分享:
分享到微信朋友圈
X
临床研究
钆塞酸二钠增强MRI鉴别肝局灶性慢性炎症与单发肝转移瘤的价值
张明玉 朱治 蔡丰灿 吴庆德 欧建宏

本文引用格式:张明玉, 朱治, 蔡丰灿, 等. 钆塞酸二钠增强MRI鉴别肝局灶性慢性炎症与单发肝转移瘤的价值[J]. 磁共振成像, 2026, 17(1): 51-58. DOI:10.12015/issn.1674-8034.2026.01.008.


[摘要] 目的 探索钆塞酸二钠(gadoxetic acid disodium, Gd-EOB-DTPA)增强MRI对鉴别肝脏局灶性慢性炎症病变(focal chronic inflammatory hepatic lesions, FCIHL)与单发肝转移瘤(solitary hepatic metastasis, SHM)的价值。材料与方法 回顾性收集广州中医药大学顺德医院2019年6月至2024年2月经病理确诊为FCIHL(23例)与SHM(36例)共59例患者的临床、病理与Gd-EOB-DTPA增强MRI影像学资料。Kappa检验或组内相关系数用于评估每次阅片中两位观察者间一致性。两组间计量资料比较采用独立样本t检验或Mann-Whitney U检验,定性数据用卡方检验进行组间差异分析,组间差异有统计学意义(P<0.05)的特征经单因素和多因素logistic回归分析,确定FCIHL的独立危险因素,并绘制列线图,ROC曲线用于FCIHL与SHM诊断效能分析。结果 两位观察者的组间一致性极好,ICC或Kappa值均大于0.8(P<0.05)。ADC值、T2WI与肝胆期病灶直径差值为鉴别FCIHL与SHM的独立影响因素,AUC值分别为0.787(95% CI:0.671~0.904)和0.836(95% CI:0.737~0.936)(P<0.05),列线图的综合AUC值高于单一指标,达到0.908(95% CI:0.836~0.980)。结论 Gd-EOB-DTPA增强MRI对鉴别肝脏局灶性慢性炎症病变有一定的价值,其中T2WI与肝胆期病灶直径差值为最具鉴别价值的影像学特征。
[Abstract] Objective To explore the diagnostic value of gadoxetic acid disodium (Gd-EOB-DTPA) enhanced MRI in differentiating of focal chronic inflammatory hepatic lesions (FCIHL) from solitary hepatic metastasis (SHM).Materials and Methods The imaging and clinical data of 23 patients with FCIHL and 36 patients with SHM pathologically confirmed in the Shunde Hospital of Guangzhou University of Chinese Medicine from June 2019 to February 2024 were retrospectively collected. All patients underwent diffusion-weighted imaging (DWI) and gadoxetic acid disodium (Gd-EOB-DTPA) enhanced MRI examinations. The imaging characteristics and clinical indicators were compared between the two groups. Kappa test or intra-class correlation coefficient (ICC) was used to assess the consistency between two observers in each image interpretation. For clinical and imaging data of the two groups that conformed to normal distribution, independent samples t-test was adopted; for other continuous data, Mann-Whitney U test was applied; and for categorical data, chi-square test was used to analyze inter-group differences. Logistic regression analysis was conducted on variables with significant inter-group differences (P < 0.05) to identify the independent risk factors for FCIHL. A nomogram was constructed, and receiver operating characteristic (ROC) curves were plotted to obtain the area under the curve (AUC) values.Results Interobserver consistency between the two observers was excellent, with all ICC or Kappa values greater than 0.8 (all P < 0.05). The apparent diffusion coefficient (ADC) value and the diameter difference of lesions between T2WI and hepatobiliary phase were independent influencing factors for differentiating FCIHL from SHM, with AUC values of 0.787 (95% CI: 0.671 to 0.904) and 0.836 (95% CI: 0.737 to 0.936), respectively (both P < 0.05). The comprehensive AUC value of the nomogram is higher than that of a single indicator, reaching 0.908 (95% CI: 0.836 to 0.980).Conclusions Gd-EOB-DTPA-enhanced MRI has certain value in differentiating FCIHL from SHM. Among these imaging features, the diameter difference of lesions between T2WI and hepatobiliary phase is the most valuable discriminative indicator.
[关键词] 肝脏;局灶性;慢性炎症;肝脏转移瘤;钆塞酸二钠;磁共振成像
[Keywords] liver;focal;chronic inflammation;liver metastasis;gadoxetic acid disodium;magnetic resonance imaging

张明玉 1, 2   朱治 1, 2   蔡丰灿 1, 2   吴庆德 1*   欧建宏 1  

1 广州中医药大学顺德医院医学影像中心,佛山 528329

2 广州中医药大学,广州 511400

通信作者:吴庆德,E-mail:wuqingde1@sohu.com

作者贡献声明:吴庆德设计本研究的方案,对稿件重要内容进行了修改;张明玉负责起草和撰写稿件,获取、分析和解释本研究的数据;朱治、蔡丰灿和欧建宏获取、分析或解释本研究的数据,并对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-09-08
接受日期:2025-12-25
中图分类号:R445.2  R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.008
本文引用格式:张明玉, 朱治, 蔡丰灿, 等. 钆塞酸二钠增强MRI鉴别肝局灶性慢性炎症与单发肝转移瘤的价值[J]. 磁共振成像, 2026, 17(1): 51-58. DOI:10.12015/issn.1674-8034.2026.01.008.

