分享:
分享到微信朋友圈
X
技术研究
多次钆剂增强MRI后小脑齿状核T1WI信号强度变化的临床研究
符念霞 吴颖特 宋建勋 王欣 林国辉 钟丽玲 闫瑶瑶

本文引用格式:符念霞, 吴颖特, 宋建勋, 等. 多次钆剂增强MRI后小脑齿状核T1WI信号强度变化的临床研究[J]. 磁共振成像, 2026, 17(1): 112-117. DOI:10.12015/issn.1674-8034.2026.01.016.


[摘要] 目的 探讨多次注射线性钆对比剂(gadolinium-based contrast agents, GBCAs)后,小脑齿状核(dentate nucleus, DN)在MRI平扫T1WI上信号强度(signal intensity, SI)的变化规律,并分析SI变化与多种临床因素的相关性。材料与方法 回顾性分析2015年1月至2024年12月92例在本院连续进行至少3次线性GBCAs增强MRI检查患者的临床及影像学资料。所有患者在多次增强检查中均进行颅脑MRI平扫。在图像后处理工作站上,于首次及每次注射线性GBCAs后的平扫T1WI序列上,分别测量DN与脑桥的SI,并计算其比值。采用广义加性模型分析SI比值随增强次数的变化趋势,采用线性回归分析多次增强后DN/脑桥SI比值与多种临床因素的相关性。对连续检查间的比值增量进行比较,分析其变化趋势,并对变化趋势进行趋势检验。结果 DN/脑桥的SI比值随线性GBCAs注射次数的增加而增大,呈非线性模式增长。SI比值与增强检查次数相关(P<0.001),与其他临床因素无显著相关(P均>0.05)。对前6次增强后的比值增量进行分析,增量的中位数分别为:1.91、0.94、0.93、0.88、0.91、0.87。对增量变化进行趋势性检验,差异具有统计学意义(线性混合效应模型分析结果的系数为-0.215,P<0.001;多项式趋势分析结果的系数为-7.530,P<0.001)。结论 多次注射线性GBCAs的患者齿状核T1WI信号呈非线性增高,与增强检查次数相关,且增长效应逐渐减慢。
[Abstract] Objective To investigate changes in signal intensity (SI) of the dentate nucleus (DN) on unenhanced T1-weighted magnetic resonance imaging (MRI) scans after multiple administrations of linear gadolinium-based contrast agents (GBCAs), and to analyze its correlation with various clinical factors.Meterials and Methods: Clinical and imaging data of ninety-two patients who underwent at least three consecutive linear GBCA-enhanced MRI examinations at our hospital from January 2015 to December 2024 were analyzed retrospectively. Unenhanced MRI scans were performed before and after consecutive enhanced MRI examinations in all patients. On a post-processing workstation, the mean SI of the DN and the pons were measured on unenhanced T1-weighted images. The SI ration of DN-to-pons was calculated by dividing the SI in the DN by that in the pons. A generalized additive model (GAM) was used to examine the trends and patterns of the SI ratio of DN-to-pons relative to the number of GBCAs administrations. Linear regression analysis was used to examine SI ratio of DN-to-pons correlation with various clinical factors. The incremental changes in the SI ratio of DN-to-pons between consecutive examinations were compared to analyze their trend and a trend analysis was used on the variation pattern.Results The SI ratio of DN-to-pons increased with the cumulative number of linear GBCAs injections, following a non-linear pattern. The SI ratio differences showed a significant correlation with the number of injections (P < 0.001). There was no correlation with other clinical factors (P > 0.05). Analysis of the incremental changes in the ratio after the first 6 enhancements revealed median increments of 1.91, 0.94, 0.93, 0.88, 0.91, and 0.87. A trend test was performed on the incremental changes, revealing statistically significant differences (coefficient of the linear mixed-effects model: -0.215, P < 0.001; coefficient of the polynomial trend analysis: -7.530, P < 0.001).Conclusions Serial injections of linear GBCAs may lead to a non-linear increase in SI in the DN,which correlates with the number of contrast-enhanced examinations, while the rate of increase gradually slows down as the number of such examinations rises.
[关键词] 钆沉积;齿状核;钆对比剂;磁共振成像;信号强度;增量
[Keywords] gadolinium retention;dentate nucleus;gadolinium-based contrast agents;magnetic resonance imaging;signal intensity;incremental changes

符念霞 1   吴颖特 2   宋建勋 1*   王欣 1   林国辉 1   钟丽玲 1   闫瑶瑶 1  

1 深圳市宝安区人民医院MR室,深圳 518101

2 深圳市宝安区人民医院重症医学科,深圳 518101

通信作者:宋建勋,E-mail:songjianxun@126.com

作者贡献声明:宋建勋设计了本研究方案,对稿件重要的内容进行了修改;符念霞起草和撰写稿件,获取、统计分析本研究的数据;吴颖特、王欣、林国辉、钟丽玲、闫瑶瑶获取、分析或解释本研究数据,对稿件重要内容进行了修改。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-11-04
接受日期:2026-01-07
中图分类号:R445.2  R322.81 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.016
本文引用格式:符念霞, 吴颖特, 宋建勋, 等. 多次钆剂增强MRI后小脑齿状核T1WI信号强度变化的临床研究[J]. 磁共振成像, 2026, 17(1): 112-117. DOI:10.12015/issn.1674-8034.2026.01.016.

