分享:
分享到微信朋友圈
X
临床研究
基于DCE-MRI肿瘤异质性定量和深度学习预测乳腺癌新辅助化疗疗效的价值
张晴 陈基明 吴莉莉 丁俊 叶慧 夏怡 江璇 焦南林

本文引用格式:张晴, 陈基明, 吴莉莉, 等. 基于DCE-MRI肿瘤异质性定量和深度学习预测乳腺癌新辅助化疗疗效的价值[J]. 磁共振成像, 2026, 17(1): 42-50. DOI:10.12015/issn.1674-8034.2026.01.007.


[摘要] 目的 探讨基于动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)肿瘤异质性定量和深度学习(deep learning, DL)预测乳腺癌新辅助化疗(neoadjuvant chemotherapy, NAC)病理完全缓解的价值。材料与方法 回顾性收集2019年1月至2025年1月在皖南医学院第一附属医院179例经病理证实为乳腺癌的患者临床及影像资料,其中58例患者NAC后病理完全缓解(pathological complete response, pCR),121例患者NAC后病理非完全缓解(non-pathological complete response, non-pCR)。按照7∶3的比例将患者随机分为训练组(n=125)和验证组(n=54)。所有患者均在NAC前行MRI检查,使用ITK-SNAP软件逐层手动勾画感兴趣区(region of interest, ROI)并进行三维融合,使用高斯混合模型(gaussian mixture model, GMM)进行聚类分析及贝叶斯信息准则(bayesian information criterion, BIC)确定肿瘤病灶亚区,并计算肿瘤内异质性分数(intratumoral heterogeneity score, ITH-score),建立生境组学模型。使用Python软件PyRadiomics包提取肿瘤整体的传统影像组学特征,使用ViT(vision transformer)DL模型提取DL特征,采用最小冗余最大相关(minimum redundancy maximum relevance, mRMR)和最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)回归方法进行特征降维、筛选,分别构建传统影像组学模型、DL模型,并根据模型中特征权重计算出每例患者的定量得分。采用多因素logistic回归分析构建临床模型及联合模型。绘制受试者工作特征(receiver operating characteristic, ROC)曲线评估各个模型的预测效能,采用DeLong检验比较各模型效能,使用决策曲线分析(decision curve analysis, DCA)分析模型的临床收益。采用SHAP(Shapley Additive exPlanations)方法分析联合模型中各特征的重要性。结果 临床模型、传统影像组学模型、DL模型、生境组学模型及联合模型在训练组中预测NAC后pCR的曲线下面积(area under the curve, AUC)[95% 置信区间(confidence interval, CI)]:分别为0.864(0.832~0.895)、0.776(0.745~0.807)、0.728(0.703~0.752)、0.823(0.785~0.881)、0.943(0.903~0.983),在验证组中0.732(0.684~0.781)、0.634(0.589~0.679)、0.757(0.720~0.791)、0.750(0.690~0.840)、0.875(0.821~0.929),以联合模型预测效果最佳。DCA结果显示联合模型的临床获益高于临床模型及其他影像组学模型。在SHAP方法中,ITH-score重要性高于分子分型,其SHAP值越大,预测结果越倾向于pCR。结论 基于DCE-MRI的异质性定量分析及DL的联合模型对乳腺癌患者NAC后pCR具有优越的预测效能,对早期预测NAC后pCR具有一定的临床应用价值,有助于乳腺癌的临床诊疗管理。
[Abstract] Objective To explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based tumor heterogeneity quantification integrated with deep learning (DL) in predicting the pathological complete response of neoadjuvant chemotherapy (NAC) for breast cancer.Materials and Methods The clinical and imaging data of 179 patients with pathologically confirmed breast cancer at the First Affiliated Hospital of Wannan Medical College from January 2019 to January 2025 were retrospectively collected. Among them, 58 patients achieved pathological complete response (pCR) after NAC, and 121 patients achieved non-pathological complete response (non-pCR). The patients were randomly divided into a training group (n = 125) and a validation group (n = 54) at a ratio of 7∶3. All patients underwent MRI examination before NAC. The ITK-SNAP software was used to manually delineate the region of interest (ROI) layer by layer and perform three-dimensional fusion. The Gaussian mixture model (GMM) was used for cluster analysis, and the Bayesian information criterion (BIC) was used to determine the sub-regions of the tumor lesions. The intratumoral heterogeneity score (ITH-score) was calculated, and a habitat imaging model was established. The PyRadiomics package in Python software was used to extract the traditional radiomics features of the whole tumor, and the ViT deep learning model was used to extract the deep learning features. The minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) regression methods were used for feature dimensionality reduction and screening. A traditional radiomics model and a deep learning model were constructed respectively, and the quantitative score of each patient was calculated according to the feature weights in the models. Multivariate logistic regression analysis was used to construct a clinical model and a combined model. Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive efficacy of each model. The DeLong test was used to compare the efficacy of each model, and decision curve analysis (DCA) was used to analyze the clinical benefits of the models. The SHAP method was used to analyze the importance of each feature in the combined model.Results The AUC [95% (confidence interval, CI)] values of the clinical model, traditional radiomics model, deep learning model, habitat imaging model, and combined model in predicting pCR after NAC in the training group were 0.864 (0.832 to 0.895), 0.776 (0.745 to 0.807), 0.728 (0.703 to 0.752), 0.823 (0.785 to 0.881), and 0.943 (0.903 to 0.983) respectively, and in the validation group were 0.732 (0.684 to 0.781), 0.634 (0.589 to 0.679), 0.757 (0.720 to 0.791), 0.750 (0.690 to 0.840), and 0.875 (0.821 to 0.929) respectively. The combined model had the best predictive performance. The DCA results showed that the clinical benefit of the combined model was higher than that of the clinical model and other radiomics models. In the SHAP method, the importance of the ITH-score was higher than that of the molecular subtype. The larger the SHAP value, the more the prediction result tended to pCR.Conclusions The combined model based on DCE-MRI heterogeneity quantitative analysis and deep learning demonstrates superior predictive performance for pCR in breast cancer patients after NAC, which holds clinical application value for early prediction of pCR after NAC and contributes to clinical diagnosis and treatment management of breast cancer.
[关键词] 乳腺癌;新辅助化疗;磁共振成像;生境成像;深度学习;影像组学
[Keywords] breast cancer;neoadjuvant chemotherapy;magnetic resonance imaging;habitat imaging;deep learning;radiomics