0 引言

       肝局灶性慢性炎症病变(focal chronic inflammatory hepatic lesions, FCIHL)是一类常继发于肝内胆管结石、肝硬化等肝脏慢性疾病,以及糖尿病等全身慢性疾病的肝脏局限性感染性疾病[1, 2]。目前已知其发生与恶性肿瘤存在关联,易被误诊为单发转移瘤(solitary hepatic metastasis, SHM)等乏血供恶性肿瘤[3, 4, 5]。既往相关研究多局限于总结FCIHL在增强CT影像中的特征性表现,而增强CT存在分辨率有限的不足,难以精准区分二者的细微差异[6, 7, 8]。相比之下,增强MRI具备多参数成像优势,软组织分辨率更高,更易捕捉FCIHL的细微组织学特征,尤其借助肝胆特异性对比剂钆塞酸二钠(gadoxetic acid disodium, Gd-EOB-DTPA)获取的肝胆期影像,可更直观地反映肝细胞功能,为二者鉴别提供潜在技术支撑[9, 10]。因此,本研究旨在观察并分析Gd-EOB-DTPA增强MRI上FCIHL的特征表现,探索其在鉴别FCIHL与SHM中的价值。

1 材料与方法

1.1 研究对象

       本研究回顾性收集了2019年6月至2024年2月于广州中医药大学顺德医院经病理确诊的FCIHL(23例)及SHM(36例)患者的临床、病理与Gd-EOB-DTPA增强MRI影像学资料。​纳入标准:(1)所有患者均为本院首次确诊;(2)病灶最大径均≥10 mm;(3)临床及影像学资料完整,且于治疗开始前患者均完成MRI检查,包括平扫、动态对比增强、Gd-EOB-DTPA增强及扩散加权成像(diffusion-weighted imaging, DWI)扫描。排除标准:MRI图像存在明显伪影(如严重呼吸运动伪影)导致图像质量不佳。本研究遵守《赫尔辛基宣言》,经广州中医药大学顺德医院伦理委员会批准,免除受试者知情同意,批准文号:KY-2025130。

1.2 MRI检查方法

       所有患者的MRI图像均采用德国西门子VIDA 3.0 T成像系统,配备8通道相控阵线圈(T1 vibe dicon)。DWI序列b值为50、1000 s/mm2;增强扫描采用脂肪抑制3D梯度回波T1WI序列,经肘前静脉以2 mL/s流率注射Gd-EOB-DTPA,剂量0.025 mmol/kg,随后以相同流率注射20 mL生理盐水冲管。扫描延迟时间:动脉期20~30 s、门静脉期50~60 s、平衡期120~180 s,肝胆期注射对比剂后20 min和30 min后各采集一次。以上序列选用横轴位扫描,扫描层厚6 mm,间距1.5 mm。为了控制肝胆期的图像质量,若注射对比剂后20 min时胆系未显影的患者,将在对比剂注射40 min(不超过60 min)之后进一步延迟扫描。扫描序列及参数详见表1

表1  肝脏钆塞酸二钠增强MRI扫描序列和参数
Tab. 1  Gd-EOB-DTPA enhanced MRI scanning sequences and parameters.

1.3 图像分析

       由分别具有10年和5年腹部诊断经验两位医师在未获取患者临床信息及最终诊断结果的前提下,通过影像归档和通信系统(picture archiving and communication system, PACS)对MRI图像进行随机、独立阅片。阅片者可根据实际情况调整窗宽窗位至最佳状态,且每位阅片者均记录图像编号。判读内容一般征象包括T1WI、T2WI和肝胆期上病灶的边缘、形状、大小,增强MRI的模式[靶样强化(动脉期病灶边缘强化)、非边缘的渐进强化(动脉早期病灶非边缘为低或稍低信号,门脉期和平衡期呈等或稍高信号)],DWI上弥散情况、ADC值。特殊影像特征为:病灶内部是否有血管穿行,胆管是否扩张,动脉早期的异常灌注。

       为减少在T2WI图像和肝胆期图像上因部分容积效应导致的测量误差,我们只纳入了最大层面直径≥10 mm的病灶。并且计量资料[病灶大小、ADC值、T2WI与肝胆期病灶直径差值(T2WI测量出的病灶大小-肝胆期测量的病灶大小),取2位阅读者的平均值]、计数资料(病灶位置、形状、边缘、单发/多发、强化方式和特殊影像特征)先由两位阅读者单独判断,若产生分歧时通过协商统一。

1.4 统计学分析

       采用IBM SPSS 25.0软件进行统计学分析。采用Kappa检验或组内相关系数(intra-class correlation coefficient, ICC)评估阅片中观察者间一致性:Kappa值0.00~0.20为一致性差;0.21~0.40为一致性尚可;0.41~0.60为中等一致性;0.61~0.80为一致性良好;0.81~1.00为一致性极好。对于符合正态分布的计量资料组间差异比较采用独立样本t检验,不符合正态分布的计量资料采用Mann-Whitney U检验;定性数据用卡方检验进行组间差异分析。组间有差异的数据(P<0.05)进行单因素logistic回归分析。将单因素logistic回归分析中具有统计学意义(P<0.05)的变量纳入多因素logistic回归,并使用R语言(4.2.3版本)的“rms”软件包绘制各危险因素的受试者工作特征(receiver operating characteristic, ROC)曲线及列线图。对于无序二分类变量作为结局变量时,我们基于研究逻辑转化为“有序二分类(阳性/阴性)”后再用有序预测变量拟合ROC曲线。