0 引言

       MRI增强检查在全身各系统疾病的早期诊断、鉴别诊断以及疗效评估中具有重要价值[1]。钆因其良好的顺磁性,可通过缩短质子弛豫时间,有效提高病变组织与正常组织的对比度[2, 3],成为多数磁共振对比剂的关键成分;其中,钆对比剂(gadolinium-based contrast agents, GBCAs)是临床上最为普遍使用的。自1998年美国食品与药品管理局(Food and Drug Adminstration, FDA)批准GBCAs临床应用以来,其在增强扫描中被普遍使用,并长期被视为安全性良好的制剂。然而,2006年有研究报道,肾功能不全患者使用GBCAs与肾源性系统纤维化(nephrogenic systemic fibrosis, NSF)的发生密切相关,其主要机制为游离钆离子在慢性肾功能减退患者的皮肤、肌肉、肝脏和肺组织中的蓄积,进而诱发进行性纤维化改变[4],因此GBCAs的安全性高度引起了人们的关注。游离的钆具有金属毒性,必须与有机配体结合后方可经静脉注射及安全排泄,因此解离度越大的GBCAs更易在体内沉积,潜在危害就越大[5]

       近年来研究表明,多次使用GBCAs会导致齿状核(dentate nucleus, DN)在T1WI上信号强度(signal intensity, SI)增高[6, 7, 8],该现象被认为与钆沉积有关。尽管脑中钆沉积的临床意义尚未完全阐明,但游离钆离子对脑的潜在毒性正日益引起临床重视。部分研究[9, 10, 11]提出了“钆沉积病”“钆暴露相关症状”这一新概念,包括头痛和精神错乱等一系列临床症状,SEMELKA等[12]学者进一步证实了GBCAs沉积可能引发的不良反应。尽管目前钆在人体内沉积的具体机制尚不明确,但是对GBCAs的安全使用已成为临床关注焦点。

       既往关于脑内钆沉积的研究[8, 13]多集中于分析首次及末次T1WI平扫上DN的信号变化,或涉及两种不同类型线性GBCAs的混合使用,潜在混杂因素较多,且缺乏对多次连续增强间DN SI动态变化趋势的评估。此外,部分研究[7, 14]未能排除患者是否在外院接受GBCAs注射检查。因此,本研究在3 T MRI中,严格使用单一对比剂钆喷酸葡胺(Gadopentetate dimeglumine, Gd-DTPA),并对连续增强检查间的信号增量变化模式进行了系统性分析,同时探讨多种临床因素与多次增强后DN SI是否相关,从而为临床合理使用GBCAs提供参考依据。

1 材料与方法

1.1 研究对象

       回顾性搜集2015年1月至2024年12月在深圳市宝安区人民进行MRI增强检查的患者。纳入标准:(1)至少进行3次MRI增强检查;(2)患者MRI增强检查均在本院进行;(3)多次增强检查中均有进行颅脑MRI平扫。排除标准:(1)存在小脑或脑桥的病变;(2)全胃肠外营养史;(3)神经纤维瘤病、多发性硬化及代谢疾病的患者;(4)肾功能不全;(5)图像缺失或图像质量不符合标准。本研究严格遵守《赫尔辛基宣言》,经深圳市宝安区人民医院伦理委员会批准,免除受试者知情同意,批准文号:KY-2025-289。

       临床资料收集包括性别、年龄、增强次数、疾病种类、是否接受过放疗及化疗、肝肾功能是否正常。放疗是指有颅脑放射治疗史的患者。患者的肝功能通过常规实验室检查评估。当患者血清样本中谷草转氨酶、谷丙转氨酶、总胆红素或γ-谷氨酰转肽酶存在一项或多项异常即视为肝功能异常。肾功能通过肾小球滤过率进行评估,肾小球滤过率≥60 mL/min/1.73 m2的患者认为肾功能正常。

