分享:
分享到微信朋友圈
X
临床研究
基于虚拟磁共振弹性成像预测宫颈癌淋巴结转移
张月洁 杨紫涵 董林逍 刘金金 陈洁洁 蒋文亮 樊荣科 吴青霞 吴青霞 王梅云

本文引用格式:张月洁, 杨紫涵, 董林逍, 等. 基于虚拟磁共振弹性成像预测宫颈癌淋巴结转移[J]. 磁共振成像, 2026, 17(1): 79-84. DOI:10.12015/issn.1674-8034.2026.01.011.


[摘要] 目的 探索基于扩散加权成像(diffusion-weighted imaging, DWI)的虚拟磁共振弹性成像(virtual magnetic resonance elastography, vMRE)对直接手术宫颈癌患者淋巴结转移(lymph node metastasis, LNM)的预测效能。材料与方法 前瞻性纳入2021年11月至2022年11月于河南省人民医院进行术前盆腔MRI检查并接受根治性子宫切除术的宫颈癌患者的临床及影像资料。所有患者的MRI检查序列均包括多b值DWI,基于DWI数据生成vMRE图像并提取宫颈癌灶的基于扩散的虚拟剪切模量(DWI-based virtual shear modulus, μDiff)参数。根据术后的病理结果分为LNM阳性组和阴性组。通过t检验或Mann-Whitney U检验比较LNM阳性组与阴性组间μDiff参数的差异,使用logistics回归分析筛选出与淋巴结状态相关的变量,构建预测模型,并绘制受试者工作特征(receiver operating characteristic, ROC)曲线,采用ROC曲线下面积(area under the curve, AUC)评价各模型的预测效能。结果 最终纳入81例宫颈癌患者,其中LNM阳性组20例,LNM阴性组61例。临床变量中鳞状细胞癌相关抗原(squmaous cell carcinoma antigen, SCCAG)和最大淋巴结短径与LNM显著相关。LNM阳性组患者的μDiff最大值、平均值、中位数及最小值均高于LNM阴性组(P<0.05),而μDiff最小值在两组间未发现显著差异(P>0.05)。由μDiff平均值与最大淋巴结短径联合构建的模型预测LNM效能最佳,AUC为0.824(95% CI:0.683~0.965),优于仅基于μDiff平均值及最大淋巴结短径构建的单一模型。结论 基于多b值DWI的vMRE图像特征能够作为一种无创性指标反映组织的硬度,有助于提高宫颈癌患者LNM的预测准确性,为术前无创评估LNM提供了新的影像学生物标志物。
[Abstract] Objective To evaluate the predictive efficacy of virtual magnetic resonance elastography (vMRE) based on diffusion-weighted imaging (DWI) for lymph node metastasis (LNM) in cervical cancer patients undergoing direct surgery.Materials and Methods Clinical and imaging data of cervical cancer patients who underwent preoperative pelvic MRI and radical hysterectomy at Henan Provincial People's Hospital between November 2021 and November 2022 were retrospectively collected and analyzed. The pelvic MRI protocol included multi-b-value DWI, and vMRE images were generated from DWI data to extract the (μDiff) parameter. Based on postoperative pathology, patients were divided into LNM-positive and LNM-negative groups. The t-test or Mann-Whitney U test was used to compare differences in DWI-based virtual shear modulus μDiff parameters between groups, and logistic regression analysis was performed to identify variables associated with lymph node status. Predictive models were constructed, and receiver operating characteristic (ROC) curves were plotted. The area under the curve (AUC) was used to evaluate the predictive performance of each model.Results Among clinical variables, squamous cell carcinoma antigen (SCCAG) and maximum lymph node short-axis diameter were significantly associated with LNM. The mean, maximum, and median μDiff values in the LNM-positive group were significantly higher than those in the negative group (P < 0.05). The combined model incorporating the maximum μDiff value and maximum lymph node short-axis diameter demonstrated the best predictive performance for LNM, with an AUC of 0.824 (95% CI: 0.683 to 0.965), superior to the single model constructed solely based on the mean μDiff value and the short-axis diameter of the largest lymph node.Conclusions vMRE image features based on multi-b-value DWI can serve as a noninvasive indicator reflecting tissue stiffness, improving the predictive accuracy of LNM in cervical cancer patients. This approach provides a novel imaging biomarker for the preoperative noninvasive assessment of LNM.
[关键词] 宫颈癌;淋巴结转移;磁共振成像;虚拟磁共振弹性成像;扩散加权成像
[Keywords] cervical cancer;lymph node metastasis;magnetic resonance imaging;virtual magnetic resonance elastography;diffusion-weighted imaging

