分享:
分享到微信朋友圈
X
临床研究
基于临床病理特征联合磁共振影像组学模型预测宫颈癌PD-L1表达
孙昕 秦凤英 田明可 魏宇泽 高小卓 董越

本文引用格式:孙昕, 秦凤英, 田明可, 等. 基于临床病理特征联合磁共振影像组学模型预测宫颈癌PD-L1表达[J]. 磁共振成像, 2026, 17(1): 85-91. DOI:10.12015/issn.1674-8034.2026.01.012.


[摘要] 目的 建立基于MR影像组学及临床病理特征的联合模型评估宫颈癌程序性死亡受体配体1(programmed death-ligand 1, PD-L1)表达水平。材料与方法 回顾性分析辽宁省肿瘤医院2021年1月至2024年9月进行了MR增强扫描的327例宫颈癌患者的临床和影像资料。将样本按照7∶3的比例随机分成训练集(n=228)和验证集(n=99)。以PD-L1组合阳性评分(combined positive score, CPS)≥10为分界值,将患者分为高、低表达组。采用ITK-SNAP软件进行病灶分割、通过pyradiomics提取影像组学特征;用皮尔逊相关系数、卡方检验、方差检验及随机森林选择特征,并通过极端梯度提升(extreme gradient boosting, XGBoost)分类器构建预测模型。采用单因素logistic回归分析临床病理资料并构建临床病理模型。将临床病理危险因素联合最佳影像组学特征构建联合模型。采用受试者工作特征(receiver operating characteristic, ROC)曲线、校准曲线和决策曲线分析(decision curve analysis, DCA)评估模型的预测性能。结果 PD-L1高、低表达组患者的人乳头瘤病毒(human papillomavirus, HPV)感染及分化程度差异有统计学意义(P<0.05),临床模型在训练集及验证集的AUC分别为0.672 [95%置信区间(confidence interval, CI):0.598~0.745]、0.698(95% CI:0.578~0.819)。在提取的2261个影像组学特征中筛选出7个影像组学特征用于构建模型,训练集和验证集中AUC分别为0.788(95% CI:0.728~0.848)、0.712(95% CI: 0.593~0.832)。联合模型在训练集和验证集中AUC分别为0.932(95% CI:0.898~0.967)和0.805(95% CI:0.694~0.916)。结论 以临床病理特征联合磁共振影像组学模型可有效预测PD-L1表达,帮助识别能够从抗PD-L1免疫治疗中获益的患者。
[Abstract] Objective To establish a combined model based on MRI-based radiomics features and clinicopathological characteristics for evaluating the programmed death-ligand 1 (PD-L1) level in cervical cancer.Materials and Methods A retrospective analysis was conducted on 327 cervical cancer patients who underwent MR enhanced scans at Liaoning Cancer Hospital & Institute, from January 2021 to September 2024. The samples were randomly divided into a training set (n = 228) and a validation set (n = 99) in a 7∶3 ratio. The PD-L1 combined positive score (CPS) ≥ 10 was used as the cut-off value and divided the patients into high and low expression groups. Radiomics feature selection was generated through the χ2 test, the analysis of variance and random forest. An extreme gradient boosting (XGBoost) classifier was employed for model construction. Univariate logistic regression analysis was used to analyze the clinicopathological data. Radiomics modesl, clinicopathological models and combined models were developed for predicting the level of PD-L1. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA).Results There were significant differences in human papillomavirus (HPV) infection and degree of differentiation between the high and low PD-L1 cervical cancer expression groups (all P < 0.05). The AUC of the clinical model in the training and validation sets were 0.672 [95% confidence interval (CI): 0.598 to 0.745] and 0.698 (95% CI: 0.578 to 0.819), respectively. Seven radiomics features were selected from 2261 extracted radiomics features to construct the model, and the AUC was 0.788 (95% CI: 0.728 to 0.848) and 0.712 (95% CI: 0.593 to 0.832) in the training and validation sets, respectively. The AUC of the combined model in the training and validation sets were 0.932 (95% CI: 0.898 to 0.967) and 0.805 (95% CI: 0.694 to 0.916), respectively.Conclusions PD-L1 expression can be effectively predicted using an MRI-based radiomics model combined with clinicopathological characteristics to identify patients who may benefit from anti-PD-L1 immunotherapy.
[关键词] 妇科肿瘤;宫颈癌;程序性死亡受体配体-1;磁共振成像;影像组学
[Keywords] gynecologic oncology;cervical cancer;programmed death-ligand 1;magnetic resonance imaging;radiomics

