分享:
分享到微信朋友圈
X
综述
胎儿脑发育的磁共振成像研究进展
杨维新 王荣品

本文引用格式:杨维新, 王荣品. 胎儿脑发育的磁共振成像研究进展[J]. 磁共振成像, 2026, 17(1): 123-127. DOI:10.12015/issn.1674-8034.2026.01.019.


[摘要] 胎儿MRI是先进的产前影像诊断技术,它在传统解剖学检查范畴外,能对胎儿脑部及其他器官在子宫内的代谢和功能发育情况进行无创评估。随着MRI技术快速发展,胎儿MRI逐渐成为了解胎儿发育和早期辨别神经系统异常的有力方法。目前国内胎儿MRI研究主要对正常胎儿神经系统发育评估及畸形胎儿脑结构的研究,而对胎儿脑功能发育轨迹,预测出生结局及神经行为能力研究不足。本文主要利用多种MRI新技术对胎儿脑部静脉发育、代谢、微观结构和功能连接的磁共振研究进展进行综述,并指出今后研究方向。本综述将为评估正常胎儿脑发育模式、早期发现胎儿脑部发育异常提供新方法,通过观察脑部功能、代谢活动变化,发现异常代谢、神经信号,为疾病的早期诊断及出生后治疗提供依据。
[Abstract] Fetal magnetic resonance imaging (MRI) is an advanced prenatal imaging diagnostic technology. Beyond the scope of traditional anatomical examinations, it enables non-invasive assessment of in utero metabolic and functional development of the fetal brain and other organs. With the rapid advancement of magnetic resonance technology, fetal functional MRI is expected to become a powerful method for understanding fetal development and early identification of neurological abnormalities and other fetal diseases. At present, the research on fetal magnetic resonance imaging in China mainly focuses on the assessment of normal fetal nervous system development and the study of brain structure in malformed fetuses. However, there is a lack of research on the trajectory of fetal brain functional development, prediction of birth outcomes, and neurobehavioral abilities. This article mainly discusses the progress in magnetic resonance research on fetal brain venous development, metabolism, microstructure, and functional connectivity, and points out the future research directions. This review will provide new methods for evaluating the normal brain development pattern of the fetus and early detection of fetal brain development abnormalities. By observing changes in brain function and metabolic activity, abnormal metabolism and neural signals can be identified, providing a basis for early diagnosis and postnatal treatment of diseases.
[关键词] 胎儿;磁共振成像;扩散加权成像;扩散张量成像;磁敏感加权成像;体素内不相干运动;磁共振波谱;静息态功能磁共振成像
[Keywords] fetal;magnetic resonance imaging;diffusion weighted imaging;diffusion tensor imaging;susceptibility weighted imaging;intravoxel incoherent motion;magnetic resonance spectroscopy;rest-state function magnetic resonance imaging

杨维新 1   王荣品 2*  

1 遂宁市中心医院放射影像科,遂宁 629000

2 贵州省人民医院放射科,贵阳 550002

通信作者:王荣品,E-mail:wangrongpin@126.com

作者贡献声明:王荣品设计本综述的方案,对稿件重要内容进行了修改,获得了贵州省科技计划项目的资助;杨维新起草和撰写稿件,获取、分析和解释本研究的数据;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 贵州省科技计划项目 黔科合支撑[2019]2810号
收稿日期:2025-10-16
接受日期:2025-12-09
中图分类号:R445.2  R714.51 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.019
本文引用格式:杨维新, 王荣品. 胎儿脑发育的磁共振成像研究进展[J]. 磁共振成像, 2026, 17(1): 123-127. DOI:10.12015/issn.1674-8034.2026.01.019.

0 引言

       MRI已广泛应用于胎儿中枢神经系统,无论是在检测遗传性还是子宫内获得性神经系统病变都有突出价值。常规胎儿MRI仅能提供胎儿大脑的宏观解剖结构,并不能对胎儿脑微观结构及功能进行定量评价。因此在检测脑白质发育异常、评价神经纤维束发育、测量血氧饱和度、显示新陈代谢和神经连接等方面有很大局限性。扩散加权成像(diffusion weighted imaging, DWI)利用脑内水分子的随机运动,在分子平面反映活体局部组织结构和功能的微观变化,对脑白质损伤及缺血/缺氧十分敏感。扩散张量成像(diffusion tensor imaging, DTI)采用标准DWI相同的原理,采样更多扩散编码方向以表征大脑微观结构,此外还能显示神经纤维束形态,对脑发育进行量化评估。体素内不相干运动(intravoxel incoherent motion, IVIM)获得纯水分子扩散和微循环灌注相关扩散的定量信息,它提供了一种无须使用对比剂即可评估组织微循环的非侵入性方法,从而弥补了传统DWI的不足。磁敏感加权成像(susceptibility weighted imaging, SWI)对静脉血、出血和铁含量敏感,常用于检测脑实质内微出血。磁共振波谱(magnetic resonance spectroscopy, MRS)检测不同化学代谢物中质子的信号,有助于评估与脑发育和损伤相关的代谢产物变化。使用静息态功能MRI(rest-state function magnetic resonance imaging, rs-fMRI)研究揭示了胎儿大脑中原始的功能网络,包括运动、视觉和听觉网络。随着多种MRI技术逐渐应用于胎儿颅脑发育研究,为胎儿产前诊断带来更多选择方向。近年来有关胎儿脑发育的综述主要使用常规MRI检查,对胎儿脑正常发育规律及先天发育畸形的诊断进行探讨,本文将弥补前期综述的不足,利用多种MRI新技术共同评估胎儿脑正常发育以及病理条件下的脑微观结构改变,通过详细介绍不同MRI技术原理,各自优势及适用范围,为胎儿不同疾病提供解决思路,为早期诊断提供充足的科学证据。