张月洁 1   杨紫涵 2   董林逍 1   刘金金 2   陈洁洁 2   蒋文亮 1   樊荣科 1   吴青霞 3   吴青霞 1, 2*   王梅云 1, 2, 4  

1 河南大学人民医院(河南省人民医院)医学影像科,郑州 450003

2 郑州大学人民医院(河南省人民医院)医学影像科,郑州 450003

3 联影智能医疗科技(北京)有限公司,北京 100089

4 河南省科学研究院,郑州 450008

通信作者:吴青霞,E-mail:qxwu@zzu.edu.cn

作者贡献声明:吴青霞(通信作者)设计本研究的方案,参与分析、解释本研究的重要数据,并对稿件重要内容进行了修改,获得了国家自然科学基金资助;王梅云参与分析、解释本研究的重要数据,并对稿件重要内容进行了修改,获得了国家重点研发计划重点专项资助;张月洁起草和撰写稿件,搜集、分析和解释本研究的数据;吴青霞(作者)、刘金金、董林逍、杨紫涵、陈洁洁、蒋文亮、樊荣科搜集、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82001783
收稿日期:2025-08-26
接受日期:2025-12-29
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.011
本文引用格式:张月洁, 杨紫涵, 董林逍, 等. 基于虚拟磁共振弹性成像预测宫颈癌淋巴结转移[J]. 磁共振成像, 2026, 17(1): 79-84. DOI:10.12015/issn.1674-8034.2026.01.011.

0 引言

       宫颈癌是我国女性第二常见的恶性肿瘤,并伴有明显年轻化的趋势[1],其治疗决策和预后评估高度依赖准确的临床分期[2]。2018年国际妇产科联盟(international federation of gynecology and obstetrics, FIGO)分期标准,将通过影像学发现存在淋巴结转移(lymph node metastasis, LNM)的宫颈癌患者划分为ⅢC期[3],因此LNM在治疗方式及预后有重要作用[4- 5]。目前临床常规对LNM诊断应用的MRI技术常依赖于淋巴结的形态学特征,评估LNM的准确性不高[6, 7]。磁共振弹性成像(magnetic resonance elastography, MRE)是一种能无创定量评估组织硬度、量化组织内部力学特性的方法,能够用于定量测量软组织的机械特性[8, 9]。该技术在肝纤维化的评估中已展现出良好的临床应用价值[10, 11],并逐步拓展至乳腺、脾脏、肾脏和胰腺等器官[12, 13]。然而,传统MRE技术存在固有局限,机械波在穿透组织时波幅迅速衰减,相移转换到波长的过程中容易受到混杂效应的影响,且扫描依赖专用的外接设备[14, 15]。这些缺点限制了MRE技术的广泛应用[16]

       扩散加权成像(diffusion-weighted imaging, DWI)在微观水平上对组织结构具有极高的敏感性[17, 18],位移表观扩散系数(shifted apparent diffusion coefficient, sADC)值与组织弹性存在显著相关性[19, 20]。前期研究已证实,基于DWI的虚拟MRE(virtual MRE, vMRE)测得的组织弹性参数与颈部淋巴结转移状态具有显著相关性[21],提示该技术在LNM预测方面的潜在价值。目前尚缺乏关于vMRE在宫颈癌LNM预测方面的系统研究,本研究拟基于DWI生成的vMRE图像,分析癌灶的弹性特征,构建宫颈癌患者LNM状态预测模型,为临床提供一种新型的无创的辅助诊断工具。

1 材料与方法

1.1 研究对象

       本研究为前瞻性设计,纳入2021年11月至2022年11月计划接受根治性子宫切除术的患者。纳入标准:(1)计划接受根治性子宫切除术;(2)MRI检查及手术前未接受过任何抗肿瘤治疗;(3)术前MRI检查方案中包括b值为200 s/mm2和1500 s/mm2的轴位扩散加权成像(axial diffusion-weighted imaging, Ax-DWI)扫描。排除标准:(1)术后病理报告未包含癌灶及盆腔淋巴结信息的宫颈癌患者;(2)患者同时患有其他妇科肿瘤如子宫肌瘤、子宫内膜癌等;(3)MRI图像质量差。根据术后病理报告的LNM状态将患者分为LNM阳性组和阴性组。病例筛选流程见图1

       本研究遵守《赫尔辛基宣言》,经过河南省人民医院医学伦理委员会批准(伦理批准号:2021150),严格遵守相关伦理隐私标准与隐私保护等法律法规,保障参与者的权益和安全,所有受试者均签署知情同意书。

图1  筛选流程图。LNM:淋巴结转移。
Fig. 1  Screening flowchart. LNM: lymph node metastasis.