孙昕    秦凤英    田明可    魏宇泽    高小卓    董越 *  

中国医科大学肿瘤医院(辽宁省肿瘤医院)放射科,沈阳 110042

通信作者:董越,E-mail:dyy1026@sina.com

作者贡献声明:董越设计本研究的方案,对稿件重要内容进行了修改,获得了辽宁省科技计划联合计划项目及中央高校基本科研业务费项目资助;孙昕起草和撰写稿件,获取、分析和解释本研究的数据;秦凤英、田名可、魏宇泽、高小卓获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 2024辽宁省科技计划联合计划项目 2024JH2/102600185 中央高校基本科研业务费项目 LD2023034
收稿日期:2025-08-23
接受日期:2025-12-06
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.012
本文引用格式:孙昕, 秦凤英, 田明可, 等. 基于临床病理特征联合磁共振影像组学模型预测宫颈癌PD-L1表达[J]. 磁共振成像, 2026, 17(1): 85-91. DOI:10.12015/issn.1674-8034.2026.01.012.

0 引言

       宫颈癌是全球范围内女性恶性肿瘤中的发病率和死亡率第四大的癌症,是威胁女性生命健康的重要疾病[1]。近年来,免疫检查点抑制剂(immune checkpoint inhibitor, ICI)在宫颈癌的治疗中取得了令人信服的结果[2, 3, 4],以程序性死亡受体-1(programmed death 1, PD-1)及其配体(PD-1 ligand, PD-L1)为主的免疫检查点备受关注。ICI通过阻断抑制性免疫检查点通路,增强免疫系统对癌细胞的识别和攻击能力,从而实现抗肿瘤效果[5, 6]。既往研究表明肿瘤中PD-L1的表达状态与患者免疫治疗反应密切相关,高表达PD-L1患者更容易从免疫治疗中获益[7, 8]。因此了解治疗前PD-L1表达状态对于选择合适的治疗方式进而改善宫颈癌预后具有重要的临床意义。

       目前检测PD-L1表达程度主要依赖于手术或活检肿瘤标本的PD-L1免疫组织化学(immunohistochemistry, IHC)染色,但其为有创性检查且准确性有待提高[9]。影像组学能够以非侵入性的方式反映整个肿瘤的信息,并避免受肿瘤异质性的影响[10, 11],在预测非小细胞肺癌、肝细胞癌等恶性肿瘤患者的PD-L1表达水平中具有良好的应用价值[12, 13, 14]。目前,国内已有研究利用MRI影像组学特征评估宫颈癌PD-L1表达相关性的研究[15],但该研究选取的患者群体较少且未联合临床相关特征构建预测模型,本研究在弥补上述不足的基础上通过一种系统的、可量化的方法,整合了多参数MRI和关键临床风险因素,旨在提供一个更稳健、更具泛化性的预测工具,为宫颈癌患者治疗决策提供更可靠的依据。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,经辽宁省肿瘤医院伦理委员会批准,免除受试者知情同意,批准文号:LH20250311。回顾性分析2021年1月至2024年9月于本院接受MR增强检查的宫颈癌患者临床和影像资料。纳入标准:(1)经病理证实为宫颈癌;(2)所取样本可以测定PD-L1表达状态;(3)术前2周内行MRI增强扫描;(4)临床及影像学资料完整。排除标准:(1)MRI图像有伪影或其他因素导致图像无法评估;(2)同时存在其他肿瘤。患者的临床病理资料包括年龄、2018国际妇产科联盟(International Federation of Gynecology and Obstetrics, FIGO)分期、病理类型、鳞癌相关抗原(squamous cell carcinoma antigen, SCC-Ag)、人乳头瘤病毒(human papillomavirus, HPV)感染、分化程度。

1.2 宫颈癌病理检查

       根据实体肿瘤PD-L1免疫组织化学检测专家共识(2021版)[9],术后石蜡包埋的肿瘤组织样本切片4 μm厚的整张切片进行PD-L1 IHC染色,应用抗体为22C3(美国Dako公司,稀释比例1∶50,检测平台为DAKO Autostainer Link 48)。报告形式采用PD-L1组合阳性评分(combined positive score, CPS),即CPS=(PD-L1膜染色阳性肿瘤细胞+PD-L1膜染色阳性肿瘤相关免疫细胞)/总肿瘤细胞数×100。根据PD-L1表达水平分为两组:PD-L1低表达组(CPS<10%)和PD-L1高表达组(CPS≥10%)。

1.3 MR图像采集和测量

       使用8通道相控阵线圈的3.0 T超导MRI扫描仪(Verio syngo, Siemens)进行盆腔增强MRI扫描,对比剂使用钆特酸葡胺(北京北陆药业股份有限公司,中国),注射速率2.5 mL/s,注射剂量0.2 mmol/kg,随后立即以相同流率追加注射生理盐水20 mL。扫描系列及参数:轴位T1WI,TR 514 ms,TE 11 ms,层厚5.0 mm,层间距2.0 mm,矩阵516×640,激励次数2;轴位脂肪抑制T2WI(fat suppression-T2WI, FS-T2WI),TR 3000 ms,TE 88 ms,层厚5.0 mm,层间距2.0 mm,矩阵294×448,激励次数2;轴位对比增强T1WI(contrast enhancement-T1WI, CE-T1WI),TR 677 ms,TE 11 ms,层厚5.0 mm,层间距2.0 mm,矩阵432×640,激励次数2。