张晴 1   陈基明 1*   吴莉莉 1   丁俊 1   叶慧 1   夏怡 1   江璇 1   焦南林 2  

1 皖南医学院第一附属医院影像中心,芜湖 241001

2 皖南医学院第一附属医院病理科,芜湖 241001

通信作者:陈基明,E-mail:yjsyycjm@126.com

作者贡献声明:陈基明设计本研究的方案,并对稿件重要内容进行修改;张晴起草和撰写稿件,获取、分析和解释本研究的数据;丁俊、吴莉莉、叶慧、夏怡、江璇、焦南林获取、解释本研究的数据,对稿件重要内容进行了修改;吴莉莉获得了皖南医学院中青年科研基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 皖南医学院中青年科研基金项目 WK2024ZQNZ60
收稿日期:2025-11-11
接受日期:2026-01-04
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.007
本文引用格式:张晴, 陈基明, 吴莉莉, 等. 基于DCE-MRI肿瘤异质性定量和深度学习预测乳腺癌新辅助化疗疗效的价值[J]. 磁共振成像, 2026, 17(1): 42-50. DOI:10.12015/issn.1674-8034.2026.01.007.

0 引言

       局灶晚期乳腺癌新辅助化疗(neoadjuvant chemotherapy, NAC)能够降低肿瘤负荷,提高保乳手术机会,改善患者的预后[1]。然而,由于肿瘤在基因组学、免疫和生理等方面的异质性(intratumoral heterogeneity, ITH),仅约19%~34.9%的患者能够达到病理完全缓解(pathological complete response, pCR),约20%的患者对治疗不敏感,甚至进展[2, 3, 4]。因此,早期准确预测NAC的疗效对于优化治疗方案、减少非必要的治疗相关毒性具有重要意义[5]

       MRI检查为评估乳腺癌患者NAC疗效的最佳成像方法[6, 7]。近年来,基于MRI传统影像组学特征实现了非侵入性预测NAC疗效,但其对肿瘤复杂高维空间异质性的表征效果有限[8, 9];基于视觉转换器(vision transformer, ViT)的深度学习(deep learning, DL)模型凭借其自注意力机制,可有效捕获肿瘤全域空间的动态交互关系,挖掘深层语义特征,但现有DL方法常将肿瘤视为均质整体输入,难以充分表征其内在空间异质性[10, 11]。生境成像(habitat imaging, HI)通过划分不同肿瘤亚区,将局部组学特征与全局像素分布信息相结合,为ITH的定量评估提供了新途径[12, 13]。然而,当前生境研究多侧重于单模态生境特征提取与定性描述,对ITH量化分析仍显不足,同时缺乏与DL模型的系统性融合研究,导致其生物学可解释性与临床转化价值受限。本研究创新性地构建了基于治疗前MRI生境异质性定量及DL的多模态分层融合预测框架,通过对比单一模型与联合模型的效能差异,旨在为乳腺癌NAC后pCR的个体化预测提供一种兼具生物学可解释性与临床实用性的新策略。

1 材料与方法

1.1 研究对象

       回顾性分析2019年1月至2025年1月在皖南医学院第一附属医院进行诊治的179例乳腺癌患者的临床及影像学资料。均为女性,年龄25~75(51.5±8.3)岁,其中58例患者NAC后pCR,121例患者NAC后病理非完全缓解(non-pathological complete response, non-pCR)。纳入标准:(1)经化疗前穿刺活检和术后病理组织活检证实为乳腺癌;(2)NAC前行乳腺多参数MRI检查;(3)术前按照规范行NAC,取得病理标本完成病理疗效评估。排除标准:(1)MRI图像质量差或图像不完整;(2)临床、病理资料缺失;(3)NAC治疗结束至手术的间隔时间超过30天;(4)NAC前已接受其他抗肿瘤治疗或存在远处转移。采用随机分组法,按照7∶3的比例将患者分为训练组(n=125)和验证组(n=54)。本研究遵守《赫尔辛基宣言》,经皖南医学院弋矶山医院科研与新技术伦理委员会批准,且免除受试者知情同意,批准文号:2025-156。

1.2 扫描方法

       采用GE Signa HDxt 3.0T MR扫描仪,8通道乳腺专用相控表面线圈。患者取俯卧位,双侧乳腺自然悬垂于两侧线圈中央孔内,扫描范围包括双侧乳腺及腋窝区域。采用轴位和矢状位扫描,扫描序列及参数如下:

       (1)STIR T2WI:TR 11 000 ms,TI 240 ms,TE 60 ms,层厚4.0 mm,层间距0.4 mm,FOV 320 mm×320 mm,矩阵320×192;(2)轴位DWI:单次激发SE-EPI,TR 6500 ms,TE 60 ms,b=800 s/mm2,层厚4.0 mm,层间距0.4 mm,FOV 340 mm×349 mm,矩阵130×96;(3)轴位T1-DCE:TR 5.6 ms,TI 16 ms,TE 2.2 ms,层厚2.0 ms,层间距0 mm,FOV 320 mm×320 mm,矩阵348×348,平扫后静脉注射钆喷酸葡胺对比剂(拜耳制药,德国)行动态增强扫描,速率为2.5 mL/s,剂量为0.1 mmol/kg,再跟注20 mL生理盐水。扫描8期,每期扫描60 s,共480 s。