1.2 MRI图像采集

       本研究所有患者均采用美国GE公司MR Discovery 750HD 3.0 T扫描仪,配备8通道体部线圈。检查前确保患者膀胱充盈程度适中,患者采取仰卧位接受检查。(1)常规平扫:矢状位T2WI、冠状位T2WI、轴位T1WI序列、T2WI序列以及T2WI压脂序列。参数:TR 4000 ms,TE 125 ms,层厚4 mm,层间距1 mm。(2)DWI扫描:采用单次激发自旋回波-平面回波成像(spin-echo echo planar imaging, SE-EPI)技术。参数:TR 4000 ms,TE 58.5 ms,层厚6 mm,层间距1 mm,包含低b值200 s/mm2与高b值1500 s/mm2

1.3 图像分析与后处理

       采集所有符合纳排标准患者的Ax_DWI数据,选取b值为200 s/mm²和1500 s/mm²的双b值序列图像进行分析。所有DWI原始数据均通过医学影像传输协议(digital imaging and communications in medicine, DICOM)传输至配备Python 3.8编程环境的后处理工作站,进行后处理分析以生成vMRE参数。使用200 s/mm2和1500 s/mm2两个关键b值计算sADC(式1)。

       sADC单位为mm2/s,S200为b=200 s/mm2的图像信号,S1500为b=1500 s/mm2的图像信号。组织硬度用基于扩散的虚拟剪切模量(DWI-based virtual shear modulus, μDiff)表示(式2)。

       μDiff单位为kPa,常数αβ的值分别为-9.8±0.8和14.0±0.9。

       在去除背景信号的同时保持盆腔内软组织特征,以体素为单位生成vMRE图(图2),由1名具有14年临床经验的放射科主任医师基于b值为1500 s/mm2的DWI图像在不清楚临床分期的情况下手动勾画癌灶感兴趣区(region of interest, ROI),3个月后再次逐个验证,确定最终三维感兴趣体积(volume of interest, VOI)(图2),此过程在ITK-SNAP(version 4.0.0;http://www.itksnap.org)沿病灶实质区域边界勾画ROI(图2)。使用PyRadiomics(version 2.3.0)平台生成多个μDiff指标,包括平均值、最大值、中位数和最小值。

图2  ROI分割示意图。2A:b值为1500 s/mm2的DWI图像;2B:基于DWI生成的vMRE图像。患者女,48岁,子宫颈占位性病变的最大直径为4.0 cm,术后病理报告右侧盆腔淋巴结转移阳性,其最大淋巴结短径为14.05 mm,ROI勾画包含癌灶的整个区域,将ROI覆盖于vMRE图中,经过软件计算ROI范围μDiff的平均值、最大值、中位数及最小值分别为7.810 kPa、23.082 kPa、8.033 kPa及-0.283 kPa。ROI:感兴趣区;DWI:扩散加权成像;vMRE:虚拟磁共振弹性成像。
Fig. 2  ROI segmentation images. 2A: DWI images with a b-value of 1500 s/mm2; 2B: Virtual MRE image generated based on DWI. The patient is a 48-year-old female with a cervical space-occupying lesion measuring 4.0 cm in maximum diameter. Postoperative pathological report indicated positive right pelvic lymph node metastasis, with the largest lymph node having a short-axis diameter of 14.05 mm, an ROI was delineated covering the entire area of the cancerous lesion, the ROI was overlaid onto the vMRE map, and the mean, maximum, median, and minimum μDiff values within the ROI, calculated by the software, were 7.810 kPa, 23.082 kPa, 8.033 kPa, and -0.283 kPa, respectively. ROI: region of interest; DWI: diffusion-weighted imaging. vMRE: virtual magnetic resonance elastography.