1.4 图像分割和特征提取

       将原始图像导入ITK-SNAP软件,由一名具有5年阅片经验的放射科主治医师于MRI图像上沿肿瘤边缘绘制感兴趣区(region of interest, ROI)。为评价影像组学特征是否稳定,随机选取50位患者,由另一位有10年阅片经验的放射科主治医师重新勾画ROI,用于后续影像组学特征的组间相关系数(intra-class correlation coefficient, ICC)检验。

       对上传的MRI图像进行灰度一致化处理,随后进行特征提取。影像组学特征提取的算法基于Python的PyRadiomics(v3.1.0)实现。最终从每个ROI提取了2261个影像组学特征,包括一阶统计特征(Firstorder)、形状特征(shape)、灰度共生矩阵(grey level co-occurrence matrix, GLCM)、灰度相关矩阵(gray level dependence matrix, GLDM)、灰度游程矩阵(grey level run length matrix, GLRLM)、灰度区域大小矩阵(gray level size zone matrix, GLSZM)、邻域灰度差矩阵(neighbouring gray tone difference matrix, NGTDM)。

       通过ICC对提取的影像组学特征进行一致性检验,将ICC≥0.75的影像组学特征纳入后续研究。采用Z-score归一化消除不同特征之间维度的影响,计算公式为Z=(x-μ)/σ,其中μ为所有特征值的均值,σ为所有特征值的标准差。特征相关性分析使用皮尔逊相关系数,对于相关系数>0.9的特征,只保留一个。然后通过卡方检验、方差检验筛选出差异具有统计学意义的特征。最后采用递归特征消除算法,利用随机森林作为基模型,递归地移除对模型贡献较小的特征,筛选出对模型预测最为关键的特征。

1.5 模型构建

       筛选与降维后选择的影像组学特征与临床病理特征被应用于预测模型的建立,采用极端梯度提升(extreme gradient boosting, XGBoost)分类器分别构建临床病理模型、影像组学模型和临床病理+影像组学特征的联合模型以预测宫颈癌PD-L1表达水平。

1.6 统计学分析

       采用SPSS 26.0统计分析各项临床和影像指标。使用Kolmogorov-Smirnov对计量资料进行正态分布检验,对满足正态分布的数据使用独立样本t检验,用均数±标准差表示,不符合正态分布的采用Mann-Whistney U检验,用四分位数间距表示。计数资料对比用卡方检验。利用受试者工作特征(receiver operating characteristic, ROC)曲线分析得出影像组学模型的曲线下面积(area under the curve, AUC)、敏感度、特异度,分析评估模型对PD-L1表达诊断的效能,并采用DeLong检验评估诊断效能的差异。P<0.05为差异有统计学意义。使用R软件(V4.4.2)的“rms”包绘制校准曲线、决策分析曲线(decision curve analysis, DCA)及列线图。

2 结果

2.1 临床病理特征

       最终共纳入327例患者,按照7∶3比例随机分成训练集(n=228)和验证集(n=99)。患者的临床和病理指标见表1。PD-L1高表达组与PD-L1低表达组患者的HPV感染及分化程度差异有统计学意义(P<0.05)。年龄、病理类型、SCC-Ag、FIGO分期及原发肿瘤最大径差异均无统计学意义(P>0.05)。基于HPV感染及分化程度构建临床病理诊断模型。

表1  训练集与验证集临床病理资料比较
Tab. 1  Comparison of clinicopathological data in the training and test sets

2.2 特征筛选及模型构建

       依据PD-L1低、高表达患者病灶的MRI图像及IHC图像(图12)分别提取了2261个特征,排除了ICC≥0.75的1462个特征,剩余799个特征是稳定的,包括Firstorder特征166个、shape特征16个、GLCM特征157个、GLDM特征139个、GLRLM特征193个、GLSZM特征95个、NGTDM特征33个。最终筛选出7个最具代表性的影像组学特征构建影像组学模型,2个特征来自T2WI,5个特征来自T1WI(表2);基于7个影像组学特征和2个临床病理特征构建联合模型。特征筛选流程如图3。两位影像学医师评估各指标的一致性良好,wavelet-LHL_gldm_DependenceVariance、exponential_gldm_DependenceNonUniformity、gradient_gldm_LargeDependenceHighGrayLevelEmphasis、original_glcm_MaximumProbability、original_glcm_ClusterTendency、exponential_glcm_Imc1、logarithm_gldm_DependenceNonUniformity特征的ICC值分别为:0.912、0.965、0.919、0.889、0.877、0.891、0.850。

