.3 成功再通的多因素logistic回归分析

       经逐步回归法缓解变量多重共线性筛选结果见表3,SVS宽度、Ⅳ-tPA的使用、房颤被纳入回归模型(R2=0.607,调整后R2=0.712,F=41.266)。

       多因素logistic回归分析结果见表4,SVS宽度与成功再通独立相关(OR=3.025,95% CI:4.895~24.564,P=0.001),SVS宽度与房颤患者动脉成功再通无相关性(OR=0.379,95% CI:0.032~4.433,P=0.439)。

表3  自变量对动脉成功再通的影响关系分析
Tab. 3  Analysis of the Influence of Independent Variables on successful arterial recanalization
表4  患者的成功再通情况及首次通过再灌注情况分析
Tab. 4  Analysis of the successful recanalization and the first through reperfusion

2.3.4 SVS宽度的预测效能评估

       经ROC曲线分析表明,SVS宽度预测成功再通具有一定的价值,曲线下面积(area under the curve, AUC)为0.862,预测成功再通的最佳截断值为3.95 mm(表5)。

表5  整体患者人群成功再通、首次通过再灌注的最佳SVS宽度截断值预测
Tab. 5  Optimal cutoff values of SVS width for predicting successful recanalization and the first-pass reperfusion in the overall patient population

2.3.5 SVS宽度与术后即刻eTICI分级相关性分析

       Spearman相关性分析显示SVS宽度与术后即刻eTICI分级之间呈正相关(图4)。

图4  SVS宽度与术后即刻eTICI之间的Spearman相关性分析。SVS:磁敏感血管征;eTICI:扩展脑梗死溶栓分级。
Fig. 4  The Spearman correlation analysis between SVS width and the eTICI grade at the end of the procedure. SVS: susceptibility vessel sign; eTICI: expanded thrombolysis in cerebral infarction.

2.4 FPR的预测因子

2.4.1 FPR预测因子单因素分析

       FPR组患者SVS宽度大于无FPR组患者,差异具有统计学意义(P=0.003)(表6)。

表6  有FPR和无FPR患者基线临床特征
Tab. 6  Baseline clinical characteristics of patients with FPR and those without FPR

2.4.2 SVS相对宽度单因素分析

       SVS相对宽度单因素分析结果显示FPR组的SVS相对宽度小于无FPR组,差异具有统计学意义(P<0.001)(表2)。

2.4.3 FPR预测因子多因素logistic回归分析

       经逐步回归法缓解变量多重共线筛选结果见表7,纳入变量SVS宽度、取栓技术进行多因素logistic回归分析(R2=0.607,调整后R2=0.692,F=29.736),结果显示,SVS宽度与FPR独立相关(OR=9.243,95% CI:3.493~14.460,P<0.001)(表4)。

表7  自变量对FPR的影响关系分析
Tab. 7  Analysis of the Influence of Independent Variables on FPR

2.4.4 SVS宽度对FPR的预测效能评估

       经ROC曲线分析表明,使用SVS宽度预测FPR的最佳截断值为3.85 mm,AUC为0.792,详见表5

3 讨论

       本研究通过回顾性分析,探讨急性缺血性脑卒中患者血管内治疗后动脉再通与SVS的关系。系统性分析结果显示,当SVS宽度≥3.95 mm时,患者具有更高的血管再通成功率,而SVS长度未显示出显著的预测价值。这一发现创新性地将SVS形态学参数应用于血管内治疗预后评估,在国内首次明确了SVS宽度对血管内治疗再通效果的预测价值,从而为临床治疗决策提供了新的影像学依据,有助于推动卒中治疗的精准化发展。

3.1 SVS与急性缺血性脑卒中血管内治疗成功再通的相关性分析

       既往研究表明[17],在单变量分析中,较大的SVS宽度可能与血管内治疗后更高的动脉成功再通率有关,但是目前二者之间的关系尚缺乏确凿的证据,关于FPR方面的研究数据十分有限[18],鲜有研究系统探讨FPR是否随着SVS宽度增加而增加。本研究结果显示,SVS宽度较大的患者经血管内治疗更容易实现成功再通,其机制可能在于,SVS通常与富含红细胞的红色血栓相关[19, 20],血栓内红细胞中的氧合血红蛋白逐步分解为高铁血红蛋白、脱氧血红蛋白和含铁血黄素,其中后两种物质含不成对电子,具有顺磁性,导致局部磁场不均匀,在SWI序列上表现为低信号的SVS[6],此类血栓结构相对疏松、容易脱落,在血管内治疗中所需的再通操作较少,可能会提高FPR的几率,进而提高再通率 [21, 22, 23],临床研究也表明,实现前循环FPR的患者往往具有更良好的临床预后[24, 25]。因此,SVS宽度较大可能反映血栓中红细胞比例较高,而血管内治疗后动脉成功再通或与血栓内红细胞浓度有关,富含红细胞的血栓具有更高的成功再通率。未来研究将结合术后血栓病理分析,有望进一步量化SVS宽度与血栓成分之间的关联,从而为个体化治疗策略的制定提供理论依据。