1.4 统计学分析

       所有数据使用SPSS 27.0软件分析。连续型变量根据其正态性检验结果分别处理:符合正态分布者,以均数±标准差进行描述,组间比较采用独立样本t检验;不符合正态分布者,以中位数及四分位距M(IQR)表示,并采用Mann-Whitney U检验进行组间比较。对于各临床特征,采用logistics回归分析筛选与LNM相关的变量并构建LNM预测模型。采用单因素logistic回归进行初步筛选,将P<0.10的变量纳入多因素logistic回归模型(使用进入法)进一步分析。采用ROC曲线分析μDiff在预测根治性子宫切除术LNM的能力,并使用DeLong检验进行比较。通过计算约登指数,将其最大值所对应的点作为最佳截断值。采用组内相关系数(intra-class correlation coefficient, ICC)评价基于DWI的vMRE图上测量μDiff的观察者内一致性,ICC>0.75为一致性好。P<0.05为差异有统计学意义。

2 结果

2.1 一般资料

       本研究共收集了115例患者的临床及影像资料,根据纳排标准最终81例纳入研究,其中LNM阳性组20例,LNM阴性组61例。收集所有患者的临床信息,包含年龄、肿瘤组织学类型、肿瘤分化程度、月经状态、SCCAG、宫颈癌形态、最大淋巴结短径及病灶最大径。结果显示,最大淋巴结短径及SCCAG在LNM阳性组和LNM阴性组间的差异有统计学意义。入组患者手术前的临床资料详见表1

表1  不同淋巴结状态组患者的临床特征
Tab. 1  Clinical characteristics of patients in different lymph node status groups

2.2 癌灶弹性值在LNM阳性组及阴性组间差异性分析

       在vMRE数据分析中,定量评估LNM阳性组患者和阴性组患者的宫颈弹性特性。结果显示,LNM阳性组的μDiff值最大值、平均值、中位数均高于LNM阴性组(P均<0.05),提示参数可作为LNM的潜在预测因子。μDiff值最小值差异无统计学意义(P>0.05),详见表2。放射科医师前后两次测量的μDiff值具有较好的一致性,ICC值均大于0.75(P<0.05)。

表2  淋巴结转移阳性组和阴性组癌灶弹性值
Tab. 2  Elasticity values of lesions in the positive and negative lymph node metastasis groups

2.3 癌灶μDiff联合最大淋巴结短径预测LNM的诊断性能评估

       将最大淋巴结短径及SCCAG纳入多因素logistics回归分析,结果显示,最大淋巴结短径是根治性子宫切除术宫颈癌患者LNM的独立预测因素(表3)。

       癌灶μDiff最大值、平均值和中位数预测治疗后LNM时的AUC分别为0.693(95% CI:0.540~0.850)、0.710(95% CI:0.558~0.862)和0.700(95% CI:0.555~0.850)。将癌灶μDiff与最大淋巴结短径进行联合建模,结果显示,μDiff平均值、最大值及中位数结合最大淋巴结短径后的模型性能均显著提高,其中以μDiff平均值与最大淋巴结短径构建的联合模型诊断性能最佳,AUC值为0.824(95% CI:0.683~0.965),敏感度为96.7%,特异度为70.0%,准确率为90.1%,优于任一单因素模型(图3表4)。DeLong检验结果提示,3个预测模型的AUC值与仅基于μDiff预测LNM的AUC值及最大淋巴结短径预测LNM的模型AUC值间的差异均有统计学意义(P<0.05)。

图3  肿瘤μDiff平均值、最大淋巴结短径及联合模型预测LNM状态ROC曲线。μDiff:基于扩散的虚拟弹性值;LNM:淋巴结转移;ROC:受试者工作特征;AUC:曲线下面积。
Fig. 3  ROC curves for predicting LNM status by tumor μDiff mean, maximum lymph node short-axis diameter, and the combined model. ROC: receiver operating characteristic; LNM: lymph node metastasis; μDiff: DWI-based virtual shear modulus; DWI: diffusion-weighted imaging; AUC: area under the curve.
表3  单因素和多因素 logistics回归分析
Tab. 3  Univariate and multivariate logistic regression analyses
表4  各模型诊断宫颈癌患者直接手术后LNM状态的诊断效能
Tab. 4  Diagnostic performance of different models for identifying LNM status in cervical cancer patients undergoing direct surgery

3 讨论

       本研究应用vMRE技术,利用vMRE图像中癌灶的μDiff构建了根治性子宫切除术宫颈癌患者术前LNM的预测模型。结果显示,LNM阳性组患者的μDiff值高于LNM阴性组患者,将其与最大淋巴结短径联合后,能显著优化预测模型的诊断效能。本研究构建的术前无创预测宫颈癌淋巴结转移模型,可为个体化治疗决策提供重要依据。