图1  女,58岁,宫颈鳞癌,PD-L1低表达。1A~1B:对比增强T1WI横截面图像(1A)及ROI勾画示意图(1B);1C~1D:脂肪抑制T2WI横截面图像(1C)及ROI勾画示意图(1D);1E:免疫组化染色图像(× 40)。PD-L1:程序性死亡受体配体1;ROI:感兴趣区。
Fig. 1  Female, 58 years old, cervical squamous cell carcinoma, low expression of PD-L1. 1A-1B: Cross section of contrast enhancement-T1WI image (1A) and schematic diagram of ROI sketch (1B);1C-1D: Cross section of fat suppression-T2WI image (1C) and schematic diagram of ROI sketch (1D); 1E: Immunohistochemical staining image (× 40). PD-L1: programmed death-ligand 1; ROI: region of interest.
图2  女,55岁,宫颈鳞癌,PD-L1高表达。2A~2B:对比增强T1WI横截面图像(2A)及ROI勾画示意图(2B);2C~2D:脂肪抑制T2WI横截面图像(2C)及ROI勾画示意图(2D);2E:免疫组化染色图像(× 40)。PD-L1:程序性死亡受体配体1;ROI:感兴趣区。
Fig. 2  Female, 55 years old, cervical squamous cell carcinoma, high expression of PD-L1. 2A-2B: Cross section of contrast enhancement-T1WI image (2A) and schematic diagram of ROI sketch (2B); 2C-2D: Cross section of fat suppression-T2WI image (2C) and schematic diagram of ROI sketch (2D); 2E: Immunohistochemical staining image (× 40). PD-L1: programmed death-ligand 1; ROI: region of interest.
图3  组学特征筛选流程图。CE:对比增强;FS:脂肪抑制。
Fig. 3  A flowchart for radiomics feature selection. CE: contrast enhancement; FS: fat suppression.
表2  特征降维得到的影像组学特征
Tab. 2  Radiomics features are obtained through feature dimensionality reduction

2.3 模型诊断效能评估

       联合模型在训练集和验证集中预测PD-L1表达程度效果最好,AUC分别为0.932 [95%置信区间(confidence interval, CI):0.898~0.967]和0.805(95% CI:0.694~0.916)(图4表3);两两DeLong检验表明,临床病理模型与影像组学模型、临床病理模型与联合模型、影像组学模型与联合模型的AUC差异均有统计学意义(P<0.05),联合模型明显优于单影像组学模型或单临床模型。联合模型表现出良好的校准效果(图5)。PD-L1预测模型的DCA显示联合模型比影像组学模型或临床病理模型增加了更多的净收益(图6)。列线图(图7)用于预测PD-L1表达。

图4  训练集(4A)、验证集(4B)的ROC曲线。ROC:受试者工作特征;AUC:曲线下面积。
Fig. 4  ROC curve for the training set (4A), the validation set (4B). ROC: receiver operating characteristic; AUC: area under the curve.
图5  联合模型在训练集(5A)、验证集(5B)的校准曲线。
Fig. 5  Calibration curves of combined models on the training set (5A) and validation set (5B).
图6  各模型在训练集的临床决策曲线。Y轴表示临床净收益,X轴表示高风险阈值。
Fig. 6  Clinical decision curves of various models on the training set. The Y-axis represents the clinical net benefit and the X-axis represents the high risk threshold.
图7  联合模型的列线图。Radscore:影像组学评分;HPV:人乳头瘤病毒。
Fig. 7  Nomogram of the combined model. Radiomics: radiomics score; HPV: Human papillomavirus.
表3  各模型诊断效能对比
Tab. 3  The diagnostic performance of each model was compared

3 讨论

       本研究基于MR影像组学特征(CE-T1WI、FS-T2WI)与临床病理指标(分化程度、HPV感染)构建临床-影像组学联合模型,实现对宫颈癌PD-L1表达程度的无创鉴别。验证集结果显示:联合模型AUC达0.805,显著优于单一临床病理模型(AUC=0.698)及影像组学模型(AUC=0.712)。与近几年同类研究相比[16, 17],本研究的联合模型在样本量及诊断效能上具有显著优势,AUC值处于同类研究较高水平。该模型可无创评估宫颈癌患者的PD-L1表达水平,显著提升预测准确性,推动个体化治疗,为宫颈癌的治疗决策提供更多参考依据。