1 常规胎儿MRI的局限性

       常规胎儿MRI可对胎儿大脑进行形态学评估,提供直观的宏观生物学测量信息[1, 2]。与超声相比,MRI有更高的软组织分辨率,对胎儿脑内局灶性脑白质病变的显示有突出的优势,有助于确定超声无法发现的潜在病因[3, 4]。由于未成熟的脑组织含水量高,导致脑实质对比度差,常规胎儿MRI仅能够定性评价脑白质发育,也容易受阅片者个人经验影响。GIORGIONE等[5]发现侧脑室扩张胎儿即使无其他系统及染色体异常,仍然有部分胎儿出生后饱受神经发育迟滞的影响。虽然胎儿MRI弥补了超声检查的不足,但仅凭常规MRI还不能预测胎儿临床病程和进展,难以对疾病的预后提供更多的信息。因此需要增加功能与代谢研究,探索可靠的MRI技术和建立新的影像学评价指标,以便早期、精准、无创诊断胎儿脑部疾病。

2 DWI技术

       常规DWI假设组织内水分子的随机运动满足高斯分布的理想状态,利用单指数模型评估活体水分子扩散运动,在分子平面反映活体局部组织结构和功能的微观变化。DWI的信号强弱可以用表观扩散系数(apparent diffusion coefficient, ADC)进行定量表示,ADC值高低代表人体中水分子扩散能力的强弱。仅以信号高低异常为基础的常规胎儿MRI对弥漫性脑白质损伤的评估往往具有主观性,ADC值为定量分析胎儿白质损伤提供了一种更客观的方法。髓鞘形成的过程始于脂质和蛋白质的积累以及少突胶质前体细胞的增殖,这会导致细胞外间隙缩小,继而引起ADC值下降[6]。因此ADC值能定量评估胎儿脑的成熟度,并且对评价胎儿脑部发育具有很高的可重复性及可靠性[7, 8]。研究表明,胎儿大脑成熟遵循一定的梯度规律,脑部最先成熟区域的ADC值降低,胎儿大脑不同区域的ADC值随着胎龄的增长演变过程受到干扰大脑成熟的各种病理因素的影响[9]。男性胎儿与女性胎儿颅内ADC值的变化存在一些差异[10]。大量研究证实,ADC值对胎儿病理条件下的脑微观结构改变具有很高的敏感性,包括脑白质损伤、脑出血/缺血、脑室扩张、感染等[9, 11, 12, 13]。SHROT等[14]发现Chiari Ⅱ畸形的胎儿无论是否发生脑积水,其额叶及颞叶的ADC值均低于正常胎儿。在患有先天性心脏病的胎儿中,发现在妊娠早期额叶、脑桥的ADC值低于正常胎儿,这可能为先天性心脏病对发育中的大脑影响提供早期指标[15]。宫内生长受限胎儿幕上脑白质及丘脑ADC值显著下降,当额叶ADC值低于1.70×10-3 mm2/s时,胎儿可能有不良围产期结局[16, 17, 18, 19]。因此ADC值降低的程度有望作为胎儿临床病程进展的评价指标,为临床提前进行干预提供更加准确的证据[20]。DWI在胎儿临床中运用比较广泛,具有很高价值,DWI对脑白质病变十分敏感,但目前大量研究仅对宫内胎儿脑部微观结构变化进行研究,并未进行长期随访,因此将来对ADC值减低胎儿出生后结局及远期预后追踪具有重要意义。