1.2 检查方法

       所有患者的MRI检查分别使用我院2台3.0 T(包括西门子Verio 3.0 T、西门子Skyra 3.0 T)MRI扫描仪。Verio 3.0 T扫描参数:轴面T1WI,TR 1800 ms,TE 9 ms,矩阵320×196;轴面T2WI,TR 3970 ms,TE 90 ms,矩阵 320×205;层厚均为6.0 mm,层间距为0.9 mm,FOV 240 mm×201 mm。Skyra 3.0 T扫描参数:轴面T1WI,TR 2000 ms,TE 7.6 ms,矩阵218×256;轴面T2WI,TR 3500 ms,TE 119 ms,矩阵320×293;层厚均为5.0 mm,层间距2 mm,FOV 220 mm×220 mm。本研究仅使用一种线性GBCAs,为Gd-DTPA注射液(拜耳医药保健有限公司),颅脑MRI增强检查患者接受的钆对比剂的剂量为0.2 mmol/kg。

1.3 图像分析与数据处理

       所有图像由2名高年资放射科医师采取双盲法进行定量分析,2名影像医师分别是具有7年、9年工作经验的主治医师。记录每例患者使用Gd-DTPA增强MRI检查的次数。所有数据在图像处理工作站(西门子syngo.via)进行后处理,在患者第一次MRI检查的T1WI平扫及每次增强检查后的T1WI平扫勾画3个感兴趣区(region of interest, ROI),分别是双侧DN、脑桥,ROI面积保持一致,记录其对应的SI值。如果DN在T1WI图像上不清楚,则使用T2WI图像上的相同位置来指导ROI放置。将左右两侧DN的SI取平均值作为该患者的DN SI值,计算每一次MRI检查之间的DN/脑桥SI比值。计算每个患者连续前后两次检查的DN/脑桥的相对变化的百分比,定义为Rchange,计算公式见式(1)

       其中,n为MRI增强检查的次数,n+1为同一患者增强检查后的T1WI平扫。

1.4 统计学分析

       两位医师对数据测量评估的一致性采用组内相关系数分析,ICC<0.50表示一致性差,0.50≤ICC<0.75为一致性中等,0.75≤ICC<0.90为一致性良好,ICC≥0.90为一致性极佳。进行单变量和多变量分析,以确定与钆沉积相关的因素。本研究的数据是连续测量的检查次数的数据。为了检验数据中的趋势和模式,使用广义加性模型(Generalized Additive Model, GAM)进行模型构建,并将DN/脑桥的SI比值以及R变化单独作为因变量进行评价。使用统计软件(R,版本3.0.3)进行统计分析,使用“混合广义可加模型计算工具、带自动光滑度估计(Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, mgcv)”软件包应用GAM函数,统计学显著性定义为P<0.05。对每个R变化进行成对比较,以确定不同次数的变化是否不同。计算阳性样本比例,采用Friedman检验比较不同检查次数的Rchange差异,然后进行Bonferroni调整的配对Wilcoxon符号秩检验。在进行这些操作之前,进行配对样本量计算,样本量计算采用G*Power软件,采用双尾检验,设置效应量为0.5,α水平为0.05,统计功效为0.8。结果显示至少35个样本可以识别差异,选取前6次增强的患者共45例进行增量分析。对增量变化采用了线性混合效应模型和多项式趋势分析进行趋势性检验。

2 结果

2.1 一般资料

       本研究共纳入92例患者,男46例、女46例;年龄9~69(41.35±14.15)岁;增强扫描次数为3~30(7.60±4.43)次;80例为颅内疾病(包括胶质瘤34例,脑膜瘤24例,生殖细胞瘤3例,脑淋巴瘤6例,脑血管疾病4例,炎性脱髓鞘6例,结节性硬化1例,脑囊虫2例),12例为非颅内疾病但有肿瘤病史,行MRI检查以评估颅内是否有转移灶;3例患者仅接受过放疗,9例患者仅接受过化疗,29例患者同时接受过放疗及化疗,51例患者无放化疗史;36例肝功能异常。