3.1 临床病理特征与宫颈癌PD-L1表达程度的关系

       本研究临床病理特征的分析结果显示,HPV感染阳性、分化程度较低的宫颈癌更容易出现PD-L1高表达。已有研究显示,PD-L1的表达受HPV正向调控[18]。可能HPV通过E6蛋白结合细胞抑癌基因产物P53蛋白,使得P53蛋白表达异常,引起TGF-β1过表达,诱发炎症反应,促进PD-1与PD-L1蛋白的结合[19],提示HPV感染阳性与PD-L高表达密切相关,与本研究结果表现一致。同时,免疫细胞和肿瘤细胞表面PD-L1高表达,更容易通过结合T细胞表面PD-1受体,削弱T细胞对肿瘤细胞的杀伤能力,让机体的免疫监视无法探测到,从而抑制免疫反应,加速宫颈癌细胞生长蔓延[20, 21, 22],因此发现在分化程度低的患者中PD-L1高表达。这与其他相关病理特征与PD-L1表达水平的研究结果相似[23, 24, 25],PD-L1在侵袭性更强的肿瘤中表达更高。

       既往研究显示PD-L1表达在不同FIGO分期,不同肿瘤大小中表达不同[26]。本研究结果并未发现PD-L1与FIGO分期的相关性,原因可能与本研究样本量较小有关。此外有研究表明病理类型中鳞癌相较于非鳞癌的宫颈癌CPS评分更高,提示组织学亚型可能与宫颈癌PD-L1表达相关[27]。但在本研究中纳入的病理类型在宫颈癌PD-L1高、低表达组之间差异无统计学意义,这可能与研究中纳入的非鳞癌患者数量较少有关,存在选择偏移。未来还需纳入更多非鳞癌患者,进一步探索病理类型与PD-L1表达相关性。SCC-Ag在宫颈癌免疫治疗反应及预后之间的潜在相关性已有研究报道[28],TURATO等[29]研究显示食管癌中SCC-Ag水平与PD-L1表达呈正相关。本研究中SCC-Ag与宫颈癌PD-L1表达水平之间差异并无统计学意义。与高雯等[30]研究结果一致,可能因为纳入的宫颈癌患者SCC-Ag变化范围较大,之后将进行更精细的患者分组,以排除特定亚组的异质性影响。

3.2 影像组学特征与宫颈癌PD-L1表达程度的关系

       在本研究中最终获得7个对于PD-L1表达有鉴别意义的影像组学特征包括4个GLDM及3个GLCM特征。从特征性质看,GLDM和GLCM均属于二阶纹理特征,二阶纹理特征能够计算肿瘤的复杂程度和纹理厚度,规避主观因素的影响,客观地提取病灶内肉眼无法识别的特征信息[31, 32]。提取的影像组学特征中权重系数排名最高的特征为依赖非均匀性、其次为高灰度大依赖优势,均属于GLDM特征。依赖非均匀性用于量化整个图像中依赖关系的相似性,值越高表示图像中依赖关系之间的异质性越高,依赖分布越不均;灰度大依赖优势可量化具有较高灰度值和体素强相关关系的联合分布情况,值越低说明图像中高灰度区域依赖更小,图像异质化纹理越多,纹理越不均匀[33],表明在MR图像中,宫颈癌患者图像纹理异质性和灰度差异与宫颈癌PD-L1表达水平有关。本研究结果显示PD-L1高表达组病灶异质性更高,可能因为高表达PD-L1的病灶生长中后期CD8+ T淋巴细胞处于耗竭状态,且CD4+ T淋巴细胞浸润减少,从而促进肿瘤细胞增殖活跃度更高[34],故表现出更高的异质性。既往研究表明结肠腺癌肿瘤细胞上PD-L1表达水平比在肿瘤浸润免疫细胞上表达更不均匀[35]。肿瘤内部微环境的局部差异通过影响细胞的表型和功能,进而影响PD-L1的表达和免疫细胞的浸润。未来研究中,可以通过免疫荧光和定量IHC技术,进一步在不同的肿瘤亚区精确测量PD-L1表达水平和免疫细胞的空间密度。将这些IHC信息与同一亚区提取的影像组学特征进行关联分析,提高模型预测精准性。

3.3 联合模型对PD-L1表达程度的预测价值

       本研究构建的联合模型通过整合分化程度、HPV感染及MR影像组学特征,将验证集诊断效能显著提升(AUC=0.805)。该联合模型的核心优势在于实现了临床病理指标与MR影像组学特征的深度融合与协同互补:一方面病理分化程度与HPV感染能够从肿瘤恶性演进潜能及病毒致癌机制角度揭示PD-L1表达的内在驱动因素;另一方面,影像组学通过二阶纹理特征量化肿瘤异质性及微观结构异常,突破了传统病理IHC染色的局限,从而提高PD-L1检测准确性。这与其他疾病中临床-影像多维度整合提高模型效能的结果一致[36, 37, 38, 39]