1.3 临床资料、MRI特征评价

       (1)临床资料:收集患者临床资料,包括性别、年龄、月经状态、肿瘤组织学类型、组织学分级、分子分型及Ki-67等。

       (2)MRI特征:由分别具有5年及10年以上工作经验的2位放射科主治医师在不知病理诊断及临床预后的前提下,严格按照乳腺影像报告和数据系统(breast imaging reporting and data system, BI-RADS)共同评估每位患者的影像学特征,意见不一致时共同讨论取得最终结果,主要评价:乳腺纤维腺体类型、乳腺背景实质强化、肿瘤位置、最大径、形态、边界是否清晰、是否伴毛刺、T2WI信号强度、瘤周水肿情况、强化方式等。乳腺纤维腺体类型(fibroglandular tissue, FGT)分为4型:a型(脂肪为主型)、b型(散在纤维腺体型)、c型(不均匀分布纤维腺体型)、d型(致密纤维腺体型)。乳腺背景实质强化(background parenchymal enhancement, BPE)依据纤维腺体组织强化范围分为轻微(<25%)、轻度(25%~50%)、中度(51%~75%)和明显(>75%)4个等级。肿瘤最大径于DCE-T1WI肿瘤最大横截面测量(多中心病灶乳腺癌则测量最大病灶),每例患者分别测量三次,取平均值;使用图像后处理软件(Siemens Syngo.via; SiemensHealthineers, GERMANY)中的DCE Tissue 4D功能经运动配准后处理轴位表观扩散系数(apparent diffusion coefficient, ADC)及T1-DCE图像,计算ADC值并得到反映血流动力学特征的时间-信号强度曲线(time-intensity curve, TIC)包括流入型、平台型及流出型。计算动态增强半定量参数:峰值强化率(Emax)=(SImax-SIpre)/SIpre×100%(SImax、SIpre分别代表增强后最大信号强度、增强前信号强度);达峰时间(Tmax)=Tpeak-Tpre(Tpeak为SImax对应的时间,Tpre为测定增强前SIpre对应的时间);最大上升斜率(Slopemax)=Emax/Tmax×100%。

1.4 NAC方案及疗效评价

       所有患者均接受4~8个周期的NAC疗程,NAC方案主要包括三种[14]:(1)蒽环类基础方案,例如AC(多柔比星+环磷酰胺)、EC(表柔比星+环磷酰胺);(2)蒽环类联合紫杉醇方案(含序贯方案),如TAC(多西他赛+多柔比星+环磷酰胺)、AC/EC-P/T(多柔比星/表柔比星+环磷酰胺序贯紫杉醇/多西他赛);(3)不含蒽环类的联合方案,包括TH(紫杉醇+曲妥珠单抗)、THP(紫杉醇+曲妥珠单抗+帕妥珠单抗)、TCb(紫杉醇+卡铂)以及TCbH(P)(紫杉醇+卡铂+曲妥珠单抗±帕妥珠单抗)。

       疗效病理评估标准采用Miller-Payne分级系统[15],共分为5级:1级为肿瘤细胞无减少;2级为肿瘤细胞减少比例≤30%;3级为肿瘤细胞减少比例30%~90%;4级为肿瘤细胞减少比例>90%;5级为肿瘤细胞完全消失,或仅残存少量原位癌;将1~4级定义为non-pCR,5级定义为pCR。Ki-67<20%定义为低表达,≥20%定义为高表达[16]

1.5 影像特征提取、生境分析及建立影像组学标签

1.5.1 图像预处理

       从PACS系统工作站以DICOM格式导出所有患者的动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)图像,通过N4偏置场校正和图像灰度归一化,校正磁场强度的不均匀性,标准化像素强度范围。

1.5.2 ROI的分割

       由上述两位放射科医师使用ITK-SNAP软件(http://www.itksnap.org/)于病灶强化最显著的DCE-MRI时相上,沿病灶边缘分别逐层勾画感兴趣区(region of interest, ROI),最终形成肿瘤三维体积(volume of interest, VOI),1个月后随机抽取30例患者图像,由上述5年工作经验的放射科医师重新勾画病灶,并计算组内相关系数(intra-class correlation coefficient, ICC)。ROI应完整包纳病灶区域(包括毛刺及液化坏死区),同时剔除其周边的水肿、血管及纤维等结构。

1.5.3 影像特征提取

       (1)影像组学(radiomics, Rad)特征提取:使用开源Python软件PyRadiomics包导入肿瘤VOI并进行Rad特征提取,提取特征包括:形状特征、一阶特征、纹理特征,其中纹理特征又包括灰度共生矩阵(gray-level co-occurrence matrix, GLCM)、灰度尺寸区域矩阵(gray-level size zone matrix, GLSZM)、灰度游程矩阵(gray-level run length matrix, GLRLM)、灰度邻域差分矩阵(neighbourhood gray-tone difference matrix, NGTDM)和灰度依赖矩阵(gray-level dependence matrix, GLDM)。

       (2)DL特征提取:从每个患者的MRI图像中选取最大面积层面的ROI,进行精确裁剪,将裁剪后的ROI图像统一缩放至224×224像素并划分为16×16像素块后,输入到在ImageNet预训练的ViT模型中,该模型嵌入维度为768,包含12层Transformer编码器,每层编码器包含12个注意力头,前馈网络(multilayer perceptron, MLP)隐藏层维度为3072。通过全连接层输出分类结果,获得并提取其前一层的激活值作为DL特征。模型使用随机梯度下降优化器进行微调,学习率为1×10-4,权重衰减1×10-4,以交叉熵损失函数为优化目标训练50个周期,批次大小为8。为抑制过拟合,训练中采用随机水平翻转与裁剪进行数据增强,并利用模型内置的Dropout(比例为0.1)及基于验证组损失的早停法进行正则化。特征提取后,应用主成分分析对特征降维、压缩,并采用梯度加权类激活映射(gradient-weighted class activation mapping, Grad-CAM)实现模型可视化[17]图1)。

图1  从数据采集至模型构建的流程框架图。ROI:感兴趣区;VOI:三维体积;Rad:影像组学;HI:生境成像;ITH:肿瘤内异质性;DL:深度学习;MLP:前馈网络;Grad-CAM:梯度加权类激活映射;LASSO:最小绝对收缩和选择算子;AUC:曲线下面积;DCA:决策曲线分析;V:生境亚区聚类数,Stotal:肿瘤面积,ni:连通区域的数量,Si, max:最大连通区域面积。
Fig. 1  Workflow diagram from data acquisition to model construction. ROI: region of interest; VOI: volume of interest; Rad: radiomics; HI: habitat imaging; ITH: intratumoral heterogeneity; DL: deep learning; MLP: multilayer perceptron; Grad-CAM: gradient-weighted class activation mapping; LASSO: least absolute shrinkage and selection operator; AUC: area under the curve; DCA: decision curve analysis; V: number of habitat subregion clusters; Stotal: total tumor area; ni: number of connected regions; Si, max: maximum connected region area.