2 结果

2.1 临床一般资料与影像学特征

       本研究为回顾性病例对照研究,共纳入23例FCIHL患者(FCIHL组)和36例SHM患者(SHM组)病例。FCIHL组患者中,年龄范围55~78岁,中位年龄62岁;8例合并糖尿病,4例有肝吸虫感染病史;在既往肿瘤病史方面,4例(17.4%)为乳腺癌术后,6例(26.1%)为结直肠癌术后,2例(8.7%)为原发性肝癌术后。SHM组患者中,14例(38.9%)为结直肠腺癌术后,6例(16.7%)为胰腺癌术后,4例(11.1%)为肺腺癌术后,4例(11.1%)为鼻咽癌术后,3例(8.3%)为胃癌术后,2例(5.6%)为前列腺癌术后,2例(5.6%)为乳腺癌术后,1例(2.8%)为食管癌术后。组间比较结果显示,上述各项指标的差异均无统计学意义(均P>0.05)。临床资料对比详见表2

       23例经病理活检确诊的FCIHL病灶(平均直径22.3 mm,范围12~47 mm)和36例SHM病灶(平均直径26.7 mm,范围13~146 mm)一般征象中,非边缘延迟强化、边缘是否清晰、T2WI与肝胆期病灶直径差值和ADC值差异存在统计学意义(P<0.05),在T1WI、T2WI、动脉期边缘强化、病灶大小、形状和弥散情况差异无统计学意义(P>0.05)。特殊征象中血管穿行和远端胆管扩张差异具有统计学意义(P>0.05),动脉期周围异常灌注差异无统计学意义(P>0.05),详见表3

表2  患者一般资料
Tab. 2  General data of patients
表3  FCIHL和SHM组钆塞酸二钠增强磁共振成像形态学差异
Tab. 3  Morphological differences in gadoxetic acid disodium-enhanced magnetic resonance imaging between the FCIHL and SHM groups

2.2 一致性分析

       两位医师对T1WI、T2WI、强化方式、边缘、形状、弥散情况、胆管扩张情况、异常灌注情况、血管穿行情况评估一致性极好(Kappa值分别为0.874、0.848、0.897、0.878、0.931、0.897、0.910、0.888、0.870,P<0.05)。对病灶大小、ADC值、T2WI与肝胆期病灶直径差值一致性极好,ICC分别为0.990(95% CI:0.983~0.994)、0.828(95% CI:0.727~0.894)、0.985(95% CI:0.975~0.991)(P<0.05)。

2.3 影像特征logistic回归分析结果

       将差异具有统计学意义鉴别FCIHL与SHM的影像特征进行logistic回归分析,发现渐进性强化、血管穿行、胆管扩张、ADC值、T2WI与肝胆期病灶直径差异具有统计学差异(P<0.05),其中ADC值和T2WI与肝胆期病灶直径差值为诊断FCIHL的独立影响因素(表4)。

表4  logistic回归影像特征分析
Tab.4  Logistic regression image feature analysis

2.4 不同征象鉴别FCIHL与SHM的效能

       FCIHL的影响因素绘制列线图(图1),并得到不同征象的ROC曲线(图2)与AUC值(表5)。非边缘延迟强化、血管穿行、胆管扩张、ADC值和T2WI与肝胆期病灶直径差值的AUC值分别为0.653、0.642、0.650、0.787和0.836,其中T2WI与肝胆期的病灶直径差值对鉴别FCIHL与SHM的效能最高。

       不同征象鉴别FCIHL与SHM的效能分析结果发现,列线图的综合AUC最高,达到0.908(表5)。在模型验证中,病例1(图3)评分约88分,列线图得出FCIHL概率为0.75~0.80之间,经病理活检确诊为FCIHL,8个月后复查病灶基本消失,进一步确诊FCIHL;病例2(图4)评分约112分,超过了列线图范围,诊断为转移瘤可能性大,后续经穿刺活检后确诊为肝转移瘤。