3.4 本研究的局限性

       尽管基于临床和MRI影像组学研究取得了较好的结果,但本研究仍存在一些局限性:(1)本研究属于回顾性研究且研究在单一机构中进行,因此需要大样本、多中心的研究来验证模型以提高模型的预测能力。(2)本研究使用的手动勾画ROI和图像分割法在重复性和操作者所需的专业知识等方面存在局限性。未来研究应致力于开发可靠且准确的自动化分割方法。(3)本研究部分研究对象来自活检标本,鉴于PD-L1表达在肿瘤内部存在时空异质性,这可能无法完全代表整个肿瘤的PD-L1表达,从而在理论上构成了“金标准”的潜在偏差。在后续研究中,我们将优先收集接受根治性手术患者的样本。通过将术前影像与完整的术后标本进行影像-病理空间配准,提高模型准确性。

4 结论

       综上所述,本研究表明MR影像组学特征、分化程度、HPV感染与宫颈癌PD-L1表达程度独立相关,基于上述参数构建的联合模型在预测宫颈癌PD-L1表达水平中具有更好的效能,有希望作为病理学金标准的补充,为患者选择合适的治疗方案。

[1]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2]
O'MALLEY D M, OAKNIN A, MONK B J, et al. Phase Ⅱ study of the safety and efficacy of the anti-PD-1 antibody balstilimab in patients with recurrent and/or metastatic cervical cancer[J]. Gynecol Oncol, 2021, 163(2): 274-280. DOI: 10.1016/j.ygyno.2021.08.018.
[3]
O'MALLEY D M, NEFFA M, MONK B J, et al. Dual PD-1 and CTLA-4 checkpoint blockade using balstilimab and zalifrelimab combination as second-line treatment for advanced cervical cancer: an open-label phase II study[J]. J Clin Oncol, 2022, 40(7): 762-771. DOI: 10.1200/JCO.21.02067.
[4]
LOU H M, CAI H B, HUANG X, et al. Cadonilimab combined with chemotherapy with or without bevacizumab as first-line treatment in recurrent or metastatic cervical cancer (COMPASSION-13): a phase 2 study[J]. Clin Cancer Res, 2024, 30(8): 1501-1508. DOI: 10.1158/1078-0432.CCR-23-3162.
[5]
YE H Y, LIAO W J, PAN J L, et al. Immune checkpoint blockade for cancer therapy: current progress and perspectives[J]. J Zhejiang Univ Sci B, 2025, 26(3): 203-226. DOI: 10.1631/jzus.B2300492.
[6]
STEFANOUDAKIS D, KAROPOULOU E, MATSAS A, et al. Immunotherapy in cervical and endometrial cancer: current landscape and future directions[J/OL]. Life (Basel), 2024, 14(3): 344 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/38541669/. DOI: 10.3390/life14030344.
[7]
DOROSHOW D B, BHALLA S, BEASLEY M B, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors[J]. Nat Rev Clin Oncol, 2021, 18(6): 345-362. DOI: 10.1038/s41571-021-00473-5.
[8]
LIU J, CHEN Z, LI Y, et al. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy[J/OL]. Front Pharmacol, 2021, 12: 731798 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/34539412/. DOI: 10.3389/fphar.2021.731798.
[9]
国家病理质控中心, 中华医学会病理学分会, 中国临床肿瘤学会肿瘤病理专家委员会, 等. 实体肿瘤PD-L1免疫组织化学检测专家共识(2021版)[J]. 中华病理学杂志, 2021, 50(7): 710-718. DOI: 10.3760/cma.j.cn112151-20210228-00172.
Pathology Quality Control Center, Chinese Society of Pathology, Pathology Committee of Chinese Society of Clinical Oncology, et al. Consensus on the immunohistochemical tests of PD-L1 in solid tumors (2021 version)[J]. 2021(7): 710-718. DOI: 10.3760/cma.j.cn112151-20210228-00172.
[10]
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
[11]
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[12]
MEIßNER A K, GUTSCHE R, GALLDIKS N, et al. Radiomics for the non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to non-small cell lung cancer[J]. J Neurooncol, 2023, 163(3): 597-605. DOI: 10.1007/s11060-023-04367-7.
[13]
GONG X Q, LIU N, TAO Y Y, et al. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma[J/OL]. Sci Rep, 2023, 13(1): 7710 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/37173350/. DOI: 10.1038/s41598-023-34763-y.
[14]
LIU Z H, YAO Y M, ZHAO M M, et al. Radiomics models derived from arterial-phase-enhanced CT reliably predict both PD-L1 expression and immunotherapy prognosis in non-small cell lung cancer: a retrospective, multicenter cohort study[J]. Acad Radiol, 2025, 32(1): 493-505. DOI: 10.1016/j.acra.2024.07.028.
[15]