1.5.4 生境亚区生成及计算异质性分数

       根据LI等[18]定量异质性分数(ITH-score)方法(https://pypi.org/project/ITHscore)。首先,将DCE-MRI图像与肿瘤ROI相匹配,通过PyRadiomics软件包提取每个体素对应的一阶特征(n=19)和灰度邻域差分矩阵(n=5)。其次,将特征矩阵执行Z-score标准化处理,通过高斯混合模型(gaussian mixture model, GMM)进行聚类分析以识别生境亚区,k值范围设置为2~8,通过贝叶斯信息准则(bayesian information criterion, BIC)确定最佳聚类数(k=3)。随后,对肿瘤病灶的三个亚区域赋予不同的颜色标签生成聚类标签图,直观展示肿瘤内部异质性的空间分布。将聚类结果与全局像素分布模式相结合,根据2个可以量化的主要因素来定量生境亚区的异质性,计算肿瘤内异质性分数(ITH-score),建立生境组学模型(HI模型)。ITH-score的计算见公式(1)

       其中,V表示生境亚区中的聚类数,Stotal表示肿瘤面积,ni表示连通区域的数量,Si, max表示最大连通区域面积。

1.5.5 特征筛选、模型构建及SHAP分析

       采用ICC初步筛选,ICC≥0.8的特征被认为一致性较好并予以保留。采用Z-score对所有特征进行标准化。首先进行t检验或Mann-Whiney U检验,然后进行Spearman相关分析(保留相关系数>0.9的特征),再使用最小冗余最大相关(minimum redundancy maximum relevance, mRMR)及最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)进行特征降维,通过10折交叉验证确定LASSO惩罚函数的最佳λ值,保留该模型下的非零系数特征,筛选出最佳特征子集,分别构建传统影像组学模型(Rad模型)、DL模型,依据各特征在模型中的权重系数生成每例患者的定量得分。为进一步提高模型的预测效能,将反映肿瘤空间异质性的ITH-score及深层组学特征得分(DL-score)与临床、病理及MRI特征进行多维度信息整合,通过多因素logistic回归分析构建联合预测模型。应用SHAP(Shapley Additive exPlanations)方法对最佳模型进行可解释性分析,计算所有患者的ITH-score、DL-score、分子分型和ADC值的SHAP值,衡量各变量重要性并对其进行可视化。

1.6 统计学分析

       由于在研究对象入组阶段已通过排除标准确保了数据的完整性,本研究所分析的最终数据集不存在任何缺失值,故未进行缺失数据处理。使用SPSS 27.0软件、R软件(版本4.4.3)进行统计分析。对连续变量采用Shapiro-Wilk检验,呈正态分布者用x¯±s表示,呈偏态分布者用MQ1,Q3)表示,组间比较分别采用独立样本t检验或Mann-Whiney U检验;分类变量以频数或百分比(%)表示,组间比较采用χ2检验或Fisher确切概率法。运用单因素和多因素logistic回归分析构建临床及联合模型。绘制受试者工作特征(receiver operating characteristic, ROC)曲线并计算曲线下面积(area under the curve, AUC)评估各个模型的预测效能。采用DeLong检验评估不同模型间AUC是否具有统计学差异。绘制校准曲线,评估模型的拟合优度,决策曲线分析(decision curve analysis, DCA)评估模型的净获益。P<0.05表示差异有统计学意义。

2 结果

2.1 临床、病理及MRI特征

       179例患者中,pCR组58例,non-pCR组121例。在训练组中,分子分型、Ki-67表达状态、ADC值在两组之间的差异有统计学意义(P<0.05)(表1)。将P<0.05的变量纳入多因素logistic回归分析,并进行共线性检查,结果显示分子分型、ADC值是乳腺癌患者NAC后pCR的独立危险因素;临床模型的表达式:临床模型得分=-6.801+1.286×Molecular Typing+2.812×ADC。ROC曲线显示,临床模型预测NAC后pCR的AUC在训练组和验证组中分别为0.864(95% CI:0.832~0.895)和0.732(95% CI:0.684~0.781)(表2)。

表1  训练组和验证组的临床病理和MRI特征比较
Tab. 1  Comparison of clinical, pathological, and MRI characteristics between training and validation groups
表2  训练组及验证组中的各种模型的诊断效能
Tab. 2  Diagnostic performance of various models in the training and validation groups

2.2 影像组学特征的选择及模型的构建

       两位医师提取的组学特征的一致性均较好(组间ICC为0.822,95% CI为0.766~0.831,P<0.05)。选取高年资医师提取的特征进行影像组学分析。从影像组学和DL图像提取了1130、1024个特征。经数据标准化、mRMR和LASSO降维及特征筛选后,分别得到了7个影像组学和6个DL特征(图2),建立Rad模型、DL模型,并根据模型中的特征权重计算模型得分。计算每例乳腺癌患者的ITH-score,建立HI模型。