       本研究结果显示,SVS长度与血管内治疗后的成功再通无显著关联。然而,KANAMOTO等[9]研究者的报告表明SVS长度与成功再通率呈负相关,即SVS越长,动脉再通率越低,患者神经系统症状越严重,3个月临床预后越差。从病理生理机制推测,SVS长度和宽度可能分别代表血栓的体积和成分,体积较大的血栓其表面积与体积比较小,可能减弱血管内治疗器械对血栓的抓持与清除效率,从而降低再通的可能性,而且可能引起更严重的脑功能损害[17, 26]。本研究与上述报道存在差异,可能原因是研究人群不同,本研究主要纳入的是前循环大血管闭塞的患者,而KANAMOTO等的研究包含了更多后循环血管闭塞的患者,两类病变在解剖与血流动力学上存在差异。因此,SVS长度可能并非一个普遍适用且独立的预测因子,其临床意义仍需通过更大规模、更精细设计的研究进一步明确。

3.2 SVS与心源性栓塞的相关性分析

       本研究结果显示,血管内治疗后动脉是否成功再通与脑卒中亚型、患者是否有心房颤动均无显著相关性。既往有研究表明[7, 9],SVS与心源性栓塞密切相关,是心房颤动的预测因子。目前全球应用最广泛的缺血性脑卒中亚型分类系统是急性卒中TOAST分类系统[17, 27],该系统自1993年建立以来,脑卒中诊断技术及影像学成像技术及病理生理研究均已取得显著进展,而TOAST分类法在可靠性和不同评估者之间的一致性方面仍存在争议,现有研究尚不足以支持血栓免疫组织病理分析在常规临床实践中的作用[28],可能在一定程度上高估心源性栓塞的比例[4]

       关于SVS的形态学参数与脑卒中亚型之间的关系,目前学术界观点尚不统一,DILLMANN等[8]、BRINJIKJI等[29]研究者们指出,颅内血栓的成分具有高度异质性,并随时间动态演变,因此SVS与脑卒中病因之间未必存在确定关联。另有研究报道,预测心源性栓塞的SVS宽度截断值为5.5 mm[30]。值得关注的是,SVS是在T2*梯度回波序列(gradient recalled echo, GRE)上发现的[31],该序列虽然对磁敏感效应敏感,但其空间分辨率相对较低。随着影像学成像技术的进步,多项研究[32, 33, 34]发现SWI序列对SVS的检测灵敏度显著高于T2*-GRE序列。SWI通过融合幅度和相位信息,提供了更高的空间分辨率及对顺磁性物质(如含铁血黄素)的增强对比,能够识别出更小的SVS和脑卒中病灶,其检测能力是T2*-GRE方法的1.3倍。

       本研究采用SWI序列进行分析,所纳入病例的SVS的中位宽度为4.2(3.7,4.5)mm,提示高分辨率序列可能带来SVS诊断标准及相关病因学界定的重新评估。

3.3 本研究的局限性与展望

       首先,这是一项单中心回顾性研究,样本量小,导致结果可能存在选择性偏倚,需要扩大样本,进行多中心、纵向研究,进一步验证本研究的结果。第二,因采用逐层测量而非三维体积成像,ICA-T与大脑中动脉M2段的SVS长度可能存在低估。在本研究中,ASITN/SIR侧支循环分级与动脉再通状态无关。这可能是由于该分级系统不适用于ICA-T闭塞的患者[35],而且该评分普遍被认为一致性较低[36, 37],因此可靠性可能较低。未来有必要进一步开展多中心、大样本的前瞻性队列研究,以验证SVS宽度预测再通结局的稳定性和普适性,以促进其临床转化与应用。