3.1 基于vMRE的癌灶μDiff值评价

       淋巴结病理状态会影响患者临床分期、后续治疗方案选择及预后[22]。术前准确评估癌灶对于预测LNM至关重要,这为临床制订精准化及个体化的治疗方案提供了重要依据。本研究评估了基于DWI获取的vMRE图像中癌灶的弹性特征,发现LNM阳性患者的癌灶μDiff的平均值、最大值及中位数显著高于LNM阴性患者的癌灶μDiff(P<0.05),这一结果提示肿瘤组织硬度与淋巴结转移存在相关性。组织弹性作为一种基本的生物学特性,与其分子组成以及微观和宏观结构密切相关[23, 24]。研究表明,多种病理生理学因素可导致组织弹性改变,包括细胞外基质中的胶原沉积[25]、高细胞密度、异常灌注,以及微循环系统改变引起的组织液压力增加均可能导致组织弹性发生变化[26]。同时,肿瘤间质液体压力升高[27],可能与肿瘤血管渗漏、淋巴管缺乏、促血管生成细胞因子丰富有关,不仅影响肿瘤微环境的生物力学特性,还可能促进癌细胞侵袭并加速疾病进展[28]。这些因素共同导致μDiff值升高。MRE技术能够无创量化这些生物力学变化,从而提供关于肿瘤微环境,尤其是细胞外基质及其受基质细胞调控的关键信息[29, 30]。JUNG等[31]成功利用基于DWI的vMRE技术区分颈部良性淋巴结和转移性淋巴结。也有学者将MRE技术应用于盆腔淋巴结评估,如HU等[32]基于前列腺癌患者MRE图像中癌灶弹性值预测盆腔LNM取得了较好的效果。本研究中,癌灶μDiff平均值相较于最大值和中位数表现出最佳的预测性能,其AUC值为0.710(95% CI:0.558~0.862)。证实了基于DWI的vMRE图像中癌灶μDiff值在宫颈癌LNM方面的预测价值。

3.2 结合vMRE和临床因素的LNM预测模型评价

       本研究结合基于DWI生成的vMRE提取的癌灶μDiff值与临床因素构建了根治性子宫切除术宫颈癌患者LNM的预测模型,以评估vMRE在该临床应用中的价值。KROMREY等[33]在评估肝纤维化时发现,将μDiff与血清学指标联合应用时,其评价效能进一步提高,显著优于单一指标,能够有效提升疾病评估的准确性。与上述研究相似,本研究基于μDiff的平均值、最大值及中位数分别构建3个LNM预测模型。单独使用μDiff中位数、平均值等参数或最大淋巴结短径预测LNM的AUC值在0.693~0.710,而将μDiff与最大淋巴结短径联合后,模型预测能力均有不同程度提升,AUC高达0.824(95% CI:0.683~0.965),敏感度和特异度达70%以上,优于任何单一指标。μDiff平均值反映癌组织整体刚度表现。由于肿瘤的异质性,其内部硬度分布呈现出不均性,这种力学特性反映了不同区域的纤维化程度。研究表明,肿瘤组织的力学异质性与其生物学行为密切相关。纤维化区域因细胞外基质沉积而硬度增高,而在基质金属蛋白酶作用下导致基质重构,增加肿瘤组织的流动性,二者均与肿瘤侵袭性密切相关。此外,肿瘤的微环境的物理特征,如硬度增加和间质液压力升高进一步加剧了肿瘤的力学异质性。因此,本研究中μDiff平均值+最大淋巴结短径模型的预测效能表现最佳说明肿瘤整体的力学特性对LNM有独特的指示价值。μDiff平均值与最大淋巴结短径联合构建的模型表现出更强的LNM预测能力,具有一定的理论和临床意义。

3.3 局限性与展望

       本研究存在一些局限性:首先,本研究为单中心前瞻性研究,样本来源单一且样本量有限,缺乏外部验证队列,可能影响模型结果的普适性;其次,需要纳入宫颈癌的MRE图像进行比较,以进一步验证本研究模型的实用价值;最后,尽管本研究纳入了组织学类型,宫颈癌形态等临床病理特征,但未能对潜在混杂因素(如肿瘤分期、分化程度)进行充分校正,可能对模型的预测准确性产生一定影响。未来将通过扩大样本量、联合多中心数据、纳入更多临床及病理变量,进一步优化模型并验证其广泛适用性。