图2  使用mRMR 和LASSO回归进行特征降维和筛选示意图。2A、2B:Rad 模型和DL 模型的LASSO逻辑回归系数分布图,垂直与虚线间为十折验证选定λ 值;2C、2D:Rad 模型和DL 模型的LASSO逻辑回归交叉验证图,在λ 序列断定最佳截断值得到Rad及DL 特征;2E、2F:筛选后的Rad、DL 特征及其权重。mRMR:最小冗余最大相关;LASSO:最小绝对收缩和选择算子;Rad:影像组学;DL:深度学习;MSE:均方误差;CI:置信区间。
Fig. 2  Schematic diagram of feature dimensionality reduction and selection using mRMR and LASSO regression. 2A, 2B: LASSO logistic regression coefficient distribution plots for the Rad and DL models, with the λ values selected by 10-fold cross-validation indicated between the vertical dashed lines; 2C, 2D: LASSO logistic regression cross-validation plots for the Rad and DL models, where the optimal cutoff values are determined within the λ sequence to obtain Rad and DL features; 2E, 2F: Selected Rad and DL features with their corresponding weights. mRMR: minimum redundancy maximum relevance; LASSO: least absolute shrinkage and selection operator; Rad: radiomics; DL: deep learning; MSE: mean square error; CI: confidence interval.

2.3 联合模型的构建及各模型预测效能的评估

       经ROC曲线分析,HI模型预测效能优于其他影像组学模型(表2图3)。ITH-score、DL-score、分子分型均为预测乳腺癌NAC后pCR的独立危险因素(P<0.05)。ROC曲线分析表明联合模型在训练组和验证组中诊断效果最好(训练组中AUC=0.943,95% CI:0.903~0.983;验证组中AUC=0.875,95% CI:0.821~0.929)。

       DeLong检验结果显示,在训练组中,联合模型与临床模型、Rad模型、DL模型的AUC差异均具统计学意义(均P<0.05),在验证组中,联合模型AUC值显著高于临床模型(Z=2.14,P=0.03)及Rad模型(Z=2.36,P=0.02)。DCA分析显示,阈值概率在0.1~1.0区间时,联合模型较其他模型的临床净获益率更高。此外,校准曲线显示,联合模型在训练组及验证组中均具有良好的一致性(图4, 图5)。

图3  各模型ROC 曲线。3A:训练组;3B:验证组。ROC:受试者工作特征;Clinic:临床模型;Rad:影像组学模型;DL:深度学习模型;HI:生境影像组学模型;AUC:曲线下面积。
Fig. 3  ROC curves of different models. 3A: Training group; 3B: Validation group. ROC: receiver operating characteristic; Clinic: clinical model; Rad: radiomics model; DL: deep learning model; HI: habitat imaging radiomics model; AUC: area under the curve.
图4  各个模型预测乳腺癌患者NAC后疗效的决策曲线。4A:训练组;4B:验证组。NAC:新辅助化疗;DCA:决策曲线分析;Clinic:临床模型;Rad:影像组学模型;DL:深度学习模型;HI:生境影像组学模型。
Fig. 4  Decision curves of various models for predicting response to NAC in breast cancer patients. 4A: Training group; 4B: Validation group. NAC: neoadjuvant chemotherapy; DCA: decision curve analysis; Clinic: clinical model; Rad: radiomics model; DL: deep learning model; HI: habitat imaging radiomics model.
图5  HI联合模型的校准曲线。5A:训练组;5B:验证组。DL:深度学习;HI:生境成像。
Fig. 5  Calibration curve of the HI-integrated model. 5A: Training group; 5B: Validation group. DL: deep learning; HI: habitat imaging.

2.4 基于SHAP的预测模型可解释性分析

       SHAP分析结果显示,ITH-score贡献度最大,高于分子分型、DL-score、ADC值(图6)。

图6  HI联合模型的SHAP分析。6A:每个样本在不同特征下的SHAP值分布。6B:ITH-score与SHAP值的关联分析图。在SHAP图中,每个点代表一位患者,点的颜色由特征值大小决定,颜色由红到蓝表示特征值从大到小。同时,横轴上的SHAP值大小代表预测患者NAC达到pCR的可能性,SHAP值越大,预测结果越倾向于pCR,反之则倾向于Non-pCR。HI:生境成像;SHAP:Shapley Additive exPlanations;NAC:新辅助化疗;pCR:病理完全缓解;non-pCR:病理非完全缓解;ITH:肿瘤内异质性;ADC:表观扩散系数;DL:深度学习。
Fig. 6  SHAP analysis of the HI-integrated model. 6A: Distribution of SHAP values for each sample across different features. 6B: Association analysis between ITH-score and SHAP values. In the SHAP plot, each point represents a patient, and the color of the point is determined by the size of the feature value, with the color ranging from red to blue indicating the feature value from large to small. Meanwhile, the magnitude of the SHAP value on the horizontal axis represents the possibility of the predicted patient achieving pCR after NAC. The larger the SHAP value, the more the prediction leans towards pCR; conversely, it leans towards Non-pCR. HI: habitat imaging; SHAP: Shapley Additive exPlanations; NAC: neoadjuvant chemotherapy; pCR: pathological complete response; non-pCR: non-pathological complete response; ITH: intratumoral heterogeneity; ADC: apparent diffusion coefficient; DL: deep learning.

3 讨论

       本研究基于DCE-MRI图像提取了乳腺癌患者肿瘤整体的传统影像组学及DL特征,同时使用HI技术将肿瘤内部分为三个亚区,据此量化肿瘤内异质性(ITH-score)并构建不同层次的影像组学标签。研究结果显示,结合了肿瘤内异质性定量评估、DL特征及临床、影像学特征的联合模型对预测乳腺癌NAC-pCR方面表现优于其他模型,本研究首次提出将HI与DL技术相结合,以更准确地预测乳腺癌NAC疗效,有助于临床确定患者从中获益、指导后续治疗策略。