4 结论

       综上所述,SVS的宽度是血管内治疗后动脉成功再通及FPR的独立预测因素,其最佳预测截断值分别为3.95 mm与3.85 mm;而SVS长度则无显著预测价值。SVS宽度可作为一项有价值的术前影像学标志物,用于评估血栓特征、预测再通结局及相关风险。

[1]
刘锐, 黄显军, 李威, 等. 颅内动脉粥样硬化性急性大血管闭塞血管内治疗中国专家共识[J]. 中国脑血管病杂志, 2025, 22(1): 63-73. DOI: 10.3969/j.issn.1672-5921.2025.01.010.
LIU R, HUANG X J, LI W. et al. Chinese expert consensus on endovascular treatment for acute large vessel occlusion with intracranial atherosclerosis[J]. Chin J Cerebrovasc Dis, 2025, 22(1): 63-73. DOI: 10.3969/j.issn.1672-5921.2025.01.010.
[2]
邓刚, 秦川, 田代实. 急性缺血性脑卒中血管内治疗无效再通的病理生理机制和潜在治疗策略 [J]. 中华神经科杂志, 2022, 55(12): 1423-30. DOI: 10.3760/cma.j.cn113694-20220327-00247.
DENG G, QIN C, TIAN D S. Pathophysiological mechanisms of futile recanalization following endovascular therapy for acute ischemic stroke due to large vessel occlusion and potential targeted therapeutic strategy [J]. Chin J Neurol, 2022, 55(12): 1423-30. DOI: 10.3760/cma.j.cn113694-20220327-00247.
[3]
NGUYEN T N, ABDALKADER M, FISCHER U, et al. Endovascular management of acute stroke[J]. Lancet, 2024, 404(10459): 1265-1278. DOI: 10.1016/S0140-6736(24)01410-7.
[4]
LI J Y, ZHAN Z Y, ZHANG Z Z, et al. Susceptibility vessel sign in patients with subacute ischemic stroke[J]. Quant Imaging Med Surg, 2024, 14(6): 3914-3922. DOI: 10.21037/qims-23-1797.
[5]
CHEN J, ZHANG Z, NIE X M, et al. Predictive value of thrombus susceptibility for cardioembolic stroke by quantitative susceptibility mapping[J]. Quant Imaging Med Surg, 2022, 12(1): 550-557. DOI: 10.21037/qims-21-235.
[6]
耿悦, 陈雨昂, 张蜜, 等. 磁敏感血管征在急性缺血性脑卒中疾病中的研究进展[J]. 磁共振成像, 2025, 16(5): 198-203. DOI: 10.12015/issn.1674-8034.2025.05.030.
GENG Y, CHEN Y A, ZHANG M, et al. The recent research development of susceptibility vessel sign in acute ischemic stroke[J]. Chin J Magn Reson Imag, 2025, 16(5): 198-203. DOI: 10.12015/issn.1674-8034.2025.05.030.
[7]
SATO T, SAKAI K, OKUMURA M, et al. Low dihomo-γ-linolenic acid is associated with susceptibility vessel sign in cardioembolism[J/OL]. Thromb Res, 2022, 213: 84-90 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/35313234/. DOI: 10.1016/j.thromres.2022.03.009.
[8]
DILLMANN M, BONNET L, VUILLIER F, et al. Factors that influence susceptibility vessel sign in patients with acute stroke referred for mechanical thrombectomy[J/OL]. Front Neurol, 2022, 13: 893060 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/35645960/. DOI: 10.3389/fneur.2022.893060.
[9]
KANAMOTO T, TATEISHI Y, YAMASHITA K, et al. Impact of width of susceptibility vessel sign on recanalization following endovascular therapy[J/OL]. J Neurol Sci, 2023, 446: 120583 [2025-09-08]. https://jns-journal.com/retrieve/pii/S0022510X23000436. DOI: 10.1016/j.jns.2023.120583.
[10]
LIN L T, LIU F F, YI T Y, et al. Tirofiban on first-pass recanalization in acute stroke endovascular thrombectomy: the OPTIMISTIC randomized clinical trial[J/OL]. JAMA Netw Open, 2025, 8(4): e255308 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40244586/. DOI: 10.1001/jamanetworkopen.2025.5308.
[11]
HEITKAMP A, HIERHOLZER S M, HEITKAMP C, et al. Key to better outcomes in stroke intervention: early versus complete reperfusion in first pass recanalization[J/OL]. J Neurol, 2025, 272(8): 504 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40646337/. DOI: 10.1007/s00415-025-13235-5.
[12]
STAESSENS S, VANDELANOTTE S, FRANÇOIS O, et al. Association between thrombus composition and etiology in patients with acute ischemic stroke treated by thrombectomy[J]. Stroke, 2025, 56(4): 1026-1035. DOI: 10.1161/STROKEAHA.124.047092.
