分享:
分享到微信朋友圈
X
临床研究
基于MRI影像组学的机器学习模型对局部晚期宫颈癌患者同步放化疗预后的预测价值
孙立婷 尚佳楠 张清华

本文引用格式:孙立婷, 尚佳楠, 张清华. 基于MRI影像组学的机器学习模型对局部晚期宫颈癌患者同步放化疗预后的预测价值[J]. 磁共振成像, 2026, 17(1): 92-98. DOI:10.12015/issn.1674-8034.2026.01.013.


[摘要] 目的 基于MRI影像组学特征构建局部晚期宫颈癌(locally advanced cervical cancer, LACC)患者同步放化疗(concurrent chemoradiotherapy, CCRT)预后的机器学习模型,并对其预测性能进行分析。材料与方法 回顾性收集2019年2月至2020年2月新疆医科大学附属肿瘤医院收治的424例LACC患者病例作为研究对象,以4∶1比例随机分为建模组(n=339)和内部验证组(n=85),另收集同期新疆医科大学第二附属医院收治的120例LACC患者病例作为外部验证组。收集临床资料及动态对比增强T1WI、快速自旋回波T2WI、弥散加权成像序列MRI图像,在病灶区域勾画感兴趣区,采用PyRadiomics获取影像组学特征,最小绝对收缩和选择算法(least absolute shrinkage and selection operator, LASSO)再行影像组学特征降维筛选,基于筛出的影像组学特征构建影像组学模型,计算影像组学评分(radiomic score, Rads)。基于患者临床资料及Rads进行Cox单因素和多因素分析,构建LACC患者CCRT预后列线图预测模型,并对模型预测性能进行验证。结果 LASSO算法筛选出13个MRI影像组学特征。单因素和多因素分析结果显示,体外放疗剂量[风险比(hazard ratio, HR)=1.275,95%置信区间(confidence interval, CI):1.186~1.371]、2 Gy分次放射等效剂量(HR=1.092,95% CI:1.050~1.137)为LACC患者CCRT预后死亡的独立危险因素,血红蛋白(HR=0.962,95% CI:0.940~0.985)、Rads(HR=0.949,95% CI:0.933~0.965)为保护因素(P<0.05)。模型验证结果显示,内部验证和外部验证曲线下面积分别为0.978(95% CI:0.965~1.000)和0.971(95% CI:0.958~0.996),模型拟合优度Hosmer-Lemeshow检验χ2值分别为8.580(P=0.379)和8.691(P=0.370)。结论 基于MRI影像组学构建的列线图预测模型对LACC患者CCRT预后有较好的预测性能和临床效用性,可为LACC患者CCRT治疗方案的制订与调整提供参考。
[Abstract] Objective To construct a machine learning model for predicting the prognosis of concurrent chemoradiotherapy (CCRT) in patients with locally advanced cervical cancer (LACC) based on magnetic resonance imaging (MRI) radiomics features, and to evaluate its predictive performance.Materials and Methods A retrospective analysis was performed on 424 LACC patients admitted to the Affiliated Cancer Hospital of Xinjiang Medical University from February 2019 to February 2020. Patients were randomly assigned to a modeling group (n = 339) and an internal validation group (n = 85) at a 4∶1 ratio. Additionally, 120 LACC patients admitted to the Second Affiliated Hospital of Xinjiang Medical University during the same period were enrolled as the external validation group. Clinical data and MRI images (including transverse dynamic contrast-enhanced T1WI, transverse fast spin echo T2WI, and transverse diffusion-weighted imaging sequences) were collected. The region of interest (ROI) was delineated in the lesion area, and radiomics features were extracted using PyRadiomics. Dimensionality reduction and selection of radiomics features were conducted via the least absolute shrinkage and selection operator (LASSO) algorithm. A radiomics model was constructed based on the selected features, and radiomics scores (Rads) were calculated. Cox univariate and multivariate analyses were performed using patient clinical data and Rads to establish a prognostic prediction model for CCRT in LACC patients, followed by validation of the model's predictive performance.Results Thirteen MRI radiomics features were selected by the LASSO algorithm. Univariate and multivariate Cox analyses demonstrated that external beam radiotherapy dose [hazard ratio (HR) = 1.275, 95% CI: 1.186 to 1.371] and 2 Gy fractionated radiation equivalent dose (HR = 1.092, 95% CI: 1.050 to 1.137) were independent risk factors for mortality following CCRT in LACC patients, whereas hemoglobin (HR = 0.962, 95% CI: 0.940 to 0.985) and Rads (HR = 0.949, 95% CI: 0.933 to 0.965) were protective factors (all P < 0.05). Model validation showed that the area under the curve (AUC) values for internal and external validation were 0.978 (95% CI: 0.965 to 1.000) and 0.971 (95% CI: 0.958 to 0.996), respectively. The Hosmer-Lemeshow test yielded chi-square values of 8.580 (P = 0.379) and 8.691 (P = 0.370) for internal and external validation, respectively.Conclusions This study established a nomogram prediction model based on MRI radiomics, which exhibits excellent predictive performance and clinical utility for the prognosis of CCRT in LACC patients. It may serve as a reference for the formulation and adjustment of CCRT treatment plans for LACC patients.
[关键词] 宫颈肿瘤;放化疗;磁共振成像;机器学习;预测模型
[Keywords] uterine cervical neoplasms;chemoradiotherapy;magnetic resonance imaging;machine learning;nomograms;prognosis