4 结论

       本研究基于DWI生成vMRE图像,利用癌灶弹性值预测根治性子宫切除术宫颈癌患者的LNM状态,构建的模型对于提高根治性子宫切除术宫颈癌患者LNM的预测效率具有潜在的临床价值,有望作为根治性子宫切除术宫颈癌患者早期无创预测LNM和制订治疗计划的辅助评估工具。

[1]
VU M, YU J, AWOLUDE O A, et al. Cervical cancer worldwide[J]. Curr Probl Cancer, 2018, 42(5): 457-465. DOI: 10.1016/j.currproblcancer.2018.06.003.
[2]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[3]
GU J J, ZHENG W, LI F, et al. Redefining stage IVB cervical cancer: the unique prognosis of distant lymph node metastasis which is comparable to stage IIIC[J]. Gynecol Oncol, 2025, 198: 17-24. DOI: 10.1016/j.ygyno.2025.05.007.
[4]
BRISSON M, KIM J J, CANFELL K, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries[J]. Lancet, 2020, 395(10224): 575-590. DOI: 10.1016/S0140-6736(20)30068-4.
[5]
MONK B J, TAN D S P, CHAGÜI J D H, et al. Proportions and incidence of locally advanced cervical cancer: a global systematic literature review[J]. Int J Gynecol Cancer, 2022, 32(12): 1531-1539. DOI: 10.1136/ijgc-2022-003801.
[6]
BALCACER P, SHERGILL A, LITKOUHI B. MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls[J]. Abdom Radiol (NY), 2019, 44(7): 2557-2571. DOI: 10.1007/s00261-019-01984-7.
[7]
BHATLA N, BEREK J S, FREDES M C, et al. Revised FIGO staging for carcinoma of the cervix uteri[J]. Int J Gynaecol Obstet, 2019, 145(1): 129-135. DOI: 10.1002/ijgo.12749.
[8]
TAKEUCHI M, MATSUZAKI K, BANDO Y, et al. Reduced field-of-view diffusion-weighted MR imaging for assessing the local extent of uterine cervical cancer[J]. Acta Radiol, 2020, 61(2): 267-275. DOI: 10.1177/0284185119852733.
[9]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[10]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[11]
HUANG Q H, WANG Y C, MENG X Y, et al. Amide proton transfer-weighted imaging combined with ZOOMit diffusion kurtosis imaging in predicting lymph node metastasis of cervical cancer[J/OL]. Bioengineering (Basel), 2023, 10(3): 331 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/36978722/. DOI: 10.3390/bioengineering10030331.
[12]
ZHANG Y, ZHANG K Y, JIA H D, et al. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer[J]. Acad Radiol, 2022, 29(7): 1048-1057. DOI: 10.1016/j.acra.2021.08.026.
[13]
SONG J, LU Y, WANG X, et al. A comparative study of four diffusion-weighted imaging models in the diagnosis of cervical cancer[J]. Acta Radiol, 2022, 63(4): 536-544. DOI: 10.1177/02841851211002017.
[14]
YANG S L, CHEN L, HE Y, et al. Effect of neoadjuvant chemotherapy followed by surgery for FIGO stage I-II cervical cancer: a meta-analysis[J]. J Int Med Res, 2020, 48(8): 300060520945507. DOI: 10.1177/0300060520945507.
[15]
LAW B K H, KING A D, AI Q Y, et al. Head and neck tumors: amide proton transfer MRI[J]. Radiology, 2018, 288(3): 782-790. DOI: 10.1148/radiol.2018171528.
[16]
YIN H J, WANG D D, YAN R F, et al. Comparison of diffusion kurtosis imaging and amide proton transfer imaging in the diagnosis and risk assessment of prostate cancer[J/OL]. Front Oncol, 2021, 11: 640906 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/33937041/. DOI: 10.3389/fonc.2021.640906.
[17]
ALYAMI A S. Current update on DWI-MRI and its radiomics in liver fibrosis-a review of the literature[J/OL]. Tomography, 2025, 11(6): 63 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/40560009/. DOI: 10.3390/tomography11060063.
[18]
XIAO L Y, ZHAO H C, LIU S L, et al. Staging liver fibrosis: comparison of radiomics model and fusion model based on multiparametric MRI in patients with chronic liver disease[J]. Abdom Radiol (NY), 2024, 49(4): 1165-1174. DOI: 10.1007/s00261-023-04142-2.
[19]