       两名医师测量数据的一致性极佳,ICC为0.957(P<0.001)。

2.2 多次使用线性GBCAs后DN T1WI SI的变化

       不同患者多次MRI增强检查后平扫T1WI DN/脑桥SI比值高于首次增强前DN/脑桥SI比值(图1图2),呈非线性关系。

图1  不同患者随着MRI增强次数增加齿状核/脑桥SI比值的变化。多次增强后齿状核/脑桥SI比值增大,与增强次数呈非线性关系。红色曲线代表广义加性模型拟合图(Mixed-Effect GAM)。SI:信号强度。
Fig. 1  Changes in the dentate nucleus-to-pons signal intensity ratio with increasing number of contrast-enhanced MRI scans in different patients. The dentate nucleus-to-pons ratio increased progressively after multiple contrast administrations, showing a nonlinear association with the number of enhanced scans. The red curve represents the fitted generalized additive model (Mixed-Effect GAM). SI: signal intensity.
图2  男,44岁,脑胶质瘤,标准感兴趣区分别选择于左右侧DN、脑桥。2A:首次MRI平扫T1WI,DN未见明显异常信号,DN/脑桥的SI比值为1.05。2B:第8次MRI增强后,头颅T1WI平扫DN信号增高,DN/脑桥的SI比值1.13。SI:信号强度;DN:小脑齿状核。
Fig. 2  A 44-year-old male with glioma. Standard regions of interest are selected in the bilateral dentate nuclei and the pons. 2A: Initial non-contrast T1-weighted MRI shows no significant abnormal signal in the cerebellar dentate nuclei, and SI ratio of DN-to-pons is 1.05. 2B: Following the 8th MRI contrast administration, an increased signal intensity is seen in the dentate nucleuson non-contrast T1-weighted imaging, and SI ratio of DN-to-pons is 1.13. SI: signal intensity; DN: dentate nucleus.

2.3 多次MRI增强后DN/脑桥SI比值与多种临床因素的相关分析

       单因素分析结果显示同时放化疗、增强检查次数与DN/脑桥SI比值明显相关(P<0.001),性别、年龄、不同疾病、肝功能是否正常、是否仅放疗、是否仅化疗等因素与SI比值无明显相关(P>0.05);多因素分析结果显示增强检查次数显著影响DN/脑桥SI比值,差异具有统计学意义(P<0.001),而同时放化疗与DN/脑桥SI比值无明显相关(P>0.05)(表1)。

表1  多次MRI增强后小脑齿状核/脑桥比值与多种临床因素的多元线性回归分析
Tab. 1  Multiple linear regression analysis of of the DN-to-pons ratio on serial post-contrast MRI with multiple clinical factors

2.4 连续多次MRI增强后DN/脑桥的SI比值增量的变化

       对前6次连续增强的DN/脑桥SI比值的增量进行分析,增量的中位数分别为:1.91、0.94、0.93、0.88、0.91、0.87(图3图4),增量呈减慢的趋势。对增量变化进行趋势性检验,差异具有统计学意义(线性混合效应模型分析结果的系数为-0.215,P<0.001;多项式趋势分析结果的系数为-7.530,P<0.001)。

图3  连续6次增强的患者平扫T1WI齿状核/脑桥SI比值增量的变化。箱式图表示连续MRI检查的数据分布,前四次的增量呈减慢趋势。Rchange定义为同一患者连续前后两次检查的齿状核/脑桥的相对变化的百分比。
Fig. 3  Changes in the increment of the dentate nucleus-to-pons ratio on non-contrast T1-weighted images in patients who underwent six consecutive contrast-enhanced scans. The box plots represent the data distribution across successive MRI examinations, showing a decelerating trend in the increment over the first four scans. Rchange is defined as the percentage of relative change in the dentate nucleus-to-pons ratio between two consecutive examinations in the same patient.
图4  男,59 岁,脑胶质瘤。连续6 次增强的患者,感兴趣区及T1WISI 值如图所示。4A:首次MRI 增强前的平扫T1WI;4B~4G:第1-6 次MRI 增强后的平扫T1WI。
Fig. 4  A 59-year-old male with glioma who underwent six consecutive contrast-enhanced MRI scans. The regions of interest and their SI values were as shown in the figure. 4A: The initial non-contrast T1-weighted image obtained prior to the first MRI contrast administration. 4B to 4G: Non-contrast T1-weighted images acquired after the 1st to 6th contrast-enhanced MRI scans, respectively.

3 讨论

       本研究回顾性分析多次增强前后DN SI的变化及其影响因素,采用广义加性模型分析SI比值随增强次数的变化趋势,采用线性回归分析多次增强后DN/脑桥SI比值与多种临床因素的相关性。研究发现,多次增强后DN T1WI SI呈非线性增高,增强检查次数显著影响DN/脑桥SI比值;更重要的是,对前6次连续增强的DN/脑桥SI比值的增量进行分析,增量呈减慢的趋势,对增量变化进行趋势性检验,差异具有统计学意义。本研究结果有助于临床医生用药前对患者进行全面的获益-风险评估,从而为临床更加合理、安全地使用钆剂提供指导。