图1  危险因素的列线图。ADC:表观扩散系数。
Fig. 1  Nomogram for risk factors. ADC: apparent diffusion coefficient.
图2  不同征象的ROC曲线。ROC:受试者工作特征;ADC:表观扩散系数。
Fig. 2  Receiver operating characteristic curves for different signs. ROC: receiver operating characteristic. ADC: apparent diffusion coefficient.
图3  女,51 岁,腹胀三天,“乙肝小三阳病史”,甲胎蛋白(−)、癌胚抗原(−)。T1WI(3A)显示病灶呈低信号,增强MRI(3B~3F)显示非边缘的渐进强化(0 分),T2WI (3G)与肝胆期(3H)显示病灶范围差值为−2 mm(67 分),ADC图(3I~3J)可见病灶弥散受限,ADC值为1.1×10−3 mm2/s(21 分)。经活检病理诊断为FCIHL。8 个月后复查MRI 增强(3K)可见病灶基本消失,原病灶处只见部分胆管扩张。图中红色三角为病灶,蓝色三角为动脉穿行(0 分),黑色三角为胆管扩张(0 分),红圈为原病灶处,括号内评分数据为各特征列线图评分。ADC:表观扩散系数;FCIHL:肝脏局灶性慢性炎症病变。
Fig. 3  A 51-year-old female patient, with abdominal distension for 3 days and had a history of hepatitis B virus infection with positive HBsAg, HBeAb, and HBcAb, the results of alpha-fetoprotein and carcinoembryonic antigen were negative (-). T1WI (3A) shows the lesion exhibits hypointensity, gadolinium-enhanced MRI (3B-3F) demonstrate non-marginal progressive enhancement of the lesion (0 point), the difference in lesion range between T2WI (3G) and hepatobiliary phase (3H) is -2 mm (67 points), ADC images (3I-3J) show restricted diffusion of the lesion, with an ADC value of 1.1×10-3 mm²/s (21 points). Pathological biopsy confirmed the lesion as FCIHL. The patient after 8 months, the lesion has essentially disappeared, and only partial bile duct dilatation is observed at the original lesion site. Lesions are indicated by red triangles, arterial penetration is indicated by blue triangles, bile duct dilatation is indicated by black triangles, original lesion site marked by a red circle. The numbers in parentheses represent the scores for each feature in the nomogram. ADC: apparent diffusion coefficient; FCIHL: focal chronic inflammatory hepatic lesions.
图4  男,60 岁,肝癌切除术后行免疫、化疗治疗,腹痛半天,甲胎蛋白(AFP) 8 IU/mL。MRI 平扫(4A)可见S6 段一低信号影,边界清晰,呈球形,MRI 增强(4B~4E)可见边缘轻微强化(12 分),无血管穿行(12 分),无胆管扩张(10 分),肝胆期(4F)与T2WI(4G)对比差异值为0(50 分),ADC 图(4H~4I)显示病灶弥散受限,ADC 值约为1.0×10−3 mm2/s(28 分)。图中红色三角为病灶,括号内评分数据为各特征列线图评分。ADC:表观扩散系数。
Fig. 4  A 60-year-old male patient, who had undergone hepatectomy for hepatocellular carcinoma and subsequently received immunotherapy and chemotherapy, with abdominal pain for half a day, the alpha-fetoprotein (AFP) increased to 8 IU/mL. MRI plain scan image (4A) shows a hypointense lesion in S6 of the liver with a clear boundary and a spherical shape, gadolinium-enhanced MRI images (4B-4E) revealing slight marginal enhancement of the lesion (12 points), no arterial penetration (12 points), no bile duct dilatation (12 points), the difference in the lesion size between hepatobiliary phase (4F) and T2WI (4G), ADC images (4H-4I) show restricted diffusion of the lesion, with an ADC value of approximately 1.0×10-3 mm2/s (28 points). Lesions are indicated by red triangles. The numbers in parentheses represent the scores for each feature in the nomogram. ADC: apparent diffusion coefficient.
表5  不同征象鉴别FCIHL与SHM的效能
Tab.5  Efficacy of different signs in distinguishing FCIHL from SHM

3 讨论

       本研究首次探讨了Gd-EOB-DTPA增强MRI在鉴别FCIHL与SHM中的价值,结果显示FCIHL组在非边缘延迟强化、血管穿行、胆管扩张、ADC值和T2WI与肝胆期病灶直径差值与SHM组差异有统计学意义,其中,ADC值和T2WI与肝胆期的病灶直径差值是鉴别FCIHL与SHM的独立影响因素。提示Gd-EOB-DTPA增强MRI在鉴别FCIHL与SHM中具有较好的价值,可以一定程度上降低影像医生的误诊率。

3.1 FCIHL与SHM的临床与影像学特征

       本研究中,FCIHL与SHM患者中老年人居多[年龄:(59.08±10.10)岁 vs.(55.7±11.60)岁],且大多数患者伴有全身性基础疾病和肝脏慢性病,部分患者有肿瘤病史[11, 12, 13]。在疾病确诊初期,患者的临床症状常不明显,且肿瘤标志物异常或炎症细胞升高等因素可能导致诊断混淆[14, 15, 16]。本研究中,慢性胆囊炎、胆管结石病史,以及CEA、CA19-9、白细胞计数等指标差异无统计学意义,这进一步支持了上述结论[17, 18, 19]。部分研究指出,FCIHL与SHM的增强CT表现具有相似性,均表现为动脉期不强化、门脉期轻微强化,类似于门静脉供血的肝转移瘤[20, 21]。然而,本研究发现,FCIHL与SHM在病灶大小、形状及动脉期边缘强化等方面差异无统计学意义,该结果进一步验证了两者在影像学上的相似性,从而增加了临床诊断的难度。