DENG X J, LIU M L, ZHOU Q, et al. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging[J]. Diagn Interv Imaging, 2022, 103(12): 618-624. DOI: 10.1016/j.diii.2022.09.001.
[20]
LI J, LIN L J, GAO X M, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J/OL]. Front Oncol, 2022, 11: 783544 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/35047400/. DOI: 10.3389/fonc.2021.783544.
[21]
YANG C S, HASSAN H ABU, OMAR N F, et al. The value of amide proton transfer imaging in predicting parametrial invasion and lymph-vascular space invasion of cervical cancer[J/OL]. Magn Reson Imag, 2025, 116: 110282 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/39603395/. DOI: 10.1016/j.mri.2024.110282.
[22]
RIEGLER J, LABYED Y, ROSENZWEIG S, et al. Tumor elastography and its association with collagen and the tumor microenvironment[J]. Clin Cancer Res, 2018, 24(18): 4455-4467. DOI: 10.1158/1078-0432.CCR-17-3262.
[23]
BÖCKELMANN L C, SCHUMACHER U. Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors [J]. Expert Opin Ther Targets, 2019, 23(12): 1005-1014. DOI: 10.1080/14728222.2019.1702974.
[24]
YÜCEL E, YıLDıRıM H E K, DURAN F Ş, et al. The role of cervical elastography in the differential diagnosis of preinvasive and invasive lesions of the cervix[J]. Arch Gynecol Obstet, 2024, 309(4): 1585-1595. DOI: 10.1007/s00404-023-07345-6.
[25]
KUCZEK D E, LARSEN A M H, THORSETH M L, et al. Collagen density regulates the activity of tumor-infiltrating T cells[J/OL]. J Immunother Cancer, 2019, 7(1): 68 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/30867051/. DOI: 10.1186/s40425-019-0556-6.
[26]
MILOSEVIC M F, PINTILIE M, HEDLEY D W, et al. High tumor interstitial fluid pressure identifies cervical cancer patients with improved survival from radiotherapy plus cisplatin versus radiotherapy alone[J]. Int J Cancer, 2014, 135(7): 1692-1699. DOI: 10.1002/ijc.28403.
[27]
BARONZIO G, PARMAR G, BARONZIO M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid[J/OL]. Front Oncol, 2015, 5: 165 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/26258072/. DOI: 10.3389/fonc.2015.00165.
[28]
MA Y J, ZHAO X B, CHEN X X. Contrast-enhanced ultrasound combined with elastic imaging for predicting the efficacy of concurrent chemoradiotherapy in cervical cancer: a feasibility study[J/OL]. Front Oncol, 2024, 14: 1301900 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/38634056/. DOI: 10.3389/fonc.2024.1301900.
[29]
ZHANG Y Y, YAN Y Y, YANG Y J. Study on value of ultrasonic elastography in diagnosis of clinical staging of cervical cancer and efficacy evaluation of radiotherapy[J]. Oncol Lett, 2019, 17(6): 4901-4906. DOI: 10.3892/ol.2019.10190.
[30]
FUGLSANG K, HALDORSEN I S, AVALL-LUNDQVIST E, et al. Cervical cancer staging, pretreatment planning, and surgical treatment in the Nordic countries-Survey from the Surgical Subcommittee of the Nordic Society of Gynecological Oncology[J]. Acta Obstet Gynecol Scand, 2018, 97(10): 1178-1184. DOI: 10.1111/aogs.13388.
[31]
JUNG H N, RYOO I, SUH S, et al. Evaluating the elasticity of metastatic cervical lymph nodes in head and neck squamous cell carcinoma patients using DWI-based virtual MR elastography[J]. Magn Reson Med Sci, 2024, 23(1): 49-55. DOI: 10.2463/mrms.mp.2022-0082.
[32]
HU B, DENG Y, CHEN J B, et al. Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer[J]. Abdom Radiol (NY), 2021, 46(7): 3387-3400. DOI: 10.1007/s00261-021-02982-4.
[33]
KROMREY M L, LE BIHAN D, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.

上一篇 基于DCE-MRI生境影像组学可解释性机器学习模型预测直肠癌淋巴结转移的研究
下一篇 基于临床病理特征联合磁共振影像组学模型预测宫颈癌PD-L1表达
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2