3 SWI技术

       SWI是一种利用组织间磁敏感度差异和血氧水平依赖效应成像的一种3D梯度回波成像技术,对顺磁性物质高度敏感,通过SWI能早期发现胎儿颅内微出血灶[21]。MEIJERINK等[19]使用SWI对胎儿脑静脉血氧饱和度(venous blood oxygenation, SVO2)进行定量量化,发现随着妊娠的进展,胎儿脑SVO2虽然有轻微下降趋势,但整个妊娠期间没有显著性改变。生长受限胎儿的脑灌注会显著增加,从而使胎儿SVO2不会较正常胎儿出现明显减低[19, 22]。通过SWI评估胎儿脑静脉系统发育,对早期诊断脑静脉系统异常相关的胎儿疾病、监测高危妊娠胎儿脑健康以及为父母提供可靠的产前咨询具有重要意义,帮助父母做出明智的产前选择[23]。胎儿脑静脉系统的研究还很有限,但研究前景广阔,SWI在评价胎儿脑静脉系统的结构和功能方面显示出了巨大的潜力,但目前该领域的研究主要局限于描述正常发育及孤立病例的影像学特征,缺乏统一的定量标准,因此,未来有必要开展纵向研究,探讨婴儿期胎儿脑静脉发育的生长结局,为产前诊断和咨询提供更多的参考价值。

4 DTI技术

       DTI通过检测水分子扩散的各向异性能力,反映体内微观结构和功能的变化,是目前能在活体内无创追踪和观察白质纤维束的有效方法。各向异性分数(fractional anisotropy, FA)是衡量水分子扩散方向一致性,与髓鞘的完整性呈正相关;平均扩散率(mean diffusivity, MD)代表了某一体素内水分子扩散的能力,MD值越高,则水分子扩散越自由,MD值降低可能表明组织水肿;径向扩散系数(radial diffusivity, RD)代表水分子垂直于神经纤维轴向的扩散情况,RD值升高与髓鞘破坏、细胞膜通透性增加相关,RD值降低可能提示髓鞘化或细胞外空间受限。在妊娠中晚期过程中,FA值、MD值与胎龄存在显著相关的变化,可能间接反映大脑发育过程中的微观结构改变[24, 25, 26]。其中小脑FA值升高最为明显,而皮质下板区域FA值减低最为明显[25, 27]。大脑皮层灰质中FA值随孕周增长持续下降,而MD值呈向下开口的抛物线趋势;相反,皮层下白质中FA值呈现向上开口的抛物线轨迹,MD值则显示向下开口的抛物线趋势[26, 28]。在低胎龄胎儿中,胼胝体膝部FA值高于胼胝体压部,而胼胝体膝部与体部之间FA值的差异可能与膝部最先发育有关[29]。对于胼胝体发育不良的胎儿,胼胝体整体FA值较正常胎儿显著降低[30]。GHAZI等[31]发现孕期酒精暴露的胎儿在产前存在胼胝体、小脑脚、扣带回和连接额区和颞顶区的纵束中FA值减低、MD值增加以及RD值减低,证实了孕期酒精暴露胎儿脑损伤的广泛性。阿片类药物暴露的胎儿在双侧丘脑、小脑中脚等区域FA值增高[32]。DIBBLE等[33]研究认为对关键白质纤维素的测量,不仅可以确定损伤的程度,而且可以用来检查治疗的有效性和预测神经发育结果。胎儿大脑结构发育异常与神经发育障碍有关,这些结构变化可以通过DTI宫内检测到,过DTI和组织学对胎儿大脑的结构发育进行了描述,可能为早期发现发育和认知脑障碍提供了线索。

5 IVIM技术

       IVIM利用双指数模型通过采集多个b值扩散信号,进行双指数曲线拟合分析后,同时得到量化组织灌注及扩散信息的图像。IVIM为量化人体组织的灌注提供了一种无创手段,有望能为胎儿颅内缺血缺氧及生长受限在宫内做出早期诊断[34]。在1.5 T及3.0 T MRI扫描仪分别对胎儿进行IVIM成像,发现胎儿脑部获得的D值结果具有很高的可重复性,但f值与D*值结果可重复性稍差[35]。YUAN等[36]对79例中晚孕期正常胎儿研究结果显示,随着胎龄增加,各脑区D值及D*值与胎龄呈显著相关,胎儿大脑白质区域D值逐渐下降,提示胎儿发育过程中髓鞘形成增加。目前胎儿IVIM检查时间较长以及受胎儿不自主运动伪影影响,检查成功率较低,结果相对不稳定[35, 36],通过优化IVIM扫描时间具有重要意义,有望为更快更高效的采集方案铺平道路[34]。通过减小胎儿和母体的运动、提高数据质量以及特定的后处理可以进一步提高胎儿IVIM数据的可重复性[37]。目前仅使用IVIM评价正常胎儿大脑发育的改变。IVIM与传统DWI相比可以同时反映胎儿脑内扩散及灌注变化,未来可为胎儿颅脑功能发育提供更全面的评估指标,辅助诊断先天发育异常。通过辨别IVIM参数变化,探索对胎儿脑部缺血/缺氧、感染、代谢性疾病等早期诊断的可行性,为早期干预提供指标。