3.1 临床模型预测乳腺癌NAC疗效分析

       本研究较全面分析了与乳腺癌患者NAC疗效潜在相关的多种临床、病理及影像学特征,并构建临床模型。该模型预测效能良好(训练组和验证组AUC值分别为0.864和0.732),分子分型与ADC值为预测NAC-pCR的独立危险因素,而其他纳入的临床、病理及影像学特征则无显著预测价值。既往多项研究结果显示[19, 20, 21],不同的分子分型与NAC后是否达pCR具有显著相关性,且三阴型和HER-2过表达型患者在NAC后pCR率更高,受益程度更大。本研究中Luminal A、Luminal B、HER-2过表达型及三阴型患者pCR率分别为4.8%(2/41)、23.6%(13/55)、26.7%(8/30)、66.7%(36/54),三阴型较其他分子分型乳腺癌患者的疗效更好,其原因可能是三阴型乳腺癌的高增殖状态及肿瘤细胞中BRCA1/2基因突变导致DNA同源重组修复缺陷等,增加了其对化疗药物的敏感性[22, 23]。ADC值能够量化微观层面病灶内部水分子自由运动的活动度,反映细胞内外空间的比例及其形态等[24]。HOTTAT等[25]研究发现,对乳腺癌肿瘤靶成分的ROI-ADC测量能够准确预测NAC疗效,且NAC前后ADC值的显著增加与pCR有关。本研究显示ADC值与pCR呈正相关,但李相生等[26]研究发现ADC值较低者NAC后pCR率更高。研究结果的差异可能与部分肿瘤测量层面所含坏死、囊变等因素有关,此外,ADC值本身亦受肿瘤病理类型、组织学分级、分子亚型及影像扫描设备与参数等多种因素影响。本研究中NAC疗效与Ki-67状态无显著相关性,与既往研究结果不同[27],可能与样本量不均衡和样本数量有关。此外,本研究验证组中的肿瘤最大直径和肿瘤形态在pCR组与non-pCR组间存在显著差异,而这种差异在训练组中并不显著,可能与亚组样本量配比不均、样本量相对有限有关。这种协变量的不平衡可能对模型性能的评估构成潜在混杂,因此我们将临床模型的预测概率与肿瘤大小、肿瘤形态一同纳入多因素逻辑回归分析,结果显示在校正上述协变量的影响后,临床模型预测概率与pCR仍显著相关(P<0.05),表明其提供了超出肿瘤大小和形态的增量预测信息,提示该模型预测效能并非完全由验证组中肿瘤大小或类型的分布差异所驱动。

3.2 各组学模型及联合模型预测乳腺癌NAC疗效分析

       影像组学通过提取高通量特征反映肿瘤内部异质性,在评估乳腺癌患者对NAC的反应性或耐药性中发挥关键作用。已有诸多基于MRI传统影像组学预测乳腺癌NAC疗效的研究[7, 28, 29]。DL算法可进一步挖掘肿瘤区域的深层和高阶特征,从而更准确地表征其空间异质性[30, 31]。PENG等[32]利用放射组学和DL技术提取MRI图像特征,并将这些特征与动力学参数和病理信息融合,结果显示放射组学模型和DL模型在验证组中预测pCR效能较高(AUC分别为0.78和0.83)。本研究中传统影像组学及DL模型同样获得较好的预测效能(训练组中AUC分别为0.776和0.728)。然而,上述模型均基于肿瘤整体挖掘病灶区域特征,忽略了肿瘤内部的异质性,同时可能受肿瘤出血、坏死、囊变等因素干扰,降低模型预测效能。HI技术通过将肿瘤划分为多个生境亚区,能够充分可视化、客观且无创地评估肿瘤内部不同亚区之间细胞构成、血管分布以及分子代谢的差异[33, 34]。本研究通过SHAP分析确立了ITH-score的核心预测价值,且NAC前ITH评分低患者在NAC后出现pCR的可能性更高,这与HUANG等[12]研究结果一致。ITH-score值的差异映射了其内部生物学特性的空间分布差异,从而无创地量化了瘤内抑制性免疫微环境与活化性微环境并存的格局。具体而言,ITH-score高值通常反映了高度混杂微环境生态位的空间拮抗共存,意味着细胞周期通路激活、Ki-67高表达或异常血管重塑的增殖活跃区与基质富集、乏氧坏死的促纤维化/免疫抑制区的“马赛克式”共存[35, 36]。ITH-score低值则提示肿瘤内部克隆性均质化,但可能表征两种截然不同的生物学状态:其一为单一克隆来源的高增殖性癌细胞群体主导;其二为以广泛坏死、基质纤维化或免疫浸润为主导的均质表型[37, 38]。该评分通过捕获亚区域间的非线性相互作用,而非单一瘤内或瘤周特征,实现了对“肿瘤多克隆生态系统”的整体性影像学量化。HI模型预测乳腺癌NAC后pCR的效能(训练组和验证组AUC分别为0.823和0.750)优于Rad模型(训练组和验证组AUC分别为0.776和0.634)及DL模型(训练组和验证组AUC分别为0.728和0.757),证明了其亚区域生境分析在精准评估肿瘤异质性中的临床转化价值。

       生境分析通过体素聚类识别肿瘤亚区揭示瘤内空间异质性,而基于自注意力机制的ViT DL模型能够捕捉图像的深层抽象特征;两者在信息捕捉和复杂模式识别上具有互补优势。将HI和DL技术相结合,本质是空间异质性量化与深层模式挖掘的协同,可有效提高肿瘤微环境异质性解析的精度。LIU等[13]基于DCE-MRI构建了生境技术与DL影像组学特征融合模型预测肝细胞癌的微血管浸润,该模型效能(训练组和验证组AUC为0.95和0.89)优于HI模型(训练组和验证组AUC为0.90和0.86)及DL模型(训练组和验证组AUC为0.87和0.83)。本研究集合了预测效能较好的ITH-score、DL-score与临床病理及MRI特征,通过整合多源信息,构建出更契合肿瘤复杂生物学特性的联合预测模型。结果显示联合模型的预测效能显著提高(训练组和验证组的AUC分别为0.943和0.875),明显优于临床及其他影像组学模型,ITH-score、DL-score和分子分型为独立预测因子。联合模型的临床收益优于其他模型。随后通过SHAP进行可解释性分析,结果ITH-score在重要性上高于分子分型、ADC值及DL-score;ITH-score越低的患者SHAP值越大,模型越容易将其归为pCR。