3.1 多次使用线性GBCAs后DN T1WI SI的变化特点

       在本研究中,不同患者多次MRI增强检查后平扫T1WI DN/脑桥SI比值高于增强前比值,均与目前的研究[6, 8, 15, 16]结果相符,并且部分研究尸检证实患者DN T1WI信号增加的原因是脑组织中钆的沉积导致[2, 15, 17]。钆沉积的机制尚未明确,目前存在3种可能性:载体介导转运、转运体介导机制及被动运输,由于DN和苍白球表达多种金属的受体和转运体,钆在这些区域的积累可能比在其他区域更高,尤其是在DN[2],该区域毛细血管基底膜不大牢固,对矿物质或金属沉积特别敏感。最新研究发现,GBCAs可以通过血-脑脊液或胶质淋巴系统进入大脑[18, 19]。本研究是连续的数据,经过拟合图分析,发现DN/脑桥SI比值与增强检查次数呈正向[13]、非线性的关系。非线性关系这一结果在既往研究中尚未被提出。GBCAs以原型经肾小球过滤随尿液排出体外,但体内仍有少量从钆复合物中脱螯的游离Gd3+在脑内长期沉积。此过程较为复杂并由多种因素决定,如个体的PH值、温度以及GBCAs与离子或配体之间的竞争,而因素之间的不确定性、差异性有可能影响着SI的变化[20]。此外,Gd3+在复合物中的脱螯还受到钆的强受体的影响[2],比如无机离子及游离钆的替代物-内源性金属,如果患者这些个体存在的变化以及波动,也会影响在DN的SI。

3.2 多次增强后DN/脑桥SI比值与多种临床因素的相关分析

       本研究结果表明增强检查次数与DN/脑桥SI比值明显相关,说明SI与GBCAs累积剂量相关,均与目前的研究[8, 17]结果相符。本研究结果表明单因素分析中同时放化疗具有显著性,而在多因素分析中却无统计学意义,这一现象可能是同时放化疗本身可能不是直接影响DN钆沉积,而是由于同时放化疗的患者MRI增强检查次数更多,最终是增强检查次数与钆沉积相关。本研究结果显示,DN/脑桥SI比值与年龄无显著相关性,这表明钆在脑内的沉积现象并非成人特有,在儿童群体中同样存在,与文献相符[21, 22, 23];儿童处于发育中,包括大脑的各器官尚未发育成熟,后续接触GBCAs机会更多,钆剂体内沉积的剂量更大、时间更长,因此儿童的钆剂使用更应谨慎,建议使用更稳定的GBCAs[24, 25]。本研究结果显示肝功能与DN/脑桥SI比值无明显相关,与既往文献报道相符[26, 27]。本研究结果表明颅内外疾病与DN T1WI信号增高无统计学意义,提示钆也可沉积在没有颅脑疾病的患者中[17],多次增强后DN T1WI信号增高最可能的原因是钆沉积,而与疾病本身无关。此外,本研究中所有的患者肾功能正常,说明钆沉积也可以出现在该类患者中,而GBCAs在肾功能正常的患者或大鼠的皮肤中钆的沉积已被证实[28, 29]。本研究结果表明放疗或化疗与DN T1WI信号增高无相关性,这一结果与大部分文献相符[8, 14],DN T1WI信号增高更倾向于主要是大量钆剂的累积所致,而放疗或化疗自身所诱导缩短T1的效应可能较为微弱[30, 31, 32],甚至可以忽略不计。少数文献[30, 32]提到放疗可引起血管损伤,进而促进血栓形成及胶质细胞增生;这两类病理变化,加之产生的自由基,均可能通过特定途径缩短磁共振T1弛豫时间。

3.3 连续多次MRI增强后DN/脑桥的比值增量的分析

       本研究结果表明在前6次的增强中,DN/脑桥比值的增量呈减慢的趋势,这一结论目前尚未见有文献报道。我们猜测有两种可能,第一种原因是钆在DN沉积的同时脑内也存在钆清除机制[2, 33],钆可能借助“胶质淋巴系统”途径或类似的间质液引流通路进行缓慢清除。在增强的早期阶段,脑内钆沉积速率可能超过清除速率,因此增量较快,但随着钆沉积达到一定水平,清除机制可能被激活或其相对作用增强,钆的增量可能就相对减慢。此外,动物实验中已经发现不同的GBCAs在不同组织中的清除率存在差异[15, 34, 35]。第二种原因可能是初期钆离子与脑内结合位点充足,游离Gd3+在人体内从GBCAs复合物中脱螯迅速结合脑内某些特定区域(如DN等)的生物分子(如磷酸根、转铁蛋白等)结合或发生金属置换反应[36]。随着注射次数增加,这些位点逐渐趋于相对“饱和”,后续注射的GBCA中即便有钆离子解离,能成功结合并显现为高信号的沉积效率也会下降。此外,多次注射Gd-DTPA后,机体可能产生某种目前未知的适应性反应,微调了血脑屏障或胶质淋巴系统的功能,从而影响了钆的沉积或清除动力学。以上分析仅是结合钆沉积相关文献[18, 19, 36]的一种猜想,具体机制还有待进一步后续研究。