6 MRS技术

       MRS是一种无创定量检测活体内组织生化信息、能量代谢和特定化合物的技术。它主要利用H质子检测活体组织中化合物组成成分、含量以及反映组织新陈代谢情况。随着胎龄增加,N-乙酰天门冬氨酸(N-acetylaspartate, NAA),肌酸(creatine, Cr)含量明显增高,NAA与Cr的增加速率大致相仿,表明胎儿神经元代谢处于积极发育状态,髓鞘化进展较快,胎儿脑组织能量代谢升高,而胆碱(choline, Cho)、肌醇(myo-inositol, MI)虽然在整个孕期占主导地位,但随着胎龄增加而降低,证明胎儿细胞增殖与细胞膜合成随胎龄呈负相关[38]。孕晚期较孕中期NAA增长速率更快,而女性NAA增加快于男性[39],因此孕中期是胎儿神经元发育黄金时期。对于巨细胞病毒感染胎儿,即便外观正常的脑组织也呈现NAA/Cr比值降低,提示颅内存在广泛性脑损伤[40]。患有先天性心脏病胎儿NAA/Cho水平均显著降低,同时还检测到乳酸(lactate, Lac),以大动脉转位和单心室先心病胎儿的脑乳酸水平升高最为显著[41],发现乳酸峰提示胎儿颅内出现缺血、缺氧。WU等[42]研究发现,母亲产前抑郁会导致胎儿脑内Cr减低,并且母亲抑郁评分与胎儿大脑中的Cr和Cho呈显著负相关,证明了母亲产前抑郁会干扰胎儿正常脑部生长。而妊娠期高血压则使NAA/Cho和NAA/Cr比值随胎龄增长而持续增加,表面在宫内暴露于母体妊娠期高血压可能会使胎儿的大脑提前成熟并增强其神经元活动[43]。动物研究表明,对于宫内生长受限胎鼠,通过产前补充牛磺酸以增加胎鼠海马NAA/Cr的比值,更好改善海马神经元代谢[44]。利用MRS可以发现产前酒精暴露导致γ-氨基丁酸、谷氨酸系统之间的失衡[45]。由此可知,MRS检测谷氨酸、肌酸代谢失衡程度可预测早产儿脑皮质损伤的程度。通过MRS探究胎儿脑内代谢物的产生、代谢,不同胎龄胎儿脑代谢产物的变化规律,为临床应用提供理论基础。未来通过检测特定代谢物变化,在胎儿神经系统发育异常的早期诊断中具有重要价值,可以实现疾病的早期发现和干预。

7 rs-fMRI技术

       rs-fMRI是基于大脑神经元受到外界各种刺激反应时引起神经元兴奋,局部组织血流量增加,同时含氧血红蛋白显著增加引起T2加权像信号增强,即血氧水平依赖(blod oxygenation level dependent, BOLD)效应,也是fMRI的基础。胎儿脑功能连接是一种新型、具有潜力的预测指标,其在产前即与母体风险特征相关联[46]。胎儿脑功能连接呈现从后向前、由近及远的发展梯度,后-前发育梯度可能与感觉运动网络在后部区域的较早发育有关,而前部区域更复杂的高级认知网络则成熟较晚[47, 48]。感觉运动和顶叶-前额叶区域则在整个胎儿期至新生儿期持续呈持续渐进式增长[49]。听觉-语言脑网络的成熟始于出生前,通过给予胎儿听觉刺激,发现除赫氏回激活外,左右扣带回和左侧壳核也有激活[50]。语言暴露水平较高的胎儿表现出左半球区域间连接增强,而同源右半球区域间连接减弱,这些发现强调了遗传和环境影响因素在功能性塑造胎儿听觉-语言网络中的关键作用,并对早期语言发展产生持续影响[51]。在妊娠中晚期胎儿脑网络经历显著的发育与精细化重构[52]。出生前内侧前额叶和边缘系统区域耦合较低,与3岁儿童攻击行为的增加相关[53],因此利用胎儿rs-fMRI可以产前识别胎儿额叶连接性与幼儿攻击性有前瞻性关联。在遭受童年虐待的母亲所怀胎儿中,杏仁核网络与左额叶区域(前额叶皮质和运动前区)的功能连接相对较高,这可能意味着母亲童年期遭受虐待对胎儿大脑的影响存在偏侧化现象[54]。rs-fMRI技术的进步使得无创研究胎儿脑部发育成为可能,然而胎儿头部不可预测且不受约束的运动,仍然是获取高质量的胎儿rs-fMRI数据面临的挑战[55],因此胎儿大脑网络连接的关键特征可以在产前检测到,将来作为产前检测与健康大脑发育偏差的指标。rs-fMRI能使我们能够探测胎儿大脑网络中正在发育的功能连接,了解健康胎儿的神经连接形成规律,对于将来用于探究母体健康状况、药物暴露、环境等因素对胎儿大脑功能发育的影响,为孕期保健和疾病预防提供科学依据。