李旺, 李朗俊, 刘卓男, 等. 18F-FDG PET/MR影像组学特征与宫颈癌PD-L1表达的相关性研究[J]. 磁共振成像, 2024, 15(7): 32-38, 45. DOI: 10.12015/issn.1674-8034.2024.07.006.
LI W, LI L J, LIU Z N, et al. Correlation study between 18F-FDG PET/MR imaging radiomic features and PD-L1 expression in cervical cancer[J]. Chin J Magn Reson Imag, 2024, 15(7): 32-38, 45. DOI: 10.12015/issn.1674-8034.2024.07.006.
[16]
刘开惠, 杨蔚, 田海萍, 等. 临床、病理、MRI特征及IVIM参数联合模型预测宫颈癌程序性细胞死亡蛋白1及其配体(PD-1/PD-L1)表达[J]. 中国医学影像技术, 2023, 39(2): 235-240. DOI: 10.13929/j.issn.1003-3289.2023.02.019.
LIU K H, YANG W, TIAN H P, et al. Combined model of clinical, pathological, MRI features and IVIM parameters for predicting programmed cell death protein 1(PD-1)/PD-1 ligand(PD-L1) expression in cervical cancers[J]. Chin J Med Imag Technol, 2023, 39(2): 235-240. DOI: 10.13929/j.issn.1003-3289.2023.02.019.
[17]
JI J F, PANG W Q, SONG J L, et al. Retrospective analysis of the predictive value of 18F-FDG PET/CT metabolic parameters for PD-L1 expression in cervical cancer[J/OL]. Diagnostics (Basel), 2023, 13(6): 1015 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/36980323/. DOI: 10.3390/diagnostics13061015.
[18]
周丽雯, 刘金威, 陈美辰, 等. HPV感染对宫颈癌组织FOXP3、PD-1及PD-L1蛋白表达的影响[J]. 中华医院感染学杂志, 2021, 31(10): 1571-1575. DOI: 10.11816/cn.ni.2021-202582.
ZHOU L W, LIU J W, CHEN M C, et al. Influence of HPV infection on expression of FOXP3, PD-1 and PD-L1 proteins in cervical cancer tissues[J]. Chin J Nosocomiology, 2021, 31(10): 1571-1575. DOI: 10.11816/cn.ni.2021-202582.
[19]
BIRRER M J, FUJIWARA K, OAKNIN A, et al. The changing landscape of systemic treatment for cervical cancer: rationale for inhibition of the TGF-β and PD-L1 pathways[J/OL]. Front Oncol, 2022, 12: 814169 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/35280818/. DOI: 10.3389/fonc.2022.814169.
[20]
RISCHIN D, GIL-MARTIN M, GONZÁLEZ-MARTIN A, et al. PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer[J]. Gynecol Oncol, 2020, 159(2): 322-328. DOI: 10.1016/j.ygyno.2020.08.026.
[21]
古丽加那提, 赵绍杰, 赵敏, 等. PD-1、PDL1在宫颈癌与宫颈病变外周血中的表达水平及意义分析[J]. 临床和实验医学杂志, 2020, 19(23): 2532-2537. DOI: 10.3969/j.issn.1671-4695.2020.23.020.
GULIJIANATI, ZHAO S J;ZHAO M, et al. Expression levels and significance of PD-1/PDL1 in peripheral blood of cervical cancer and cervical lesions[J]. J Clin Exp Med, 2020, 19(23): 2532-2537. DOI: 10.3969/j.issn.1671-4695.2020.23.020.
[22]
MUNARI E, MARIOTTI F R, QUATRINI L, et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects[J/OL]. Int J Mol Sci, 2021, 22(10): 5123 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/34066087/. DOI: 10.3390/ijms22105123.
[23]
SAGLAM O, ZHOU J M, WANG X F, et al. PD-L1 expression correlates with young age and CD8+ TIL density in poorly differentiated cervical squamous cell carcinoma[J]. Int J Gynecol Pathol, 2020, 39(5): 428-435. DOI: 10.1097/PGP.0000000000000623.
[24]
LIU L U, XIE B, ZHU W, et al. High expression of PD-L1 mainly occurs in non-small cell lung cancer patients with squamous cell carcinoma or poor differentiation[J]. Oncol Res, 2023, 31(3): 275-286. DOI: 10.32604/or.2023.028227.
[25]
常守凤, 党雅梅, 张晓玲, 等. 结直肠癌组织的PD-L1水平和P53突变情况及临床意义分析[J]. 临床肿瘤学杂志, 2022, 27(12): 1119-1123. DOI: 10.3969/j.issn.1009-0460.2022.12.010.
CHANG S F, DANG Y M, ZHANG X L, et al. Analysis of PD-L1 level and P53 mutation in colorectal cancer tissues and their clinical significances[J]. Chin Clin Oncol, 2022, 27(12): 1119-1123. DOI: 10.3969/j.issn.1009-0460.2022.12.010.
[26]
扈文娟, 邓姗丹, 张俊梅, 等. HPV16/18型感染宫颈癌患者外周血及癌组织 PD-1/PD-L1水平[J]. 中华医院感染学杂志, 2020, 30(16): 2502-2506. DOI: 10.11816/cn.ni.2020-192780.