3.4 本研究的不足

       本研究存在一定局限性:(1)由于是回顾性研究,最终钆沉积的结果未经病理或尸检证实,无法分析病理结果与影像发现的一致性,且沉积的具体形式以及沉积过程尚无法确定,GBCAs脑内沉积产生毒性的临界剂量以及可能产生的不良神经反应,这些都有待进一步研究;(2)由于在既往的大量研究中证实了增强的时间间隔这一因素与DN钆沉积没有相关性[8, 37],因此在本次研究中并没有纳入,但是连续的增强检查增量的变化是否与增强的时间间隔有关,并没有得到验证;(3)在增量的分析中,只纳入了前6次的增强,在6次以上的增强是否也一样,未来可以扩大样本量进行进一步探索。

4 结论

       多次注射线性GBCAs可导致DN T1WI信号呈非线性增高,该变化与增强次数明确相关;同时,脑内DN区域的钆沉积速率呈现逐渐减缓的趋势。在临床工作中,增强MRI所提供的诊断信息有助于临床医生对患者情况进行个体化评估,以决定是否进行相关检查,避免钆沉积造成的潜在危害。

[1]
袁思殊, 夏黎明, 杨朝霞, 等. 磁共振钆对比剂有关安全性研究现状[J]. 磁共振成像, 2020, 11(8): 717-720. DOI: 10.12015/issn.1674-8034.2020.08.030.
YUAN S S, XIA L M, YANG Z X, et al. Research status of gadolinium-based contrast on safety[J]. Chin J Magn Reson Imag, 2020, 11(8): 717-720. DOI: 10.12015/issn.1674-8034.2020.08.030.
[2]
徐亮, 余成新, 董理. 钆对比剂在脑内沉积新进展[J]. 临床放射学杂志, 2022, 41(4): 794-798. DOI: 10.13437/j.cnki.jcr.2022.04.021.
XU L, YU C X, DONG L. New progress of gadolinium contrast agent deposition in brain[J]. J Clin Radiol, 2022, 41(4): 794-798. DOI: 10.13437/j.cnki.jcr.2022.04.021.
[3]
ISLAM M T, TSNOBILADZE V. The application, safety, and recent developments of commonly used gadolinium-based contrast agents in MRI: a scoping review[J/OL]. Eur Med J, 2024: 63-73 [2025-11-03]. https://www.emjreviews.com/flagship-journal/article/the-application-safety-and-recent-developments-of-commonly-used-gadolinium-based-contrast-agents-in-mri-a-scoping-review-j190324/. DOI: 10.33590/emj/zrvn2069.
[4]
陈意志. 核磁共振钆造影剂导致的肾源性系统性纤维化[J]. 中华肾病研究电子杂志, 2024, 13(6): 358. DOI: 10.3877/cma.j.issn.2095-3216.2024.06.010.
CHEN Y Z. Nephrogenic systemic fibrosis caused by gadolinium- based contrast agents in magnetic resonance imaging[J]. Chin J Kidney Dis Investig Electron Ed, 2024, 13(6): 358. DOI: 10.3877/cma.j.issn.2095-3216.2024.06.010.
[5]
中华医学会放射学分会质量控制与安全管理专业委员会. 肾病患者静脉注射钆对比剂应用中国专家共识[J]. 中华放射学杂志, 2022, 56(3): 221-230. DOI: 10.3760/cma.j.cn112149-20210330-00294.
Quality Control and Safety Management Committee of Chinese Society of Radiology Chinese Medical Association. Chinese expert consensus of gadolinium contrast agent use in patients with renal disease[J]. Chin J Radiol, 2022, 56(3): 221-230. DOI: 10.3760/cma.j.cn112149-20210330-00294.
[6]
AKAI H, MIYAGAWA K, TAKAHASHI K, et al. Effects of gadolinium deposition in the brain on motor or behavioral function: a mouse model[J]. Radiology, 2021, 301(2): 409-416. DOI: 10.1148/radiol.2021210892.
[7]
何敏丽. 钆对比剂在脑内齿状核、苍白球沉积与T1WI和T2WI信号强度变化的相关性研究[J]. 现代医用影像学, 2022, 31(2): 235-238.
HE M L. Study on the correlation between the deposition of gadolinium contrast medium in the dentate nucleus and globus pallidus and the signal intensity changes of T1WI and T2WI[J]. Mod Med Imagelogy, 2022, 31(2): 235-238.
[8]
孔莹, 李梦双, 陈柱典, 等. 多次使用钆对比剂后MRI平扫小脑齿状核T1WI信号增高的初步研究[J]. 中华放射学杂志, 2018, 52(12): 892-896. DOI: 10.3760/cma.j.issn.1005-1201.2018.12.002.
KONG Y, LI M S, CHEN Z D, et al. Increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after multiple gadolinium-based contrast material administrations: a preliminary study[J]. Chin J Radiol, 2018, 52(12): 892-896. DOI: 10.3760/cma.j.issn.1005-1201.2018.12.002.
[9]
MCDONALD R J, WEINREB J C, DAVENPORT M S. Symptoms associated with gadolinium exposure (SAGE): a suggested term[J]. Radiology, 2022, 302(2): 270-273. DOI: 10.1148/radiol.2021211349.
[10]
SEMELKA R C, RAMALHO J, VAKHARIA A, et al. Gadolinium deposition disease: Initial description of a disease that has been around for a while[J]. Magn Reson Imaging, 2016, 34(10): 1383-1390. DOI: 10.1016/j.mri.2016.07.016.
[11]