[13]
BANI-SADR A, MECHTOUFF L, HERMIER M, et al. Cerebral collaterals are associated with pre-treatment brain-blood barrier permeability in acute ischemic stroke patients[J]. Eur Radiol, 2024, 34(12): 8005-8012. DOI: 10.1007/s00330-024-10830-4.
[14]
MIAO Z R, LUO G, SONG L G, et al. Intra-arterial tenecteplase for acute stroke after successful endovascular therapy: the ANGEL-TNK randomized clinical trial[J]. JAMA, 2025, 334(7): 582-591. DOI: 10.1001/jama.2025.10800.
[15]
GOTTLIEB M, CARLSON J N, WESTRICK J, et al. Endovascular thrombectomy with versus without intravenous thrombolysis for acute ischaemic stroke[J/OL]. Cochrane Database Syst Rev, 2025, 4(4): CD015721 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40271574/. DOI: 10.1002/14651858.CD015721.pub2.
[16]
VANDELANOTTE S, STAESSENS S, FRANÇOIS O, et al. Association between thrombus composition and first-pass recanalization after thrombectomy in acute ischemic stroke[J]. J Thromb Haemost, 2024, 22(9): 2555-2561. DOI: 10.1016/j.jtha.2024.05.034.
[17]
ABDELRADY M, DERRAZ I, LEFEVRE P H, et al. Negative susceptibility vessel sign might be predictive of complete reperfusion in patients with acute basilar artery occlusion managed with thrombectomy[J]. Eur Radiol, 2023, 33(4): 2593-2604. DOI: 10.1007/s00330-022-09215-2.
[18]
SCHMIDT R F, SWEID A, MOUCHTOURIS N, et al. Predictors of first-pass reperfusion for mechanical thrombectomy in acute ischemic stroke[J/OL]. Clin Neurol Neurosurg, 2022, 219: 107314 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/35662056/. DOI: 10.1016/j.clineuro.2022.107314.
[19]
BEYELER M, ROHNER R, IJÄS P, et al. Susceptibility vessel sign and intravenous alteplase in stroke patients treated with thrombectomy: a secondary analysis of the SWIFT DIRECT trial[J]. Clin Neuroradiol, 2025, 35(3): 483-493. DOI: 10.1007/s00062-025-01501-y.
[20]
姜涵, 李自强, 高海燕, 等. 急性前循环闭塞性脑卒中患者磁敏感血管征阳性的影响因素[J]. 磁共振成像, 2023, 14(10): 42-45, 52. DOI: 10.12015/issn.1674-8034.2023.10.008.
JIANG H, LI Z Q, GAO H Y, et al. Influencing factors of positive susceptibility vessel sign in patients with acute anterior circulation occlusive stroke[J]. Chin J Magn Reson Imag, 2023, 14(10): 42-45, 52. DOI: 10.12015/issn.1674-8034.2023.10.008.
[21]
BOURCIER R, MARNAT G, DARGAZANLI C, et al. Safety and efficacy of stent retrievers plus contact aspiration in patients with acute ischaemic anterior circulation stroke and positive susceptibility vessel sign in France (VECTOR): a randomised, single-blind trial[J]. Lancet Neurol, 2024, 23(7): 700-711. DOI: 10.1016/S1474-4422(24)00165-0.
[22]
ZHANG L, GAO J L, LIAO Y, et al. Comparison of outcomes between stent retriever combined with contact aspiration and contact aspiration alone in patients without hyperdense artery sign/susceptibility vessel sign[J/OL]. J Vasc Interv Radiol, 2024, 35(8): 1194-1202.e2 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/38723863/. DOI: 10.1016/j.jvir.2024.04.025.
[23]
ABDALKADER M, NGUYEN T N. Susceptibility vessel sign and endovascular stroke therapy[J]. Lancet Neurol, 2024, 23(7): 653-654. DOI: 10.1016/S1474-4422(24)00221-7.
[24]
DEN HARTOG S J, ROOZENBEEK B, BOODT N, et al. Effect of first pass reperfusion on outcome in patients with posterior circulation ischemic stroke[J]. J Neurointerv Surg, 2022, 14(4): 333-340. DOI: 10.1136/neurintsurg-2021-017507.