孙立婷 1   尚佳楠 1   张清华 2*  

1 新疆医科大学附属肿瘤医院妇科,乌鲁木齐 830054

2 新疆医科大学第二附属医院妇产科,乌鲁木齐 830054

通信作者:张清华,E-mail:15739075856@163.com

作者贡献声明:孙立婷设计本研究的方案,对稿件重要内容进行了修改;尚佳楠起草和撰写稿件,获取、分析和解释本研究的数据;张清华获取、分析或解释本研究的数据,对稿件重要的内容进行了修改,获得了省部共建中亚高发病成因与防治国家重点实验室开放课题项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 省部共建中亚高发病成因与防治国家重点实验室开放课题项目 SKL-HIDCA-2022-GJ4
收稿日期:2025-06-25
接受日期:2025-12-06
中图分类号:R445.2  R737.33 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.013
本文引用格式:孙立婷, 尚佳楠, 张清华. 基于MRI影像组学的机器学习模型对局部晚期宫颈癌患者同步放化疗预后的预测价值[J]. 磁共振成像, 2026, 17(1): 92-98. DOI:10.12015/issn.1674-8034.2026.01.013.

0 引言

       宫颈癌是感染人乳头瘤病毒引起的临床常见妇科恶性肿瘤,全球宫颈癌年龄标准化发病率与死亡率分别为14.1/10万和7.1/10万[1, 2],严重威胁女性健康。局部晚期宫颈癌(locally advanced cervical cancer, LACC)是国际妇产科学联盟(Federation International of Gynecology and Obstetrics, FIGO)临床分期ⅠB3~ⅣA期的宫颈癌,约占所有宫颈癌的40%,相比早期宫颈癌,复发风险更高,预后更差[3, 4]。国际指南推荐同步放化疗(concurrent chemoradiotherapy, CCRT)治疗LACC[5, 6],患者5年生存率可达70%~90%[7, 8, 9],但LACC患者行CCRT预后差异较大,尤其是LACC复发患者。目前,虽然有部分研究报道了LACC患者CCRT预后的危险因素[10, 11],并有研究认为LACC患者CCRT预后不良可能与患者自身体质和肿瘤组织中基因表达差异有关[12, 13],但当前仍缺乏用于LACC患者CCRT预后评估的预测模型。影像组学作为一种辅助诊断技术,能够从医学影像中提取大量可重复的量化信息,通过对肿瘤三维纹理特征的分析,获取反映肿瘤内在异质性与侵袭性的影像组学参数,已被广泛应用于多种疾病的预后评估。目前,国外已有研究探讨MRI及影像组学在LACC患者CCRT预后评估中的价值[14],但这些研究大多局限于利用MRI单一序列的影像组学特征对患者预后进行评估,影像组学特征提取全面性不足[15, 16],这可能导致预测结果的准确性降低。此外,部分研究虽然建模[17],但未通过机器学习算法优化,预测性能仍有提升空间。本研究基于MRI动态对比增强T1加权成像(dynamic contrast-enhanced T1 weighted imaging, DCE-T1WI)、快速自旋回波序列T2加权成像(fast spin echo sequence T2 weighted imaging, FSE-T2WI)、弥散加权成像(diffusion weighted imaging, DWI)等多个序列筛选影像组学特征,纳入机器学习算法,以MRI影像组学为基础,构建用于LACC患者CCRT预后评估的机器学习模型,以期为LACC患者CCRT治疗方案的制订与调整提供参考。

1 材料与方法

1.1 研究设计

       本文为回顾性研究,遵守《赫尔辛基宣言》[18],经新疆医科大学附属肿瘤医院医学伦理委员会批准,免除受试者知情同意,批准文号:XJZL-2020A019。回顾性收集2019年2月至2020年2月新疆医科大学附属肿瘤医院收治的424例LACC患者病例作为研究对象,以4∶1比例将患者随机分为建模组(n=339)和内部验证组(n=85),另收集同期新疆医科大学第二附属医院收治的120例LACC患者病例作为外部验证组。纳入标准:(1)符合美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)发布的《2019年NCCN宫颈癌临床实践指南》[19]中宫颈癌相关诊断标准;(2)临床国际妇产科学联盟(Federation International of Gynecology and Obstetrics, FIGO)分期ⅠB3~ⅣA期,肿瘤最长径>4 cm或生长扩散至邻近盆腔器官[20];(3)首次接受CCRT治疗;(4)治疗前2周接受MRI检查,且图像资料清晰完整。排除标准:(1)伴其他恶性肿瘤;(2)伴其他类型宫颈疾病;(3)中途更改治疗策略;(4)中途失访;(5)临床资料缺失。