KRÄMER H H, BÜCKER P, JEIBMANN A, et al. Gadolinium contrast agents: dermal deposits and potential effects on epidermal small nerve fibers[J]. J Neurol, 2023, 270(8): 3981-3991. DOI: 10.1007/s00415-023-11740-z.
[12]
SEMELKA R C, RAMALHO M. Physicians with self-diagnosed gadolinium deposition disease: a case series[J]. Radiol Bras, 2021, 54(4): 238-242. DOI: 10.1590/0100-3984.2020.0073.
[13]
何敏丽, 肖运平, 苏寿红. 基于T1WI一阶组学特征在钆对比剂脑内沉积评估中的价值探讨[J]. 中国CT和MRI杂志, 2024, 22(9): 8-10. DOI: 10.3969/j.issn.1672-5131.2024.09.003.
HE M L, XIAO Y P, SU S H. Evaluation of gadolinium contrast agent deposition in brain based on T1WI first-order omics features[J]. Chin J CT MRI, 2024, 22(9): 8-10. DOI: 10.3969/j.issn.1672-5131.2024.09.003.
[14]
朱慧媛, 黄子珂, 王亚丽, 等. 磁共振平扫齿状核T1高信号与钆对比剂使用次数的关系[J]. 临床放射学杂志, 2018, 37(1): 130-134. DOI: 10.13437/j.cnki.jcr.2018.01.034.
ZHU H Y, HUANG Z K, WANG Y L, et al. Relationship between high signal intensity in the dentate nucleus on unenhanced T1-weighted MR images and gadolinium contrast agent administration[J]. J Clin Radiol, 2018, 37(1): 130-134. DOI: 10.13437/j.cnki.jcr.2018.01.034.
[15]
AYERS-RINGLER J, MCDONALD J S, CONNORS M A, et al. Neurologic effects of gadolinium retention in the brain after gadolinium-based contrast agent administration[J]. Radiology, 2022, 302(3): 676-683. DOI: 10.1148/radiol.210559.
[16]
李前程, 孙丽娜, 曲阳春. 多次静脉注射钆对比剂后齿状核T1WI信号变化的Meta分析[J]. 实用放射学杂志, 2022, 38(3): 371-375. DOI: 10.3969/j.issn.1002-1671.2022.03.005.
LI Q C, SUN L N, QU Y C. Signal intensity change on T1 WI in dentate nucleus after multiple intravenous injections of gadolinium-based contrast agents: a Meta-analysis[J]. J Pract Radiol, 2022, 38(3): 371-375. DOI: 10.3969/j.issn.1002-1671.2022.03.005.
[17]
MCDONALD R J, MCDONALD J S, KALLMES D F, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities[J]. Radiology, 2017, 285(2): 546-554. DOI: 10.1148/radiol.2017161595.
[18]
AL-MUHANNA A F. Gadolinium retention after contrast-enhanced magnetic resonance imaging: a narratative review[J]. Saudi J Med Med Sci, 2022, 10(1): 12-18. DOI: 10.4103/sjmms.sjmms_198_21.
[19]
RICHMOND S B, RANE S, HANSON M R, et al. Quantification approaches for magnetic resonance imaging following intravenous gadolinium injection: a window into brain-wide glymphatic function[J]. Eur J Neurosci, 2023, 57(10): 1689-1704. DOI: 10.1111/ejn.15974.
[20]
TOWBIN A J, ZHANG B, DILLMAN J R. Evaluation of the effect of multiple administrations of gadopentetate dimeglumine or gadoterate meglumine on brain T1-weighted hyperintensity in pediatric patients[J]. Pediatr Radiol, 2021, 51(13): 2568-2580. DOI: 10.1007/s00247-021-05134-4.
[21]
STANESCU A L, SHAW D W, MURATA N, et al. Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: pathological confirmation[J]. Pediatr Radiol, 2020, 50(3): 388-396. DOI: 10.1007/s00247-019-04535-w.
[22]
OUYANG M L, BAO L. Gadolinium contrast agent deposition in children[J]. J Magn Reson Imag, 2025, 61(1): 70-82. DOI: 10.1002/jmri.29389.
[23]
ZAKI N, PARRA D, WELLS Q, et al. Assessment of gadolinium deposition in the brain tissue of pediatric and adult congenital heart disease patients after contrast enhanced cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 82 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/33267835/. DOI: 10.1186/s12968-020-00676-2.
[24]
SCARCIGLIA A, PAPI C, ROMITI C, et al. Gadolinium-based contrast agents (GBCAs) for MRI: a benefit-risk balance analysis from a chemical, biomedical, and environmental point of view[J/OL]. Glob Chall, 2025, 9(3): 2400269 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/40071223/. DOI: 10.1002/gch2.202400269.
[25]