3.3 本研究的局限性

       (1)本研究属于回顾性单中心研究,存在选择偏倚可能,需要扩大样本量、引入多中心研究进行外部验证。(2)根据最大肿瘤直径层面的ROI计算出的ITH-score可能无法全面捕获ITH,且手动勾画病灶会产生主观性偏差。未来将采用人工与半自动化相结合的勾画方式,并侧重于开发三维层面ITH测量方法以提高模型的可靠性和预测性能。

4 结论

       基于DCE-MRI生境成像的ITH-score、DL-score与临床病理、影像学特征结合构建的联合模型可显著提高预测乳腺癌NAC后能否达pCR的效能,临床获益更佳,为乳腺癌患者的个体化治疗决策提供可靠依据。

[1]
KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399.
[2]
HAQUE W, VERMA V, HATCH S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2018, 170(3): 559-567. DOI: 10.1007/s10549-018-4801-3.
[3]
FAYANJU O M, REN Y, THOMAS S M, et al. The clinical significance of breast-only and node-only pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT): a review of 20, 000 breast cancer patients in the national cancer data base (NCDB)[J]. Ann Surg, 2018, 268(4): 591-601. DOI: 10.1097/SLA.0000000000002953.
[4]
DAGOGO-JACK I, SHAW A T. Tumour heterogeneity and resistance to cancer therapies[J]. Nat Rev Clin Oncol, 2018, 15(2): 81-94. DOI: 10.1038/nrclinonc.2017.166.
[5]
QIAN F S, MAO Y J, DONG J, et al. Development of a multiparametric model for predicting the response to neoadjuvant chemotherapy in breast cancer[J]. Transl Cancer Res, 2024, 13(2): 558-568. DOI: 10.21037/tcr-23-770.
[6]
THERASSE P, ARBUCK S G, EISENHAUER E A, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada[J]. J Natl Cancer Inst, 2000, 92(3): 205-216. DOI: 10.1093/jnci/92.3.205.
[7]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[8]
MA X L, XIA L M, CHEN J, et al. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model[J]. Eur Radiol, 2023, 33(3): 1949-1962. DOI: 10.1007/s00330-022-09153-z.
[9]
ZHANG Z, LUO T C, YAN M, et al. Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy[J/OL]. J Immunother Cancer, 2025, 13(3): e011149 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/40090670/. DOI: 10.1136/jitc-2024-011149.
[10]
YIN S, MING J G, CHEN H, et al. Integrating deep learning and radiomics for preoperative glioma grading using multi-center MRI data[J/OL]. Sci Rep, 2025, 15(1): 36756 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/41120521/. DOI: 10.1038/s41598-025-20711-5.
[11]
ZHANG X, SHEN Y Y, SU G H, et al. A dynamic contrast-enhanced MRI-based vision transformer model for distinguishing HER2-zero, -low, and-positive expression in breast cancer and exploring model interpretability[J/OL]. Adv Sci, 2025, 12(33): e03925 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/40488332/. DOI: 10.1002/advs.202503925.
[12]
HUANG Y, WANG X X, CAO Y, et al. Nomogram for predicting neoadjuvant chemotherapy response in breast cancer using MRI-based intratumoral heterogeneity quantification[J/OL]. Radiology, 2025, 315(1): e241805 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/40232145/. DOI: 10.1148/radiol.241805.
[13]
LIU H F, WANG M, LU Y J, et al. CEMRI-based quantification of intratumoral heterogeneity for predicting aggressive characteristics of hepatocellular carcinoma using habitat analysis: comparison and combination of deep learning[J]. Acad Radiol, 2024, 31(6): 2346-2355. DOI: 10.1016/j.acra.2023.11.024.
[14]
中国抗癌协会乳腺癌专业委员会, 中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023, 33(12): 1092-1186. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
Breast Cancer Professional Committee of the Chinese Anti-Cancer Association and Breast Tumor Group of the Oncology Branch of the Chinese Medical Association. Guidelines for breast cancer diagnosis and treatment by China Anti-cancer Association (2024 edition)[J]. China J Oncol, 2023, 33(12): 1092-1186. DOI: 10.19401/j.cnki.1007-3639.2023.12.004.
[15]
OGSTON K N, MILLER I D, PAYNE S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival[J]. Breast, 2003, 12(5): 320-327. DOI: 10.1016/s0960-9776(03)00106-1.
[16]
LIU W X, CHENG Y L, LIU Z Y, et al. Preoperative prediction of ki-67 status in breast cancer with multiparametric MRI using transfer learning[J/OL]. Acad Radiol, 2021, 28(2): e44-e53 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/32278690/. DOI: 10.1016/j.acra.2020.02.006.
[17]
ZHANG Y Y, HONG D, MCCLEMENT D, et al. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging[J/OL]. J Neurosci Methods, 2021, 353: 109098 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/33582174/. DOI: 10.1016/j.jneumeth.2021.109098.
[18]
LI J Q, QIU Z B, ZHANG C, et al. ITHscore: comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features[J]. Eur Radiol, 2023, 33(2): 893-903. DOI: 10.1007/s00330-022-09055-0.
[19]
VON MINCKWITZ G, UNTCH M, BLOHMER J U, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes[J]. J Clin Oncol, 2012, 30(15): 1796-1804. DOI: 10.1200/JCO.2011.38.8595.
[20]
VON MINCKWITZ G, UNTCH M, NÜESCH E, et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials[J]. Breast Cancer Res Treat, 2011, 125(1): 145-156. DOI: 10.1007/s10549-010-1228-x.
[21]
CORTAZAR P, ZHANG L J, UNTCH M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI: 10.1016/S0140-6736(13)62422-8.