1.2 样本量估算

       采用PASS 15(美国PASS LABS,V15.0)软件中的“Cox Regression”模块估算样本量,基于相似研究[21]中关键变量血红蛋白(haemoglobin, HGB)为参照,检验水准α=0.05,检验性能β=0.8,患者5年预后死亡率P=0.352,效应值风险比(hazard ratio, HR)=2.132,Log(HR)=0.757,决定系数R2=0.122,标准差S=0.362,计算得出样本量应≥339,考虑样本数据缺失,增加纳入20%得出样本量应≥407。

1.3 方法

1.3.1 资料收集

       收集患者临床资料,包括年龄、淋巴结转移、病理类型、FIGO分期、鳞状细胞癌抗原(squamous cell carcinoma antigen, SCC-Ag)、HGB、肿瘤最大径、CCRT治疗时间、体外放疗(external beam radiotherapy, EBRT)剂量、近距离放疗(intracavitary brachytherapy, ICBT)剂量、2 Gy分次放射等效剂量(equivalent dose in 2-Gy fractions, EQD2)、化疗方案、化疗总剂量、使用放射增敏剂、CCRT并发症。

1.3.2 指标检测方法

       淋巴结转移诊断标准:参照《2019年NCCN宫颈癌临床实践指南》中淋巴结转移相关诊断标准,于患者入院当日,常规行全腹部增强CT/MRI,重点观察肝门区、腹腔干周围、腹膜后等区域淋巴结,测量淋巴结短径,≥8 mm定义为可疑肿大。若CT/MRI发现可疑淋巴结,即短径≥8 mm或形态不规则、边缘强化,当日需要进一步行超声造影评估淋巴结血供,转移淋巴结多表现为周边型或混合型增强。于全腹部增强CT/MRI后3~7 d内,经CT引导行穿刺取样,穿刺样本中发现恶性肿瘤细胞,直接确诊;若未发现,但影像学高度可疑,如淋巴结短径进行性增大、超声造影呈非均匀性增强,需在2周内复查或换部位穿刺。血清指标检测:采集患者清晨空腹肘静脉血5 mL,采用酶联免疫吸附法检测SCC-Ag水平,采用全自动生化分析法检测血红蛋白浓度。

1.3.3 CCRT方案

       所有患者均接受CCRT。(1)放疗:所有患者均采用基于CT三维模拟定位的容积旋转强调放疗。EBRT计划靶区总剂量为50 Gy,分25次完成,每周5次,持续5周。在此基础上,联合腔内ICBT,每次6 Gy,每周1次,持续4周。放疗总时长约为9周。(2)化疗:化疗于放疗首日开始,每21天重复1次,共进行4~6个周期。患者接受以下化疗方案之一。

       方案A:多西他赛(75 mg/m2,静脉滴注,第1天)联合奈达铂(40 mg/m2,静脉滴注,第1~3天)。

       方案B:紫杉醇(135 mg/m2,静脉滴注,第1天)联合卡铂,卡铂剂量根据Calvert公式计算[目标曲线下面积(area under the curve, AUC)=5],基于患者肌酐清除率确定。

1.3.4 随访

       所有患者均连续随访5年或截止死亡。随访前2年,每3个月到院复查1次,随后每6个月到院复查1次。随访内容包括临床症状检查、实验室检查及影像学检查。计算患者无病生存率和总生存率。无病生存率的定义为:患者完成CCRT治疗后5年内,随访期内未复发或无疾病进展,无病生存率=随访期内未复发或无疾病进展人数/总人数,未复发或无疾病进展患者以末次随访时间为截尾数据。总生存率的定义为:从患者完成CCRT治疗后5年内,随访期内未死亡,总生存率=随访期内未死亡人数/总人数,未死亡患者以末次随访时间为截尾数据。

1.3.5 MRI检查

       本研究中两家医院均选用3.0 T MRI扫描仪(MAGNETOM Terra, Siemens),8通道相控阵线圈,扫描序列包括横轴位DCE-T1WI、横轴位FSE-T2WI、横轴位DWI,各序列扫描参数见表1

表1  MRI序列扫描参数
Tab. 1  MRI sequence scan parameters

1.3.6 图像分割及影像组学特征提取

       多序列配准后,将MRI各序列获取图像以DICOM格式从医院PACS系统导入ITK-SNAP软件,寻找所有存在肿瘤的层面,沿病灶边缘勾画,病灶边界不清晰时,选择多个序列参照勾画,获得感兴趣体积(volume of interest, VOI),由两名10年以上经验的影像科副主任医师在对临床结果不知情的情况下独立进行,出现意见分歧时,商讨获得统一结果,勾画时ROI边缘尽可能接近但不超过病灶边缘,避免容积效应(图1)。1个月后,两名医师随机选择30个病灶二次勾画ROI,排除两名医师之间组内相关系数(intra-class correlation coefficient, ICC)<0.75的特征。MRI图像经标准化处理后,采用Python的PyRadiomics软件包(版本3.0.1,AIM实验室)提取特征,本研究共提取影像组学特征1551个,包括525个一阶特征、21个形状特征、305个纹理特征及700个小波特征。

图1  DCE-T1WI(1A)、FSE-T2WI(1B)、DWI(1C)序列图像VOI分割图。DCE:动态对比增强;FSE:快速自旋回波;DWI:弥散加权成像;VOI:感兴趣体积。
Fig. 1  VOI segmentation diagram of DCE-T1WI (1A), FSE-T2WI (1B), DWI (1C) sequence images. VOI: volume of interest; DCE: dynamic contrast-enhanced; FSE: fast spin echo; DWI: diffusion weighted imaging.