OZTURK K, NASCENE D. Effect of at least 10 serial gadobutrol administrations on brain signal intensity ratios on T1-weighted MRI in children: a matched case-control study[J]. AJR Am J Roentgenol, 2021, 217(3): 753-760. DOI: 10.2214/AJR.20.24536.
[26]
LAYNE K A, WOOD D M, DARGAN P I. Gadolinium-based contrast agents - what is the evidence for 'gadolinium deposition disease' and the use of chelation therapy [J]. Clin Toxicol, 2020, 58(3): 151-160. DOI: 10.1080/15563650.2019.1681442.
[27]
MARASINI R, THANH NGUYEN T D, ARYAL S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging[J/OL]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(1): e1580 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/31486295/. DOI: 10.1002/wnan.1580.
[28]
PARILLO M, MALLIO C A, VAN DER MOLEN A J, et al. Skin toxicity after exposure to gadolinium-based contrast agents in normal renal function, using clinical approved doses: current status of preclinical and clinical studies[J]. Invest Radiol, 2023, 58(8): 530-538. DOI: 10.1097/RLI.0000000000000973.
[29]
RASSCHAERT M, COULOUMY E, RENARD E, et al. Overall gadolinium exposure within the first 5 Months after injection of human equivalent doses of gadopiclenol, gadoterate, or gadobutrol in healthy rats[J]. Invest Radiol, 2025, 60(11): 753-767. DOI: 10.1097/RLI.0000000000001194.
[30]
JOST G, FRENZEL T, BOYKEN J, et al. Impact of brain tumors and radiotherapy on the presence of gadolinium in the brain after repeated administration of gadolinium-based contrast agents: an experimental study in rats[J]. Neuroradiology, 2019, 61(11): 1273-1280. DOI: 10.1007/s00234-019-02256-3.
[31]
MENTZELOPOULOS A, GKIATIS K, KARANASIOU I, et al. Chemotherapy-induced brain effects in small-cell lung cancer patients: a multimodal MRI study[J]. Brain Topogr, 2021, 34(2): 167-181. DOI: 10.1007/s10548-020-00811-3.
[32]
WANG J H, SALZILLO T, JIANG Y Y, et al. Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac[J/OL]. Radiother Oncol, 2021, 161: 55-64 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/34089753/. DOI: 10.1016/j.radonc.2021.05.023.
[33]
BOYKEN J, LOHRKE J, TREU A, et al. Gadolinium presence in rat skin: assessment of histopathologic changes associated with small fiber neuropathy[J/OL]. Radiology, 2024, 310(1): e231984 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/38226877/. DOI: 10.1148/radiol.231984.
[34]
LE FUR M, MOON B F, ZHOU I Y, et al. Gadolinium-based contrast agent biodistribution and speciation in rats[J/OL]. Radiology, 2023, 309(1): e230984 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/37874235/. DOI: 10.1148/radiol.230984.
[35]
DAMME N M, FERNANDEZ D P, WANG L M, et al. Analysis of retention of gadolinium by brain, bone, and blood following linear gadolinium-based contrast agent administration in rats with experimental sepsis[J]. Magn Reson Med, 2020, 83(6): 1930-1939. DOI: 10.1002/mrm.28060.
[36]
MARTINO F, AMICI G, ROSNER M, et al. Gadolinium-based contrast media nephrotoxicity in kidney impairment: the physio-pathological conditions for the perfect murder[J/OL]. J Clin Med, 2021, 10(2): 271 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/33450989/. DOI: 10.3390/jcm10020271.
[37]
林曦, 曾蒙苏, 王剑, 等. 反复静脉注射钆对比剂与钆剂脑内沉积的相关性研究[J]. 实用放射学杂志, 2020, 36(11): 1853-1856, 1876. DOI: 10.3969/j.issn.1002-1671.2020.11.037.
LIN X, ZENG M S, WANG J, et al. Correlation between repeated injections of gadolinium contrast agent and gadolinium deposition in the brain[J]. J Pract Radiol, 2020, 36(11): 1853-1856, 1876. DOI: 10.3969/j.issn.1002-1671.2020.11.037.

上一篇 翼外肌、关节盘及双板区MRI影像组学特征在颞下颌关节紊乱病中的诊断价值
下一篇 MRI诊断透明隔区非典型脑膜瘤一例
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2