3.2 病理与影像学分析的结合

       Gd-EOB-DTPA增强MRI多参数、多序列成像,能更好地显示软组织的细节和病理特征[22, 23, 24]。FCIHL病灶在病理切片中可见边界清晰的三层结构,中心为坏死区,坏死的纤维化组织中散在正常肝细胞[25]。基于这些病理特征,FCIHL在T1WI上表现为低或稍低信号,而在T2WI上显示高或稍高信号[26]。特别是病灶中心的纤维组织增生区域,在多参数增强MRI中表现为非边缘的渐进性强化。这些影像学特征为鉴别FCIHL提供了重要线索。坏死区周围可见炎症细胞浸润肝组织形成的“炎性反应带”,“炎性反应带”中可见长梭形核的纤维母细胞。这条反应带中由于大量的炎性细胞浸润,但几乎没有正常功能的肝细胞,因此该反应带在T2WI上病灶的周围显示出等或稍低信号,而肝胆期上则显示低信号的无摄取区域,故产生了病灶直径的差异。肝转移瘤中病灶最外围为致密的肿瘤细胞,T2WI上呈等或高密度的病灶范围则基本等于或略大于肝胆期[27]

       FCIHL病灶最外层为排列稍紊乱且增大的肝细胞,这些细胞压迫了汇管区的小胆管,导致其扩张。MRI上可以观察到细小的条状低信号,而在CT图像上不易显示[28]。其形成原因为细菌、病毒或寄生虫从小血管、胆管、淋巴管逆行进入肝脏,引发炎症反应导致远端小胆管水肿阻塞[29]。和其他部位的炎性病灶相同,FCIHL病灶中可见血管穿行。而肝转移瘤存在占位效应,血管通常被挤压甚至会被肿瘤细胞侵犯。

       炎症反应会影响正常肝组织的细胞密度、细胞核/细胞质比值、胞浆内大分子物质含量以及细胞膜的通透性[30]。FCIHL病灶中主要是炎性细胞以及纤维细胞增生,细胞排列较稀疏导致ADC值稍高。而肝转移瘤病灶内为肿瘤细胞,细胞排列更紧密,ADC值稍低[31, 32]。FCIHL病灶中央的纤维组织间可见少量的正常肝细胞使其肝胆期为稍低信号而不是极低信号[33]。SHM肝胆期病灶则显示为极低信号。FCIHL病灶周围的异常灌注少见,本研究中有17.4%(4/23例)具有该特点均为嗜酸性粒细胞浸润[34, 35]

3.3 Gd-EOB-DTPA增强MRI的诊断效能

       Gd-EOB-DTPA增强MRI中的DWI可以通过分析病理状态下细胞内外水分子的扩散情况反映病灶的病理生理状态,ADC值作为DWI的重要参数对区分良恶性有一定的价值[36]。肝胆期中有机阴离子转运多肽(OATP1B3)促进正常肝细胞对Gd-EOB-DTPA的摄取使正常肝实质在肝胆期表现为高信号[37]。研究表明,T2WI与肝胆期病灶直径差值、ADC值是鉴别FCIHL与SHM的独立影响因素。AUC值分别为0.836和0.787,表明这些影像学参数在区分FCIHL与SHM时具有较好的诊断价值。通过这些参数,可以有效提高临床诊断的准确性,从而降低误诊率。

       尽管FCIHL与SHM在非边缘延迟强化、血管穿行、胆管扩张等传统形态学特征上差异存在统计学意义(P<0.05),但其AUC值接近0.65,提示这些特征在实际临床诊断中的鉴别效能有限。尽管如此,传统形态学特征仍具有一定的参考价值,尤其是当与功能学参数(如ADC值)和肝胆期特异性参数(如病灶直径差值)结合使用时,能够显著提高诊断的准确性。例如FCIHL组中16/23例(69.6%)出现非边缘延迟强化,11/23例(47.8%)存在血管穿行,15/23例(65.2%)伴远端胆管扩张,这些特征的集中出现可倾向于FCIHL诊断;但SHM组中也有38.9%(14/36)出现非边缘延迟强化、19.4%(7/36)存在血管穿行、16.7%(6/36)伴胆管扩张,提示两者在形态学表现上存在明显重叠,导致特异性不足。

       传统形态学特征虽鉴别效能有限,但可提供病灶的基础形态信息,与功能学参数(ADC值)、肝胆期特异性参数(直径差值)形成互补。我们得到的列线图综合这些指标后AUC达到0.908,显著高于单一指标,提示临床诊断应通过多维度信息整合,最大限度降低误诊率[38]

       我们的研究在以往研究的基础上加入肝胆期,所有病例都进行了病理活检与MRI平扫、动态对比增强、Gd-EOB-DTPA增强、DWI扫描检查,甚至为了进一步确诊,部分病例在随访中进行了不止一次活检。

3.4 局限性及展望

       本研究具有一些局限性:(1)本研究纳入的病例数较少且两组病例数差距稍大,多个变量进行多因素logistic回归分析会对结果的准确性带来一些偏倚,得出的模型存在一定过拟合风险,结果的普适性稍低。(2)我们深知不同来源的肝转移瘤的血供、纤维化程度、细胞密度等生物学特性存在差异,MRI表现随之存在一定异质性。但肝转移瘤常为多发病例而单发病例少见,本研究“SHM组”不得不纳入了多达8种原发肿瘤的SHM病灶,我们尽可能涵盖肝转移瘤的共性来最大程度削弱这种混杂偏倚。但需要承认这种做法会导致结果缺乏一定的说服力。(3)本研究纳入的影像学特征均为影像医生观察总结,可能会有一定的主观性。