HU W J, DENG S D, ZHANG J M, et al. Levels of PD-1 and PD-L1 in peripheral blood and cancer tissues of cervical cancer patients with HPV16 and 18 infections[J]. Chin J Nosocomiology, 2020, 30(16): 2502-2506. DOI: 10.11816/cn.ni.2020-192780.
[27]
HUANG R S P, HABERBERGER J, MURUGESAN K, et al. Clinicopathologic and genomic characterization of PD-L1-positive uterine cervical carcinoma[J]. Mod Pathol, 2021, 34(7): 1425-1433. DOI: 10.1038/s41379-021-00780-3.
[28]
ZHU H. Squamous cell carcinoma antigen: clinical application and research status[J/OL]. Diagnostics (Basel), 2022, 12(5): 1065 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/35626221/. DOI: 10.3390/diagnostics12051065.
[29]
TURATO C, SCARPA M, KOTSAFTI A, et al. Squamous cell carcinoma antigen 1 is associated to poor prognosis in esophageal cancer through immune surveillance impairment and reduced chemosensitivity[J]. Cancer Sci, 2019, 110(5): 1552-1563. DOI: 10.1111/cas.13986.
[30]
高雯, 邵株燕, 郑增光, 等. 宫颈癌组织程序性死亡配体-1的表达及其与患者临床病理特征、预后的关系研究[J]. 浙江医学, 2022, 44(13): 1392-1396, 1466. DOI: 10.12056/j.issn.1006-2785.2022.44.13.2021-415.
GAO W, SHAO Z Y, ZHENG Z G, et al. Expression of PD-L1 in cervical cancer and its relationship with clinicopathological features and prognosis of patients[J]. Zhejiang Med J, 2022, 44(13): 1392-1396, 1466. DOI: 10.12056/j.issn.1006-2785.2022.44.13.2021-415.
[31]
SU G H, XIAO Y, YOU C, et al. Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets[J/OL]. Sci Adv, 2023, 9(40): eadf0837 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/37801493/. DOI: 10.1126/sciadv.adf0837.
[32]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[33]
VAN GRIETHUYSEN J J M, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J/OL]. Cancer Res, 2017, 77(21): e104-e107 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/29092951/. DOI: 10.1158/0008-5472.can-17-0339.
[34]
JIANG Y S, CHEN M, NIE H, et al. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations[J]. Hum Vaccin Immunother, 2019, 15(5): 1111-1122. DOI: 10.1080/21645515.2019.1571892.
[35]
MESSERSMITH L, WILLIAMS G, BROADWATER` D R, et al. Heterogeneity and geographical patterns of PD-L1 positive tumor infiltrating immune cells in colonic adenocarcinoma[J/OL]. Am J Clin Pathol, 2020, 154(Supplement_1): S156 [2025-11-09]. https://doi.org/10.1093/ajcp/aqaa161.340. DOI: 10.1093/ajcp/aqaa161.340.
[36]
MCCAGUE C, RAMLEE S, REINIUS M, et al. Introduction to radiomics for a clinical audience[J]. Clin Radiol, 2023, 78(2): 83-98. DOI: 10.1016/j.crad.2022.08.149.
[37]
LI J H, GE S S, SANG S B, et al. Evaluation of PD-L1 expression level in patients with non-small cell lung cancer by 18F-FDG PET/CT radiomics and clinicopathological characteristics[J/OL]. Front Oncol, 2021, 11: 789014 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/34976829/. DOI: 10.3389/fonc.2021.789014.
[38]
BRACCI S, DOLCIAMI M, TROBIANI C, et al. Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients[J]. Radiol Med, 2021, 126(11): 1425-1433. DOI: 10.1007/s11547-021-01399-9.
[39]
ZHENG Y M, ZHAN J F, YUAN M G, et al. A CT-based radiomics signature for preoperative discrimination between high and low expression of programmed death ligand 1 in head and neck squamous cell carcinoma[J/OL]. Eur J Radiol, 2022, 146: 110093 [2025-11-09]. https://pubmed.ncbi.nlm.nih.gov/34890937/. DOI: 10.1016/j.ejrad.2021.110093.

上一篇 基于虚拟磁共振弹性成像预测宫颈癌淋巴结转移
下一篇 基于MRI影像组学的机器学习模型对局部晚期宫颈癌患者同步放化疗预后的预测价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2