1.3.7 特征筛选及影像组学模型构建

       对ICC≥0.75的影像组学特征进行Spearman相关分析,剔除相关系数ρ>0.8的冗余参数,再采用最小绝对收缩和选择算法(least absolute shrinkage and selection operator, LASSO)进行降维筛选最优特征。获取特征采用logistic回归分析构建影像组学模型,参照公式(1)计算影像组学评分(radiomic score, Rads)。

1.4 统计学方法

       使用SPSS 27.0软件处理与分析数据。采用Kolmogorov-Smirnov检验计量资料是否符合正态分布,正态分布的计量资料采用平均数±标准差(x¯±s)表示,两组间进行独立t检验,多组间进行单因素ANOVA检验,采用Bonferroni法进行多重校正;偏态分布的计量资料采用中位数和四分位数[MQ1,Q3)]表示,两组间进行Mann Whitney U检验,多组间进行Kruskal-Wallis检验。计数资料采用例数和百分比[n(%)]表示,组间进行χ2检验。采用R4.3.3构建机器学习模型。P<0.05为差异有统计学意义。

2 结果

2.1 影像学组特征LASSO算法筛选结果

       LASSO算法筛选结果显示,λmin和λ1se分别为0.027 86和0.047 99,基于λmin和λ1se分别可筛选出13个和12个特征,基于13个特征和12个特征构建模型的AUC分别为0.975和0.967,详见图2。为获得更高的预测性能,本研究基于λmin共筛选出13个特征,详见图3

图2  LASSO算法筛选影像组学特征。2A:十折交叉验证曲线;2B:LASSO回归系数轨迹,左侧虚线为λmin,右侧虚线为λ1se。LASSO:最小绝对收缩和选择算法。
Fig. 2  Selection of radiomics features by LASSO algorithm. 2A: 10-fold cross-validation curve; 2B: LASSO regression coefficient trajectory, the left dashed line is λmin, and the right dashed line is λ1se. LASSO: least absolute shrinkage and selection operator.
图3  LACC患者CCRT预后相关影像组学特征。
Fig. 3  Radiomics features of CCRT in LACC patients.

2.2 三组患者临床资料比较

       三组患者临床资料差异无统计学意义(P>0.05),详见表2。三组患者总生存率差异无统计学意义,Mantel-Cox检验结果显示,χ2=0.073,P=0.964,详见图4

图4  三组患者总生存率Kaplan-Meier曲线。4A:建模组;4B:内部验证组;4C:外部验证组。
Fig. 4  Kaplan-Meier curves of overall survival for the three groups. 4A: modeling group; 4B: internal validation group; 4C: external validation group.
表2  三组患者临床资料比较
Tab. 2  Comparison of clinical data among three groups of patients

2.3 LACC患者CCRT预后单因素和多因素分析

       以患者5年内预后死亡为因变量,进行单因素和多因素分析,结果显示,EBRT、EQD2均为LACC患者CCRT预后死亡的独立危险因素,HGB、Rads为保护因素(P<0.05),详见表3

表3  LACC患者CCRT预后死亡的Cox回归分析
Tab. 3  Cox regression analysis of prognostic death in LACC patients with CCRT

2.4 LACC患者CCRT预后预测模型构建

       根据多因素分析结果,构建列线图模型(图5),该模型总分0~200分,分数越高,LACC患者CCRT预后死亡风险越高,模型总分为108分时,LACC患者CCRT预后死亡风险为10%,模型总分为125分时,LACC患者CCRT预后死亡风险为90%。

图5  LACC患者CCRT预后列线图模型。LACC:局部晚期宫颈癌;CCRT:同步放化疗;HGB:血红蛋白;EBRT:体外放疗;EQD2:2 Gy分次放射等效剂量;Rads:影像组学评分。
Fig. 5  A prognostic nomogram model for LACC patients with CCRT. LACC: locally advanced cervical cancer; CCRT: concurrent chemoradiotherapy; HGB: haemoglobin; EBRT: external beam radiotherapy; EQD2: equivalent dose in 2-Gy fractions; Rads: radiomic score.