8 小结

       综上所述,常规胎儿MRI成像只能对胎儿脑白质进行定性分析,无法对脑白质微观结构进行定量评价。DWI能早期发现脑白质的急慢性损伤,脑皮质及脑回的发育异常。SWI通过组织磁敏感差异显示脑静脉,定量测量胎脑静脉血氧饱和度。DTI能无创追踪和观察白质纤维束,判断胎儿是否存在早期神经损伤。IVIM则提供了胎儿脑组织的扩散和灌注信息,反映胎儿血管系统微结构和功能成熟的轨迹。MRS通过定量测量神经标志物的含量,间接反映脑组织新陈代谢变化。rs-MRI能够显示大脑神经活动,显示神经连接的异常。以上所总结的MRI技术在不同疾病或生理过程的检测各有其妙,在将来结合多模态、多参数等成像技术对胎儿异常发育进行早期、联合、无创及精准诊断成为可能,并为胎儿的预后情况提供客观评价依据。胎儿MRI将朝着更精准、更高效、更安全的方向发展,成为胎儿医学领域不可或缺的技术。

[1]
POWERS A M, WHITE C, NEUBERGER I, et al. Fetal MRI Neuroradiology: Indications[J]. Clin Perinatol, 2022, 49(3): 573-586. DOI: 10.1016/j.clp.2022.05.001.
[2]
CICERI T, CASARTELLI L, MONTANO F, et al. Fetal brain MRI atlases and datasets: A review[J/OL]. Neuroimage, 2024, 292: 120603 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38588833/. DOI: 10.1016/j.neuroimage.2024.120603.
[3]
GEDIK ÖZKÖSE Z, OĞLAK S C, BESTEL A, et al. Fetal intracranial hemorrhage: prenatal sonographic diagnosis criteria and postnatal outcomes[J]. J Turk Ger Gynecol Assoc, 2022, 23(4): 268-274. DOI: 10.4274/jtgga.galenos.2021.2021-0042.
[4]
TAVARES DE SOUSA M, SCHÖNNAGEL B P, DENECKE J, et al. Prenatal imaging-role of fetal MRI[J]. Rofo, 2025, 197(4): 385-396. DOI: 10.1055/a-2357-6997.
[5]
GIORGIONE V, HARATZ K K, CONSTANTINI S, et al. Fetal cerebral ventriculomegaly: What do we tell the prospective parents?[J]. Prenat Diagn, 2022, 42(13): 1674-1681. DOI: 10.1002/pd.6266.
[6]
KOBAL L, SURLAN POPOVIC K, AVSENIK J, et al. ADC values as a biomarker of fetal brain maturation[J]. Radiol Oncol, 2023, 57(2): 178-183. DOI: 10.2478/raon-2023-0022.
[7]
CHANDRA SEKHAR P, RANGASAMI R, ANDREW C, et al. Measurement of apparent diffusion coefficient (ADC) in fetal organs and placenta using 3 Tesla magnetic resonance imaging (MRI) across gestational ages[J/OL]. Sci Rep, 2024, 14(1): 23811 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39394357/. DOI: 10.1038/s41598-024-73902-x.
[8]
SEGEV M, DJURABAYEV B, KATORZA E, et al. 3.0 Tesla normative diffusivity in 3rd trimester fetal brain[J]. Neuroradiology, 2022, 64(6): 1249-1254. DOI: 10.1007/s00234-021-02863-z.
[9]
SCHÖNBERG N, WEISSTANNER C, WIEST R, et al. The Influence of Various Cerebral and Extracerebral Pathologies on Apparent Diffusion Coefficient Values in the Fetal Brain[J]. J Neuroimaging, 2020, 30(4): 477-485. DOI: 10.1111/jon.12727.
[10]
REN J Y, ZHU M, DONG S Z. Sex differences in normal fetal regional brain apparent diffusion coefficient changes assessed by in utero DWI[J/OL]. Front Pediatr, 2024, 12: 1354475 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38567183/. DOI: 10.3389/fped.2024.1354475.
[11]
AERTSEN M, DYMARKOWSKI S, VANDER MIJNSBRUGGE W, et al. Anatomical and diffusion-weighted imaging of brain abnormalities in third-trimester fetuses with cytomegalovirus infection[J]. Ultrasound Obstet Gynecol, 2022, 60(1): 68-75. DOI: 10.1002/uog.24856.
[12]
WANG A, HUO R, WEI Y, et al. Evaluation of brain microstructure changes in surviving fetus of monochorionic twin pregnancies with single intrauterine fetal death using diffusion weighted imaging: a MRI-based cohort study[J/OL]. BMC Med Imaging, 2025, 25(1): 70 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40033237/. DOI: 10.1186/s12880-025-01609-0.
[13]
GLASS H C, WOOD T R, COMSTOCK B A, et al. Predictors of Death or Severe Impairment in Neonates With Hypoxic-Ischemic Encephalopathy[J/OL]. JAMA Netw Open, 2024, 7(12): e2449188 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39636636/. DOI: 10.1001/jamanetworkopen.2024.49188.
[14]
SHROT S, SOARES B P, WHITEHEAD M T. Cerebral Diffusivity Changes in Fetuses with Chiari II Malformation[J]. Fetal Diagn Ther, 2019, 45(4): 268-274. DOI: 10.1159/000490102.