[25]
CAO J, YANG Z J, ZHU Y D, et al. Benefits of first-pass reperfusion: secondary analysis based on three randomized multicenter trials in China[J]. Int J Surg, 2025, 111(12): 9102-9109. DOI: 10.1097/JS9.0000000000003128.
[26]
PHUYAL S, PAUDEL S, CHHETRI S T, et al. Susceptibility weighted imaging for detection of thrombus in acute ischemic stroke: a cross-sectional study[J/OL]. Health Sci Rep, 2024, 7(8): e2285 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/39100712/. DOI: 10.1002/hsr2.2285.
[27]
RATHBURN C M, MUN K T, SHARMA L K, et al. TOAST stroke subtype classification in clinical practice: implications for the Get With The Guidelines-Stroke nationwide registry[J/OL]. Front Neurol, 2024, 15: 1375547 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/38585349/. DOI: 10.3389/fneur.2024.1375547.
[28]
COSTAMAGNA G, BONATO S, CORTI S, et al. Advancing stroke research on cerebral thrombi with omic technologies[J/OL]. Int J Mol Sci, 2023, 24(4): 3419 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/36834829/. DOI: 10.3390/ijms24043419.
[29]
BRINJIKJI W, DUFFY S, BURROWS A, et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: a systematic review[J]. J Neurointerv Surg, 2017, 9(6): 529-534. DOI: 10.1136/neurintsurg-2016-012391.
[30]
KANG D W, JEONG H G, KIM D Y, et al. Prediction of stroke subtype and recanalization using susceptibility vessel sign on susceptibility-weighted magnetic resonance imaging[J]. Stroke, 2017, 48(6): 1554-1559. DOI: 10.1161/STROKEAHA.116.016217.
[31]
CHALELA J A, HAYMORE J B, EZZEDDINE M A, et al. The hypointense MCA sign[J/OL]. Neurology, 2002, 58(10): 1470 [2025-09-08]. https://www.neurology.org/doi/10.1212/WNL.58.10.1470. DOI: 10.1212/wnl.58.10.1470.
[32]
LI Z Q, JIANG H, YAN R F, et al. Prediction of parenchymal hematoma after mechanical thrombectomy by asymmetrical prominent veins: a retrospective cohort study based on susceptibility-weighted imaging[J]. Quant Imaging Med Surg, 2025, 15(8): 7224-7234. DOI: 10.21037/qims-2025-262.
[33]
SIMA D M, PHAN T V, FRANCESCHI A M, et al. Monitoring of amyloid related imaging abnormalities: SWI vs T2*-GRE[J/OL]. J Prev Alzheimers Dis, 2025, 12(7): 100220 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40537339/. DOI: 10.1016/j.tjpad.2025.100220.
[34]
MARTÍNEZ CAMBLOR L, PEÑA SUÁREZ J M, MARTÍNEZ-CACHERO GARCÍA M, et al. Cerebral microbleeds. utility of SWI sequences[J]. Radiol Engl Ed, 2023, 65(4): 362-375. DOI: 10.1016/j.rxeng.2022.12.006.
[35]
BEN HASSEN W, MALLEY C, BOULOUIS G, et al. Inter- and intraobserver reliability for angiographic leptomeningeal collateral flow assessment by the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) scale[J]. J Neurointerv Surg, 2019, 11(4): 338-341. DOI: 10.1136/neurintsurg-2018-014185.
[36]
FORESTIER G, AGBONON R, BRICOUT N, et al. Small vessel disease and collaterals in ischemic stroke patients treated with thrombectomy[J]. J Neurol, 2022, 269(9): 4708-4716. DOI: 10.1007/s00415-022-11099-7.
[37]
CONSOLI A, PIZZUTO S, SGRECCIA A, et al. Angiographic collateral venous phase: a novel landmark for leptomeningeal collaterals evaluation in acute ischemic stroke[J/OL]. J Neurointerv Surg, 2023, 15(e2): e323-e329 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/36539270/. DOI: 10.1136/jnis-2022-019653.

上一篇 基于sMRI的可解释性机器学习模型在预测精神分裂症患者攻击暴力行为中的价值
下一篇 基于DCE-MRI肿瘤异质性定量和深度学习预测乳腺癌新辅助化疗疗效的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2