2.5 LACC患者CCRT预后预测模型内部验证

       ROC曲线分析结果显示,模型内部验证AUC=0.978(95% CI:0.965~1.000)。模型拟合优度Hosmer-Lemeshow检验结果显示χ2=8.580,P=0.379。DCA结果显示,高风险阈值0~1范围内,采用列线图模型对患者进行干预,可获得正向收益,详见图6

图6  LACC患者CCRT预后预测模型内部验证。6A:ROC曲线;6B:校准曲线;6C:决策曲线分析。LACC:局部晚期宫颈癌;CCRT:同步放化疗;ROC:受试者工作特征。
Fig. 6  Internal validation of CCRT prognostic prediction model in LACC patients. 6A: ROC curve; 6B: calibration curve; 6C: decision curve analysis. LACC: locally advanced cervical cancer; CCRT: concurrent chemoradiotherapy; ROC: receiver operating characteristic.

2.6 LACC患者CCRT预后预测模型外部验证

       ROC曲线分析结果显示,模型外部验证AUC=0.971(95% CI:0.958~0.996)。模型拟合优度Hosmer-Lemeshow检验结果显示,χ2=8.691,P=0.370。DCA曲线分析结果显示,高风险阈值0~1范围内,采用列线图模型对患者进行干预,可获得正向收益,详见图7

图7  LACC患者CCRT预后预测模型外部验证。7A:ROC曲线;7B:校准曲线;7C:决策曲线分析。LACC:局部晚期宫颈癌;CCRT:同步放化疗;ROC:受试者工作特征。
Fig. 7  The prognostic prediction model of CCRT in LACC patients was externally validated. 7A: ROC curve; 7B: calibration curve; 7C: decision curve analysis. LACC: locally advanced cervical cancer; CCRT: concurrent chemoradiotherapy; ROC: receiver operating characteristic.

3 讨论

       本研究采用回顾性方法,提取424例行CCRT的LACC患者的MRI多序列影像组学特征,通过LASSO回归分析筛选关键影像组学特征,构建Rads,另结合患者临床资料和机器学习算法,构建列线图模型。经模型验证,该模型对LACC患者CCRT疗效具有较高的预测性能,可实现LACC患者CCRT疗效的早期评估,以便临床及时调整治疗策略,对改善患者预后有重要意义。

3.1 LACC患者CCRT预后及影响因素

       本研究纳入新疆医科大学附属肿瘤医院的424例LACC患者行CCRT后5年无病生存率和死亡率分别为43.63%和67.45%,该结果与既往研究相似[22, 23]。CCRT是目前临床治疗LACC的首选方案,但受到多方面因素影响,患者预后差异较大,因此,采取有效措施对患者预后进行精准评估尤为重要。本研究结果显示,EBRT、EQD2均为LACC患者CCRT预后死亡的独立危险因素,HGB、Rads为保护因素(P<0.05)。放疗处方剂量大小与患者预后有密切联系[24],本研究中患者EBRT剂量每增加1 Gy,患者预后死亡风险则增加1.275倍。与化疗相同,EBRT在杀灭肿瘤细胞的同时,也会对周围正常细胞造成损害,ICBT是将放射源精准放置于病灶区域,照射范围相对有限,可减少正常组织的照射量,故引起副作用较少,对患者预后的影响也相对较低[25, 26, 27],而EBRT为高能量体外照射,照射范围较广,照射剂量过大则易引起放射性脑损伤、放射性肠炎、肺纤维化等并发症[28, 29, 30],导致患者病情加重,从而增加死亡风险。EQD2将实际剂量通过修正因子转化为等效周剂量,用于评估以2 Gy为单次分数的放疗方案,与EBRT剂量同时反映患者放疗剂量的重要指标,本研究结果发现,EQD2增加会导致患者预后死亡风险升高。此外,单因素分析发现FIGO分期与预后有关,但期在多因素分析中失去显著性,分析其原因,临床开展CCRT治疗LACC,可能会根据患者疾病分期调整EBRT剂量,导致FIGO分期与EBRT剂量存在共线性,从而导致FIGO分期在多因素分析中的显著性丧失。HGB是红细胞的重要组成部分,反映机体血液的携氧能力,HGB<110 g/L提示患者伴贫血,导致患者血液携氧能力降低,而随着HGB水平的持续降低,患者贫血程度逐渐加重,严重的贫血会导致细胞处于低氧合状态,使肿瘤细胞缺氧加重,导致其对放疗的敏感性降低,从而影响患者预后[31],且有报道指出[21, 32],纠正贫血能够有效提高宫颈癌患者的放疗效果。然而,亦有研究认为[33, 34],HGB水平降低引起的血液携氧能力降低,正常细胞供氧不足的同时,肿瘤细胞的氧供应也会遭受限制,从而影响肿瘤细胞的生长分化。