[15]
REN J Y, JI H, ZHU M, et al. DWI in Brains of Fetuses with Congenital Heart Disease: A Case-Control MR Imaging Study[J]. AJNR Am J Neuroradiol, 2021, 42(11): 2040-2045. DOI: 10.3174/ajnr.A7267.
[16]
ZHENG W, YAN G, JIANG Y, et al. Diffusion-Weighted MRI of the Fetal Brain in Fetal Growth Restriction With Maternal Preeclampsia or Gestational Hypertension[J]. J Magn Reson Imaging, 2024, 59(4): 1384-1393. DOI: 10.1002/jmri.28861.
[17]
JOUANNIC J M, BLONDIAUX E, SENAT M V, et al. Prognostic value of diffusion-weighted magnetic resonance imaging of brain in fetal growth restriction: results of prospective multicenter study[J]. Ultrasound Obstet Gynecol, 2020, 56(6): 893-900. DOI: 10.1002/uog.21926.
[18]
MEIJERINK L, VAN OOIJEN I, TERSTAPPEN F, et al. Fetal MRI study of brain differences in early-onset fetal growth restriction versus healthy controls at 30 weeks of gestation[J/OL]. Eur J Obstet Gynecol Reprod Biol X, 2025, 27: 100417 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40689344/. DOI: 10.1016/j.eurox.2025.100417.
[19]
MEIJERINK L, VAN OOIJEN I M, ALDERLIESTEN T, et al. Fetal brain development in fetal growth restriction using MRI: a systematic review[J/OL]. BMC Pregnancy Childbirth, 2025, 25(1): 208 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40012049/. DOI: 10.1186/s12884-024-07124-4.
[20]
VASQUEZ-VIVAR J, SHI Z, JEONG J W, et al. Neuronal vulnerability to fetal hypoxia-reoxygenation injury and motor deficit development relies on regional brain tetrahydrobiopterin levels[J/OL]. Redox Biol, 2020, 29: 101407 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/31926630/. DOI: 10.1016/j.redox.2019.101407.
[21]
ASHWAL E, BLASER S, LECKIE A, et al. Anterior extension of the choroid plexus into the frontal horns of the fetal lateral cerebral ventricles: Prenatal findings and postnatal outcome[J]. Prenat Diagn, 2023, 43(6): 756-762. DOI: 10.1002/pd.6344.
[22]
YADAV B K, HERNANDEZ-ANDRADE E, KRISHNAMURTHY U, et al. Dual-Imaging Modality Approach to Evaluate Cerebral Hemodynamics in Growth-Restricted Fetuses: Oxygenation and Perfusion[J]. Fetal Diagn Ther, 2020, 47(2): 145-155. DOI: 10.1159/000500954.
[23]
ZHAO X, CAO Y, YI Z, et al. Advancements in MRI application in the morphological development of fetal cerebral venous system: a review[J/OL]. Childs Nerv Syst, 2025, 41(1): 201 [2025-10-16].https://pubmed.ncbi.nlm.nih.gov/40455317/. DOI: 10.1007/s00381-025-06862-w.
[24]
CORROENNE R, PAPASTEFANOU I, MAHALLATI H, et al. Evolution of magnetic resonance diffusion tensor imaging metrics in the normal fetal brain[J]. Ultrasound Obstet Gynecol, 2025, 66(2): 226-232. DOI: 10.1002/uog.29275.
[25]
CALIXTO C, MACHADO-RIVAS F, CORTES-ALBORNOZ M C, et al. Characterizing microstructural development in the fetal brain using diffusion MRI from 23 to 36 weeks of gestation[J/OL]. Cereb Cortex, 2024, 34(1): bhad409 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/37948665/. DOI: 10.1093/cercor/bhad409.
[26]
CALIXTO C, DORIGATTI SOLDATELLI M, JAIMES C, et al. A detailed spatiotemporal atlas of the white matter tracts for the fetal brain[J/OL]. Proc Natl Acad Sci U S A, 2025, 122(1): e2410341121 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39793058/. DOI: 10.1073/pnas.2410341121.
[27]
CALIXTO C, MACHADO-RIVAS F, KARIMI D, et al. Detailed anatomic segmentations of a fetal brain diffusion tensor imaging atlas between 23 and 30 weeks of gestation[J]. Hum Brain Mapp, 2023, 44(4): 1593-1602. DOI: 10.1002/hbm.26160.
[28]