       未来我们希望能收集更多FCIHL组与SHM组病例,降低模型过拟合的风险。并且将不同原发肿瘤的SHM患者细分亚组来尽量减小不同来源的肝转移瘤给研究带来的混杂偏倚。随着样本量的扩大,我们也将采用影像组学或者深度学习等更精细的机器学习方法来提取病灶中细微的影像特征得到更科学更有说服力的研究结果。

4 结论

       Gd-EOB-DTPA增强MRI上T2WI与肝胆期病灶直径差值对FCIHL与SHM的鉴别诊断具有一定的价值。可以帮助FCIHL降低误诊率并与SHM鉴别。

[1]
REIZINE E, MULÉ S, LUCIANI A. Focal benign liver lesions and their diagnostic pitfalls[J]. Radiol Clin North Am, 2022, 60(5): 755-773. DOI: 10.1016/j.rcl.2022.05.005.
[2]
NEPAL P, OJILI V, KUMAR S, et al. Beyond pyogenic liver abscess: a comprehensive review of liver infections in emergency settings[J]. Emerg Radiol, 2020, 27(3): 307-320. DOI: 10.1007/s10140-020-01757-6.
[3]
覃夏丽, 赵凡玉, 杨朋, 等. 肝脏局灶性慢性炎性病变的影像及病理对照分析[J]. 实用放射学杂志, 2022, 38(5): 755-758, 772. DOI: 10.3969/j.issn.1002-1671.2022.05.014.
QIN X L, ZHAO F Y, YANG P, et al. Imaging manifestations and pathological features of focal liver chronic inflammatory lesions[J]. J Pract Radiol, 2022, 38(5): 755-758, 772. DOI: 10.3969/j.issn.1002-1671.2022.05.014.
[4]
TSILIMIGRAS D I, BRODT P, CLAVIEN P A, et al. Liver metastases[J/OL]. Nat Rev Dis Primers, 2021, 7: 27 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/33859205/. DOI: 10.1038/s41572-021-00261-6.
[5]
中华医学会放射学分会医学影像大数据与人工智能工作委员会, 中华医学会放射学分会腹部学组, 中华医学会放射学分会磁共振学组. 肝脏局灶性病变CT和MRI标注专家共识(2020)[J]. 中华放射学杂志, 2020, 54(12): 1145-1152. DOI: 10.3760/cma.j.cn112149-20200706-00893.
Working Committee on Medical Imaging Big Data and Artificial Intelligence of Chinese Society of Radiology, Abdominal Imaging Group of Chinese Society of Radiology, Magnetic Resonance Imaging Group of Chinese Society of Radiology. Expert consensus on the focal liver lesion annotation of CT and MRI (2020)[J]. Chin J Radiol, 2020, 54(12): 1145-1152. DOI: 10.3760/cma.j.cn112149-20200706-00893.
[6]
包媛媛, 潘燚琪, 麦筱莉. 磁共振成像技术在肝纤维化分级诊断中的研究进展[J]. 磁共振成像, 2025, 16(3): 196-200. DOI: 10.12015/issn.1674-8034.2025.03.033.
BAO Y Y, PAN Y Q, MAI X L. Progress on the role of magnetic resonance imaging techniques in the staged diagnosis of hepatic fibrosis[J]. Chin J Magn Reson Imag, 2025, 16(3): 196-200. DOI: 10.12015/issn.1674-8034.2025.03.033.
[7]
魏焕焕, 付芳芳, 杨燕, 等. 国内外肝胆特异性对比剂钆塞酸二钠的临床应用对比研究[J]. 磁共振成像, 2023, 14(1): 89-93. DOI: 10.12015/issn.1674-8034.2023.01.016.
WEI H H, FU F F, YANG Y, et al. A comparative study on the clinical application of domestic hepatobiliary specific contrast agent and foreign hepatobiliary specific contrast agent Gd-EOB-DTPA[J]. Chin J Magn Reson Imag, 2023, 14(1): 89-93. DOI: 10.12015/issn.1674-8034.2023.01.016.
[8]
LIU X Y, TAN S B M, AWIWI M O, et al. Imaging findings in cirrhotic liver: pearls and pitfalls for diagnosis of focal benign and malignant lesions[J/OL]. Radiographics, 2023, 43(9): e230043 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/37651277/. DOI: 10.1148/rg.230043.
[9]
CALISTRI L, MARAGHELLI D, NARDI C, et al. Magnetic resonance imaging of inflammatory pseudotumor of the liver: a 2021 systematic literature update and series presentation[J]. Abdom Radiol, 2022, 47(8): 2795-2810. DOI: 10.1007/s00261-022-03555-9.
[10]
NOREIKAITE J, ALBASHA D, CHIDAMBARAM V, et al. Indeterminate liver lesions on gadoxetic acid-enhanced magnetic resonance imaging of the liver: Case-based radiologic-pathologic review[J]. World J Hepatol, 2021, 13(9): 1079-1097. DOI: 10.4254/wjh.v13.i9.1079.
[11]
BURROWES D P, MERRILL C D, WILSON S R. Ultrasound innovations in abdominal radiology: evaluation of focal liver lesions[J]. Abdom Radiol, 2025, 50(11): 5520-5530. DOI: 10.1007/s00261-025-04970-4.
[12]
TANG W J, XIAO Y Q, KUANG S C, et al. Intraindividual crossover comparison of gadobenate dimeglumine-enhanced and gadoxetate disodium-enhanced MRI for characterizing focal liver lesions[J/OL]. Eur Radiol Exp, 2025, 9(1): 23 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/39966271/. DOI: 10.1186/s41747-025-00551-8.