3.2 LACC患者CCRT预后相关影像组学特征及模型构建

       影像组学从微观水平和结构角度对组织纹理差异进行定量描述,能够客观地发现正常组织和病变组织间的像素差异,且可揭示肿瘤及其生物学环境[35, 36, 37],本研究从3个MRI序列图像中共获得1551个影像组学特征,经两次筛选,共选出13个与LACC患者CCRT预后有关的影像组学特征,其中有7个为小波特征,其通过反映MRI图像中的局部变化,揭示肿瘤内部的异质性,表明肿瘤内异质性与LACC患者CCRT预后存在密切关联。本研究基于13个MRI影像组学特征构建Rad模型,且Cox回归分析结果发现,Rads降低可导致患者预后死亡风险升高。AUTORINO等[38]报道中共计筛选出10个与LACC患者CCRT预后的相关MRI影像组学特征,据此构建的影像组学模型的AUC为0.77~0.91。本研究在基于13个MRI影像组学特征构建的Rad模型前提下,又加入多个与LACC患者CCRT预后相关的危险因素,构建列线图模型,经模型验证,内部验证和外部验证,AUC分别为0.978和0.971,提示该模型具有良好的区分度和预测精准性,较既往研究结果有明显提高,且经DCA曲线分析发现,利用该模型对患者进行干预,在高风险阈值0~1范围内均可获得正向收益,提示临床效用性良好。相比既往研究结果,本研究构建模型对LACC患者行CCRT预后的预测性能明显提升,分析其原因,一方面可能与本研究提取影像组学涉及MRI序列更为全面有关,另一方面可能是由于本研究基于影像组学特征构建Rads的基础上,另将临床相关危险因素纳入模型,从而进一步提高了模型的精准性。

3.3 本研究的局限性

       本研究仍存在不足之处:(1)单中心研究可能导致研究结果存在偶然性;(2)回顾性研究可能导致部分患者的临床资料缺失严重,而无法将某些关键变量纳入模型,导致模型的预测性能有所降低;(3)本研究虽然对该模型进行外部验证,但由于外部验证的样本来源单一,且样本量较少,可能导致验证结果存在偏倚。

4 结论

       综上所述,本研究基于MRI影像组学构建列线图模型,能够准确预测LACC患者CCRT预后死亡风险,可为患者预后评估及后续治疗方案的制订提供参考依据。未来还需开展多中心前瞻性研究,全面纳入关键变量,以获得预测性能更高的预测模型。