CALIXTO C, CORTES-ALBORNOZ M C, VELASCO-ANNIS C, et al. Regional Changes in the Fetal Telencephalic Wall Diffusion Metrics Across Late Second and Third Trimesters[J/OL]. Hum Brain Mapp, 2025, 46(3): e70159 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39950579/. DOI: 10.1002/hbm.70159.
[29]
LAMON S, DE DUMAST P, SANCHEZ T, et al. Assessment of fetal corpus callosum biometry by 3D super-resolution reconstructed T2-weighted magnetic resonance imaging[J/OL]. Front Neurol, 2024, 15: 1358741 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38595845/. DOI: 10.3389/fneur.2024.1358741.
[30]
CORROENNE R, GREVENT D, MAHALLATI H, et al. Quantitative fetal MRI with diffusion tensor imaging in cases with 'short' corpus callosum[J]. Ultrasound Obstet Gynecol, 2024, 63(3): 385-391. DOI: 10.1002/uog.27473.
[31]
GHAZI SHERBAF F, AARABI M H, HOSEIN YAZDI M, et al. White matter microstructure in fetal alcohol spectrum disorders: A systematic review of diffusion tensor imaging studies[J]. Hum Brain Mapp, 2019, 40(3): 1017-1036. DOI: 10.1002/hbm.24409.
[32]
DUDLEY J A, NAGARAJ U D, MERHAR S, et al. DTI of Opioid-Exposed Fetuses Using ComBat Harmonization: A Bi-Institutional Study[J]. AJNR Am J Neuroradiol, 2023, 44(9): 1084-1089. DOI: 10.3174/ajnr.A7951.
[33]
DIBBLE M, O'DEA M I, HURLEY T, et al. Diffusion tensor imaging in neonatal encephalopathy: a systematic review[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(5): 480-488. DOI: 10.1136/archdischild-2019-318025.
[34]
LIPIŃSKI K, BOGORODZKI P. Evaluation of Whole Brain Intravoxel Incoherent Motion (IVIM) Imaging[J/OL]. Diagnostics (Basel), 2024, 14(6): 653 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38535073/. DOI: 10.3390/diagnostics14060653.
[35]
JAKAB A, TUURA R L, KOTTKE R, et al. Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motion imaging[J]. J Magn Reson Imaging, 2018, 48(1): 214-225. DOI: 10.1002/jmri.25933.
[36]
YUAN X, YUE C, YU M, et al. Fetal brain development at 25-39 weeks gestational age: A preliminary study using intravoxel incoherent motion diffusion-weighted imaging[J]. J Magn Reson Imaging, 2019, 50(3): 899-909. DOI: 10.1002/jmri.26667.
[37]
JAKAB A, TUURA R, KOTTKE R, et al. Intra-voxel incoherent motion MRI of the living human foetus: technique and test-retest repeatability[J/OL]. Eur Radiol Exp, 2017, 1(1): 26 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/29708192/. DOI: 10.1186/s41747-017-0031-4.
[38]
URBANIK A, CICHOCKA M, KOZUB J, et al. Evaluation of changes in biochemical composition of fetal brain between 18th and 40th gestational week in proton magnetic resonance spectroscopy[J]. J Matern Fetal Neonatal Med, 2019, 32(15): 2493-2499. DOI: 10.1080/14767058.2018.1439009.
[39]
PRADHAN S, KAPSE K, JACOBS M, et al. Non-invasive measurement of biochemical profiles in the healthy fetal brain[J/OL]. Neuroimage, 2020, 219: 117016 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/32526384/. DOI: 10.1016/j.neuroimage.2020.117016.
[40]
SADAN O R, AVISDRIS N, RABINOWICH A, et al. Brain Metabolite Differences in Fetuses With Cytomegalovirus Infection: A Magnetic Resonance Spectroscopy Study[J]. J Magn Reson Imaging, 2025, 61(3): 1133-1141. DOI: 10.1002/jmri.29507.
[41]
ANDESCAVAGE N N, PRADHAN S, GIMOVSKY A C, et al. Magnetic Resonance Spectroscopy of Brain Metabolism in Fetuses With Congenital Heart Disease[J]. J Am Coll Cardiol, 2023, 82(16): 1614-1623. DOI: 10.1016/j.jacc.2023.08.013.
[42]
WU Y, LU Y C, JACOBS M, et al. Association of Prenatal Maternal Psychological Distress With Fetal Brain Growth, Metabolism, and Cortical Maturation[J/OL]. JAMA Netw Open, 2020, 3(1): e1919940 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/31995213/. DOI: 10.1001/jamanetworkopen.2019.19940.