[13]
AN J Y, PEÑA M A, CUNHA G M, et al. Abbreviated MRI for hepatocellular carcinoma screening and surveillance[J]. RadioGraphics, 2020, 40(7): 1916-1931. DOI: 10.1148/rg.2020200104.
[14]
KALE A, PATIL P S, CHHANCHURE U, et al. Hepatic tuberculosis masquerading as malignancy[J]. Hepatol Int, 2022, 16(2): 463-472. DOI: 10.1007/s12072-021-10257-9.
[15]
李彦瑶, 贺业新. MRI评估结直肠癌肝转移瘤化疗疗效的研究进展[J]. 磁共振成像, 2023, 14(11): 183-187. DOI: 10.12015/issn.1674-8034.2023.11.031.
LI Y Y, HE Y X. Progress of MRI in assessing the efficacy of chemotherapy for colorectal liver metastases[J]. Chin J Magn Reson Imag, 2023, 14(11): 183-187. DOI: 10.12015/issn.1674-8034.2023.11.031.
[16]
方子榕, 陈秋雁, 叶灵, 等. 压缩感知联合并行采集技术的屏气3D LAVA FLEX序列在肝脏磁共振快速成像中的应用[J]. 磁共振成像, 2024, 15(2): 155-161. DOI: 10.12015/issn.1674-8034.2024.02.023.
FANG Z R, CHEN Q Y, YE L, et al. Application of compressed sensing combined with parallel acqusition technique of breath-holding 3D LAVA FLEX sequence in rapid magnetic resonance imaging of liver[J]. Chin J Magn Reson Imag, 2024, 15(2): 155-161. DOI: 10.12015/issn.1674-8034.2024.02.023.
[17]
KOBAYASHI S. Hepatic pseudolesions caused by alterations in intrahepatic hemodynamics[J]. World J Gastroenterol, 2021, 27(46): 7894-7908. DOI: 10.3748/wjg.v27.i46.7894.
[18]
KOVAČ J D, JANKOVIĆ A, ĐIKIĆ-ROM A, et al. Imaging spectrum of intrahepatic mass-forming cholangiocarcinoma and its mimickers: how to differentiate them using MRI[J]. Curr Oncol, 2022, 29(2): 698-723. DOI: 10.3390/curroncol29020061.
[19]
VARIGONDA M, YARLAGADDA J, CHETANA NAGA SAI T, et al. The role of diffusion-weighted MRI in correlation with contrast-enhanced MRI and histopathology in the evaluation of focal liver lesions[J/OL]. Cureus, 2024, 16(10): e71261 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/39525143/. DOI: 10.7759/cureus.71261.
[20]
BARADARAN NAJAR A, GILBERT G, KARAM E, et al. MR elastography for classification of focal liver lesions using viscoelastic parameters: a pilot study based on intrinsic and extrinsic activations[J]. J Magn Reson Imaging, 2025, 61(6): 2525-2540. DOI: 10.1002/jmri.29633.
[21]
DOBEK A, KOBIERECKI M, CIESIELSKI W, et al. Usefulness of contrast-enhanced ultrasound in the differentiation between hepatocellular carcinoma and benign liver lesions[J/OL]. Diagnostics, 2023, 13(12): 2025 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/37370920/. DOI: 10.3390/diagnostics13122025.
[22]
LI X Q, WANG X, ZHAO D W, et al. Application of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma[J/OL]. World J Surg Oncol, 2020, 18(1): 219 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/32828123/. DOI: 10.1186/s12957-020-01996-4.
[23]
CHOI S H, LEE C H, KIM B H, et al. "Nondefect" of arterial enhancing rim on hepatobiliary phase in 3.0-T gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced liver magnetic resonance imaging: distinguishing hepatic abscess from metastasis[J]. J Comput Assist Tomogr, 2013, 37(6): 849-855. DOI: 10.1097/RCT.10.1097/RCT.0b013e318297211a.
[24]
MATTEINI F, CANNELLA R, GARZELLI L, et al. Benign and malignant focal liver lesions displaying rim arterial phase hyperenhancement on CT and MRI[J/OL]. Insights Imaging, 2024, 15(1): 178 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/39020233/. DOI: 10.1186/s13244-024-01756-y.
[25]
FERNANDES D A, LAGO E A DAL, OLIVER F A, et al. Hepatobiliary phases in magnetic resonance imaging using liver-specific contrast for focal lesions in clinical practice[J]. World J Hepatol, 2022, 14(7): 1459-1469. DOI: 10.4254/wjh.v14.i7.1459.
[26]
瞿晓春, 李勇. CT对肝局灶性慢性炎症病变与肝内肿块型胆管细胞癌的鉴别诊断[J]. 中国医学影像学杂志, 2023, 31(5): 504-508, 516. DOI: 10.3969/j.issn.1005-5185.2023.05.014.