[1]
LI Z, LIU P L, YIN A J, et al. Global landscape of cervical cancer incidence and mortality in 2022 and predictions to 2030: The urgent need to address inequalities in cervical cancer[J]. Int J Cancer, 2025, 157(2): 288-297. DOI: 10.1002/ijc.35369.
[2]
FILHO A M, LAVERSANNE M, FERLAY J, et al. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer, 2025, 156(7): 1336-1346. DOI: 10.1002/ijc.35278.
[3]
BARBERA F, FRASSINE F, VOLPI G, et al. Locally advanced cervical cancer: how the improvement in techniques in external beam radiotherapy and brachytherapy impacts on survival outcomes and long-term toxicities[J]. Radiol Med, 2023, 128(12): 1542-1552. DOI: 10.1007/s11547-023-01705-7.
[4]
COLLARINO A, FEUDO V, PASCIUTO T, et al. Is PET radiomics useful to predict pathologic tumor response and prognosis in locally advanced cervical cancer [J]. J Nucl Med, 2024, 65(6): 962-970. DOI: 10.2967/jnumed.123.267044.
[5]
YOO J G, LEE S J, NAM E J, et al. Clinical practice guidelines for cervical cancer: the Korean Society of Gynecologic Oncology guidelines[J/OL]. J Gynecol Oncol, 2024, 35(2): e44 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38389404/. DOI: 10.3802/jgo.2024.35.e44.
[6]
MCCORMACK M, EMINOWICZ G, GALLARDO D, et al. Induction chemotherapy followed by standard chemoradiotherapy versus standard chemoradiotherapy alone in patients with locally advanced cervical cancer (GCIG INTERLACE): an international, multicentre, randomised phase 3 trial[J]. Lancet, 2024, 404(10462): 1525-1535. DOI: 10.1016/S0140-6736(24)01438-7.
[7]
CAI C, XIAO J F, CAI R, et al. Longitudinal dynamic MRI radiomic models for early prediction of prognosis in locally advanced cervical cancer treated with concurrent chemoradiotherapy[J/OL]. Radiat Oncol, 2024, 19(1): 181 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39707484/. DOI: 10.1186/s13014-024-02574-8.
[8]
WENG D H, XIONG H H, ZHU C K, et al. Adjuvant chemotherapy versus adjuvant concurrent chemoradiotherapy after radical surgery for early-stage cervical cancer: a randomized, non-inferiority, multicenter trial[J]. Front Med, 2023, 17(1): 93-104. DOI: 10.1007/s11684-021-0892-z.
[9]
ZHANG X J, GU M X, ZHU J H, et al. Prognostic value of Naples Prognostic Score in locally advanced cervical cancer patients undergoing concurrent chemoradiotherapy[J]. Biomol Biomed, 2025, 25(5): 986-999. DOI: 10.17305/bb.2024.10989.
[10]
陈宝杰, 杜丹, 邓宇, 等. 106例局部晚期宫颈癌根治性同步放化疗的临床疗效及预后影响因素[J]. 现代妇产科进展, 2023, 32(3): 207-213. DOI: 10.13283/j.cnki.xdfckjz.2023.03.005.
CHEN B J, DU D, DENG Y, et al. Analysis of clinical efficacy and prognostic factors of radical simultaneous radiotherapy and chemotherapy in 106 patients with locally advanced cervical cancer[J]. Prog Obstet Gynecol, 2023, 32(3): 207-213. DOI: 10.13283/j.cnki.xdfckjz.2023.03.005.
[11]
储巧香, 王翠竹, 丁其培, 等. 中晚期宫颈癌患者同步放化疗后缓解效果的影响因素及预测模型构建[J]. 中国妇产科临床杂志, 2024, 25(5): 392-395. DOI: 10.13390/j.issn.1672-1861.2024.05.003.
CHU Q X, WANG C Z, DING Q P, et al. Influencing factors in remission effect of patients with advanced cervical cancer after concurrent chemoradiotherapy and prediction model construction[J]. Chin J Clin Obstet Gynecol, 2024, 25(5): 392-395. DOI: 10.13390/j.issn.1672-1861.2024.05.003.
[12]
ZHANG Y, LIU L, ZHANG K Y, et al. Nomograms combining clinical and imaging parameters to predict recurrence and disease-free survival after concurrent chemoradiotherapy in patients with locally advanced cervical cancer[J]. Acad Radiol, 2023, 30(3): 499-508. DOI: 10.1016/j.acra.2022.08.002.
[13]
DAI D F, PEI Y F, ZHU B Q, et al. Chemoradiotherapy-induced ACKR2+ tumor cells drive CD8+ T cell senescence and cervical cancer recurrence[J/OL]. Cell Rep Med, 2024, 5(5): 101550 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38723624/. DOI: 10.1016/j.xcrm.2024.101550.
[14]
顾尚尉, 艾丛慧, 王关顺, 等. MRI及影像组学在宫颈癌放化疗疗效及预后评估中的研究进展[J]. 放射学实践, 2024, 39(5): 699-703. DOI: 10.13609/j.cnki.1000-0313.2024.05.023.
GU S W /Y), AI C H, WANG G S, et al. Research progress of MRI and imaging in the evaluation of curative effect and prognosis of radiotherapy and chemotherapy for cervical cancer[J]. Radiol Pract, 2024, 39(5): 699-703. DOI: 10.13609/j.cnki.1000-0313.2024.05.023.
[15]
JAJODIA A, GUPTA A, PROSCH H, et al. Combination of radiomics and machine learning with diffusion-weighted MR imaging for clinical outcome prognostication in cervical cancer[J]. Tomography, 2021, 7(3): 344-357. DOI: 10.3390/tomography7030031.
[16]
ZHANG X M, ZHAO J W, ZHANG Q, et al. MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy[J/OL]. Cancer Imaging, 2022, 22(1): 35 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/35842679/. DOI: 10.1186/s40644-022-00474-2.
[17]
LUCIA F, VISVIKIS D, DESSEROIT M C, et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy[J]. Eur J Nucl Med Mol Imag, 2018, 45(5): 768-786. DOI: 10.1007/s00259-017-3898-7.
[18]
ASSOCIATION W M. World medical association declaration of Helsinki: ethical principles for medical research involving human participants[J]. JAMA, 2025, 333(1): 71-74. DOI: 10.1001/jama.2024.21972.
[19]
KOH W J, ABU-RUSTUM N R, BEAN S, et al. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2019, 17(1): 64-84. DOI: 10.6004/jnccn.2019.0001.
[20]
BHATLA N, AOKI D, SHARMA D N, et al. Cancer of the cervix uteri: 2021 update[J]. Int J Gynaecol Obstet, 2021, 155(Suppl 1): 28-44. DOI: 10.1002/ijgo.13865.