[43]
KATSUKI S, USHIDA T, KIDOKORO H, et al. Hypertensive disorders of pregnancy and alterations in brain metabolites in preterm infants: A multi-voxel proton MR spectroscopy study[J/OL]. Early Hum Dev, 2021, 163: 105479 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/34624700/. DOI: 10.1016/j.earlhumdev.2021.105479.
[44]
FANG Q, LIU J, CHEN L, et al. Taurine supplementation improves hippocampal metabolism in immature rats with intrauterine growth restriction (IUGR) through protecting neurons and reducing gliosis[J]. Metab Brain Dis, 2022, 37(6): 2077-2088. DOI: 10.1007/s11011-021-00896-0.
[45]
TANG S, XU S, WADDELL J, et al. Functional Connectivity and Metabolic Alterations in Medial Prefrontal Cortex in a Rat Model of Fetal Alcohol Spectrum Disorder: A Resting-State Functional Magnetic Resonance Imaging and in vivo Proton Magnetic Resonance Spectroscopy Study[J]. Dev Neurosci, 2019, 41(1-2): 67-78. DOI: 10.1159/000499183.
[46]
MIGLIOLI C, CANINI M, VIGNOTTO E, et al. The maternal-fetal neurodevelopmental groundings of preterm birth risk[J/OL]. Heliyon, 2024, 10(7): e28825 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38596101/. DOI: 10.1016/j.heliyon.2024.e28825.
[47]
DESROSIERS J, CARON-DESROCHERS L, RENÉ A, et al. Functional connectivity development in the prenatal and neonatal stages measured by functional magnetic resonance imaging: A systematic review[J/OL]. Neurosci Biobehav Rev, 2024, 163: 105778 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38936564/. DOI: 10.1016/j.neubiorev.2024.105778.
[48]
KIM J H, DE ASIS-CRUZ J, COOK K M, et al. Gestational age-related changes in the fetal functional connectome: in utero evidence for the global signal[J]. Cereb Cortex, 2023, 33(5): 2302-2314. DOI: 10.1093/cercor/bhac209.
[49]
JI L, MENU I, MAJBRI A, et al. Trajectories of human brain functional connectome maturation across the birth transition[J/OL]. PLoS Biol, 2024, 22(11): e3002909 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39561110/. DOI: 10.1371/journal.pbio.3002909.
[50]
GOLDBERG E, MCKENZIE C A, DE VRIJER B, et al. Fetal Response to a Maternal Internal Auditory Stimulus[J]. J Magn Reson Imaging, 2020, 52(1): 139-145. DOI: 10.1002/jmri.27033.
[51]
CARA C, CANINI M, OPRANDI C, et al. Prenatal brain connectivity and postnatal language: how familial risk and prenatal speech exposure shape early language skills[J/OL]. Sci Rep, 2025, 15(1): 33281 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/41006557/. DOI: 10.1038/s41598-025-17531-y.
[52]
CALIXTO C, MACHADO-RIVAS F, KARIMI D, et al. Population Atlas Analysis of Emerging Brain Structural Connections in the Human Fetus[J]. J Magn Reson Imaging, 2024, 60(1): 152-160. DOI: 10.1002/jmri.29057.
[53]
HENDRIX C L, JI L, WERCHAN D M, et al. Fetal Frontolimbic Connectivity Prospectively Associates With Aggression in Toddlers[J]. Biol Psychiatry Glob Open Sci, 2023, 3(4): 969-978. DOI: 10.1016/j.bpsgos.2022.09.003.
[54]
VAN DEN HEUVEL M I, MONK C, HENDRIX C L, et al. Intergenerational Transmission of Maternal Childhood Maltreatment Prior to Birth: Effects on Human Fetal Amygdala Functional Connectivity[J]. J Am Acad Child Adolesc Psychiatry, 2023, 62(10): 1134-1146. DOI: 10.1016/j.jaac.2023.03.020.
[55]
KIM J H, DE ASIS-CRUZ J, COOK K M, et al. Evaluating the effects of volume censoring on fetal functional connectivity[J/OL]. Sci Rep, 2025, 15(1): 13181 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40240427/. DOI: 10.1038/s41598-025-96538-x.

上一篇 Native T1 mapping值显著延长心脏纤维瘤一例
下一篇 多模态结构-功能MRI在孤独症谱系障碍大尺度脑网络层级异常中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2