[22]
YANG C, LIU H, FENG X, et al. Research hotspots and frontiers of neoadjuvant therapy in triple-negative breast cancer: a bibliometric analysis of publications between 2002 and 2023[J]. Int J Surg, 2024, 110(8): 4976-4992. DOI: 10.1097/JS9.0000000000001586.
[23]
RYSPAYEVA D, SEYHAN A A, MACDONALD W J, et al. Signaling pathway dysregulation in breast cancer[J]. Oncotarget, 2025, 16(1): 168-201. DOI: 10.18632/oncotarget.28701.
[24]
蔡永斌, 曾世福, 涂梦婷. 乳腺癌患者DTI参数与细胞密度及病理分级的关系探析[J]. 中国CT和MRI杂志, 2021, 19(7): 103-105. DOI: 10.3969/j.issn.1672-5131.2021.07.032.
CAI Y B, ZENG S F, TU M T. Relationship between DTI parameters and cell density and pathological grade in patients with breast cancer[J]. Chin J CT MRI, 2021, 19(7): 103-105. DOI: 10.3969/j.issn.1672-5131.2021.07.032.
[25]
HOTTAT N A, BADR D A, LECOMTE S, et al. Value of diffusion-weighted MRI in predicting early response to neoadjuvant chemotherapy of breast cancer: comparison between ROI-ADC and whole-lesion-ADC measurements[J]. Eur Radiol, 2022, 32(6): 4067-4078. DOI: 10.1007/s00330-021-08462-z.
[26]
李相生, 冯瑞, 王东, 等. 比较扩散加权成像单指数模型和扩散峰度成像模型在预测局部晚期乳腺癌新辅助化疗疗效中的价值[J]. 中华放射学杂志, 2019, 53(1): 26-32. DOI: 10.3760/cma.j.issn.1005-1201.2019.01.007.
LI X S, FENG R, WANG D, et al. The comparison of the value of mono-exponential mode and diffusion kurtosis imaging mode in predicting the response to neoadjuvant chemotherapy for locally advanced breast carcinoma using diffusion-weighted imaging[J]. Chin J Radiol, 2019, 53(1): 26-32. DOI: 10.3760/cma.j.issn.1005-1201.2019.01.007.
[27]
KREIPE H, HARBECK N, CHRISTGEN M. Clinical validity and clinical utility of Ki67 in early breast cancer[J/OL]. Ther Adv Med Oncol, 2022, 14: 17588359221122725 [2025-11-10]. https://sage.cnpereading.com/paragraph/article/?doi=10.1177/17588359221122725. DOI: 10.1177/17588359221122725.
[28]
王浩天, 于韬, 徐姝. MRI影像组学在乳腺癌新辅助化疗中应用的研究进展[J]. 中国临床医学影像杂志, 2023, 34(12): 892-896. DOI: 10.12117/jccmi.2023.12.012.
WANG H T, YU T, XU S. Research progress on the application of MRI radiomics in neoadjuvant chemotherapy for breast cancer[J]. J China Clin Med Imag, 2023, 34(12): 892-896. DOI: 10.12117/jccmi.2023.12.012.
[29]
LIU X Y, YANG A R, CAO M T, et al. Research on predicting pathological complete response in breast cancer following neoadjuvant chemotherapy using a multiparametric MRI radiomics model[J/OL]. J Radiat Res Appl Sci, 2025, 18(3): 101769 [2025-11-10]. https://www.sciencedirect.com/science/article/pii/S1687850725004819?via%3Dihub. DOI: 10.1016/j.jrras.2025.101769.
[30]
LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J/OL]. Med Image Anal, 2017, 42: 60-88 [2025-11-10]. https://www.sciencedirect.com/science/article/pii/S1361841517301135?via%3Dihub. DOI: 10.1016/j.media.2017.07.005.
[31]
QIU J W, MITRA J, GHOSE S, et al. A multichannel CT and radiomics-guided CNN-ViT (RadCT-CNNViT) ensemble network for diagnosis of pulmonary sarcoidosis[J/OL]. Diagnostics, 2024, 14(10): 1049 [2025-11-10]. https://www.mdpi.com/2075-4418/14/10/1049. DOI: 10.3390/diagnostics14101049.
[32]
PENG Y S, CHENG Z L, GONG C, et al. Pretreatment DCE-MRI-based deep learning outperforms radiomics analysis in predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer[J/OL]. Front Oncol, 2022, 12: 846775 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/35359387/. DOI: 10.3389/fonc.2022.846775.
[33]
LI S L, DAI Y M, CHEN J Y, et al. MRI-based habitat imaging in cancer treatment: current technology, applications, and challenges[J/OL]. Cancer Imaging, 2024, 24(1): 107 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/39148139/. DOI: 10.1186/s40644-024-00758-9.
[34]
WU L X, DING N, JI Y D, et al. Habitat analysis in tumor imaging: advancing precision medicine through radiomic subregion segmentation[J/OL]. Cancer Manag Res, 2025, 17: 731-741 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/40190416/. DOI: 10.2147/CMAR.S511796.
[35]
HINOHARA K, WU H J, VIGNEAU S, et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance[J/OL]. Cancer Cell, 2018, 34(6): 939-953.e9 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/30472020/. DOI: 10.1016/j.ccell.2018.10.014.
[36]
HAMMERL D, MARTENS J W M, TIMMERMANS M, et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer[J/OL]. Nat Commun, 2021, 12(1): 5668 [2025-11-10]. https://pubmed.ncbi.nlm.nih.gov/34580291/. DOI: 10.1038/s41467-021-25962-0.
[37]
MROZ E A, ROCCO J W. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma[J]. Oral Oncol, 2013, 49(3): 211-215. DOI: 10.1016/j.oraloncology.2012.09.007.
[38]
JIMÉNEZ-SÁNCHEZ A, CYBULSKA P, MAGER K L, et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy[J]. Nat Genet, 2020, 52(6): 582-593. DOI: 10.1038/s41588-020-0630-5.

上一篇 急性缺血性脑卒中患者血管内治疗后动脉再通与磁敏感血管征的相关性研究
下一篇 钆塞酸二钠增强MRI鉴别肝局灶性慢性炎症与单发肝转移瘤的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2