[21]
WANG X M, XU J, ZHANG H Y, et al. The effect of albumin and hemoglobin levels on the prognosis of early-stage cervical cancer: a prospective, single-center-based cohort study[J/OL]. BMC Womens Health, 2023, 23(1): 553 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/37875880/. DOI: 10.1186/s12905-023-02713-5.
[22]
FAN X, WANG Y F, YANG N, et al. Prognostic analysis of patients with stage IIIC1p cervical cancer treated by surgery[J/OL]. World J Surg Oncol, 2023, 21(1): 186 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/37344912/. DOI: 10.1186/s12957-023-03076-9.
[23]
LI J, NIU C L, ZHANG L, et al. Association of body composition and systemic inflammation for patients with locally advanced cervical cancer following concurrent chemoradiotherapy[J]. Diagn Interv Radiol, 2024, 30(5): 279-290. DOI: 10.4274/dir.2024.242751.
[24]
KE T Y, WANG J B, ZHANG N, et al. Dose-effect relationship between dose-volume parameters of residual gross tumor volume and clinical prognosis in MRI-guided adaptive brachytherapy for locally advanced cervical cancer: a single-center retrospective study[J]. Strahlenther Onkol, 2023, 199(2): 131-140. DOI: 10.1007/s00066-022-02000-6.
[25]
COLES C E, HAVILAND J S, KIRBY A M, et al. Dose-escalated simultaneous integrated boost radiotherapy in early breast cancer (IMPORT HIGH): a multicentre, phase 3, non-inferiority, open-label, randomised controlled trial[J]. Lancet, 2023, 401(10394): 2124-2137. DOI: 10.1016/S0140-6736(23)00619-0.
[26]
CHIBONDA S, NDLOVU N, TSIKAI N, et al. Working title: high dose rate intra-cavitary brachytherapy with cobalt 60 source for locally advanced cervical cancer: the zimbabwean experience[J/OL]. Infect Agent Cancer, 2021, 16(1): 1 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/33413523/. DOI: 10.1186/s13027-020-00340-5.
[27]
WEI Z G, PENG X C, HE L, et al. Treatment plan comparison of volumetric-modulated arc therapy to intensity-modulated radiotherapy in lung stereotactic body radiotherapy using either 6- or 10-MV photon energies[J/OL]. J Appl Clin Med Phys, 2022, 23(8): e13714 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/35808973/. DOI: 10.1002/acm2.13714.
[28]
DRISHYA S, DHANISHA S S, RAGHUKUMAR P, et al. Amomum subulatum mitigates experimental thoracic radiation-induced lung injury by regulating antioxidant status and inflammatory responses[J]. Food Funct, 2023, 14(3): 1545-1559. DOI: 10.1039/d2fo03208b.
[29]
PADHI S, MAHAPATRA B R, PATI K C, et al. Comparison of acute gastrointestinal toxicity of intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy in patients of carcinoma cervix[J/OL]. Cureus, 2023, 15(11): e48876 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38106724/. DOI: 10.7759/cureus.48876.
[30]
PERKINS D W, STEINER I, HAIDER S, et al. Therapy-induced normal tissue damage promotes breast cancer metastasis[J/OL]. iScience, 2023, 27(1): 108503 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38161426/. DOI: 10.1016/j.isci.2023.108503.
[31]
ELMALI A, GULER O C, DEMIRHAN B, et al. Long-term analysis of hematological parameters as predictors of recurrence patterns and treatment outcomes in cervical cancer patients undergoing definitive chemoradiotherapy[J]. Strahlenther Onkol, 2024, 200(11): 949-957. DOI: 10.1007/s00066-024-02278-8.
[32]
DEAR T, CHIU J, MEIROVICH H, et al. Are outcomes of locally advanced cervical cancer associated with prebrachytherapy hemoglobin values and transfusion practice An observational study comparing two large academic centres with divergent clinical guidelines[J]. Brachytherapy, 2024, 23(6): 660-667. DOI: 10.1016/j.brachy.2024.07.006.
[33]
KOIVUNEN E, MADHAVAN S, GARRIDO L B, et al. Hypoxia favors tumor growth in colorectal cancer in an integrin αDβ1/hemoglobin δ-dependent manner[J/OL]. Life Sci Alliance, 2024, 8(2): e202402925 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39626964/. DOI: 10.26508/lsa.202402925.
[34]
ZHANG Q, MA Y X, DAI Z, et al. Tracking research on hemoglobin-based oxygen carriers: a scientometric analysis and in-depth review[J]. Drug Des Devel Ther, 2023, 17: 2549-2571. DOI: 10.2147/DDDT.S422770.
[35]
BIZZARRI N, RUSSO L, DOLCIAMI M, et al. Radiomics systematic review in cervical cancer: gynecological oncologists' perspective[J]. Int J Gynecol Cancer, 2023, 33(10): 1522-1541. DOI: 10.1136/ijgc-2023-004589.
[36]
董林逍, 刘金金, 张月洁, 等. 基于治疗前多参数MRI影像组学特征预测局部晚期宫颈癌患者新辅助化疗后脉管浸润[J]. 磁共振成像, 2024, 15(8): 25-30, 45. DOI: 10.12015/issn.1674-8034.2024.08.004.
DONG L X, LIU J J, ZHANG Y J, et al. Prediction of lymphovascular space invasion in locally advanced cervical cancer patients after neoadjuvant chemotherapy based on pre-treatment multi-parameter MRI radiomics features[J]. Chin J Magn Reson Imag, 2024, 15(8): 25-30, 45. DOI: 10.12015/issn.1674-8034.2024.08.004.
[37]
LI Z C, LI H L, WANG S Y, et al. MR-based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively[J]. J Magn Reson Imaging, 2019, 49(5): 1420-1426. DOI: 10.1002/jmri.26531.
[38]
AUTORINO R, GUI B, PANZA G, et al. Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy[J]. Radiol Med, 2022, 127(5): 498-506. DOI: 10.1007/s11547-022-01482-9.

上一篇 基于临床病理特征联合磁共振影像组学模型预测宫颈癌PD-L1表达
下一篇 产前MRI征象-临床评分系统预测胎盘植入分型的相关研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2