QU X C, LI Y. CT features in the differential diagnosis between focal chronic inflammatory hepatic lesions and intrahepatic cholangiocarcinoma[J]. Chin J Med Imag, 2023, 31(5): 504-508, 516. DOI: 10.3969/j.issn.1005-5185.2023.05.014.
[27]
刘炼, 侯钦, 熊健. 分隔/蜂窝样强化、表观扩散系数值、血管侵犯征象可有效鉴别患者肝局灶性慢性炎性病变与胆管细胞癌[J]. 分子影像学杂志, 2025, 48(3): 353-359. DOI: 10.12122/j.issn.1674-4500.2025.03.15.
LIU L, HOU Q, XIONG J. Septal/honeycomb enhancement, apparent diffusion coefficient value and vascular invasion can effectively distinguish focal chronic inflammatory lesions from cholangiocarcinoma in the liver[J]. J Mol Imag, 2025, 48(3): 353-359. DOI: 10.12122/j.issn.1674-4500.2025.03.15.
[28]
SERRAINO C, ELIA C, BRACCO C, et al. Characteristics and management of pyogenic liver abscess: A European experience[J/OL]. Medicine, 2018, 97(19): e0628 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/29742700/. DOI: 10.1097/md.0000000000010628.
[29]
JIN K P, SHENG R F, YANG C, et al. Combined arterial and delayed enhancement patterns of MRI assist in prognostic prediction for intrahepatic mass-forming cholangiocarcinoma (IMCC)[J]. Abdom Radiol, 2022, 47(2): 640-650. DOI: 10.1007/s00261-021-03292-5.
[30]
DOBEK A, KOBIERECKI M, CIESIELSKI W, et al. Comparative efficacy of contrast-enhanced ultrasound versus B-mode ultrasound in the diagnosis and monitoring of hepatic abscesses[J]. Pol J Radiol, 2024, 89: 470-479. DOI: 10.5114/pjr/192184.
[31]
ZHANG W, LIU Y L, WU Q, et al. Pitfalls and strategies of Sonazoid enhanced ultrasonography in differentiating metastatic and benign hepatic lesions[J]. Clin Hemorheol Microcirc, 2024, 86(4): 467-479. DOI: 10.3233/CH-231995.
[32]
MÜCKE M M, KESSEL J, MÜCKE V T, et al. The role of Enterococcus spp. and multidrug-resistant bacteria causing pyogenic liver abscesses[J/OL]. BMC Infect Dis, 2017, 17(1): 450 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/28651522/. DOI: 10.1186/s12879-017-2543-1.
[33]
COLAGRANDE S, CENTI N, PRADELLA S, et al. Transient hepatic attenuation differences and focal liver lesions: sump effect due to primary arterial hyperperfusion[J]. J Comput Assist Tomogr, 2009, 33(2): 259-265. DOI: 10.1097/RCT.0b013e31818050bc.
[34]
OZAKI K, HIGUCHI S, KIMURA H, et al. Liver metastases: correlation between imaging features and pathomolecular environments[J]. Radiographics, 2022, 42(7): 1994-2013. DOI: 10.1148/rg.220056.
[35]
ZHUO L Y, XING L H, MA X, et al. Differentiating between an atypical hepatic abscess and tumor metastasis using magnetic resonance imaging and hepatobiliary phase imaging[J]. Infect Drug Resist, 2021, 14: 3263-3274. DOI: 10.2147/IDR.S318291.
[36]
丹增耶昂, 鲍海华, 张雪倩, 等. 表观扩散系数在预测肝泡状棘球蚴病发生远处转移的临床价值[J]. 磁共振成像, 2024, 15(11): 90-95. DOI: 10.12015/issn.1674-8034.2024.11.014.
DANZENG Y A, BAO H H, ZHANG X Q, et al. Clinical value of apparent diffusion coefficient in predicting distant metastasis in hepatic alveolar echinococcosis[J]. Chin J Magn Reson Imag, 2024, 15(11): 90-95. DOI: 10.12015/issn.1674-8034.2024.11.014.
[37]
MORISAKA H, MOTOSUGI U, ICHIKAWA S, et al. Uptake of gadoxetic acid in hepatobiliary phase magnetic resonance imaging and transporter expression in hypovascular hepatocellular nodules[J/OL]. Eur J Radiol, 2021, 138: 109669 [2025-09-07]. https://pubmed.ncbi.nlm.nih.gov/33770738/. DOI: 10.1016/j.ejrad.2021.109669.
[38]
LEE M H, KIM S H, KIM H, et al. Differentiating focal eosinophilic infiltration from metastasis in the liver with gadoxetic acid-enhanced magnetic resonance imaging[J]. Korean J Radiol, 2011, 12(4): 439-449. DOI: 10.3348/kjr.2011.12.4.439.

上一篇 基于DCE-MRI肿瘤异质性定量和深度学习预测乳腺癌新辅助化疗疗效的价值
下一篇 基于多模态MRI可解释模型预测局部进展期直肠癌患者新辅助治疗疗效
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2