分享:
分享到微信朋友圈
X
综述
磁共振扩散峰度成像在抑郁症患者脑白质微结构中的研究进展
买丽 李孝忠 伍东洋 李玉宁

本文引用格式:买丽, 李孝忠, 伍东洋, 等. 磁共振扩散峰度成像在抑郁症患者脑白质微结构中的研究进展[J]. 磁共振成像, 2026, 17(1): 134-139. DOI:10.12015/issn.1674-8034.2026.01.021.


[摘要] 抑郁症是一种以持续性情绪低落、兴趣丧失和快感缺失为核心特征的重性精神疾病,并伴随认知、行为、生理功能的异常,严重时可能出现自杀观念或行为。全球患病率约5%,导致沉重的社会经济负担。扩散峰度成像是一种基于水分子的非高斯扩散技术,能够表现出水分子扩散受限的高度不均质性,能更好地研究复杂纤维区域的白质属性,从而获取神经纤维的形态参数。目前抑郁症的研究大多聚集在扩散张量成像或脑灰质方面,难以充分概括当前研究进展。本文重点研究了扩散峰度成像的各项参数值与抑郁症脑白质变化及临床症状的相关性,并提出了今后的研究方向,旨在为抑郁症的早期诊断、疗效评估及预后预测提供影像学依据。
[Abstract] Depression is a severe mental disorder characterized by persistent low mood, loss of interest and anhedonia, accompanied by abnormal cognitive, behavioral and physiological functions. In severe cases, suicidal thoughts or behaviors may occur. The global prevalence rate is approximately 5%, resulting in a heavy socio-economic burden. Diffusion kurtosis imaging is a non-Gaussian diffusion technique based on water molecules, which can demonstrate the high heterogeneity of water molecule diffusion limitations and better study the white matter properties of complex fibrous regions, thereby obtaining the morphological parameters of nerve fibers. At present, most research on depression focuses on diffusion tensor imaging or brain gray matter, making it difficult to fully summarize the current research progress. This article mainly studies the correlation between the parameter values of diffusion kurtosis imaging and the changes in white matter of the brain and clinical symptoms in depression, and proposes future research directions,aimed at providing imaging evidence for the early diagnosis, disease monitoring and optimization of treatment plans of depression.
[关键词] 抑郁症;扩散峰度成像;磁共振成像;脑白质;脑微观结构
[Keywords] major depressive disorder;diffusion kurtosis imaging;magnetic resonance imaging;white matter;brain microstructure

买丽 1   李孝忠 2*   伍东洋 1   李玉宁 1  

1 甘肃中医药大学第一临床医学院,兰州 730000

2 甘肃中医药大学附属医院放射科,兰州 730000

通信作者:李孝忠,E-mail:lixiaozhong925@163.com

作者贡献声明:李孝忠设计本研究的方案,对稿件重要内容进行了修改;买丽起草和撰写稿件,获取、分析和解释本研究的数据;伍东洋、李玉宁获取、分析或解释本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2025-08-12
接受日期:2025-12-09
中图分类号:R445.2  R749.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.021
本文引用格式:买丽, 李孝忠, 伍东洋, 等. 磁共振扩散峰度成像在抑郁症患者脑白质微结构中的研究进展[J]. 磁共振成像, 2026, 17(1): 134-139. DOI:10.12015/issn.1674-8034.2026.01.021.

0 引言

       抑郁症(major depressive disorder, MDD)即重性抑郁障碍,是一种高发病率、高复发率、高致残率的精神疾病,严重影响患者的生活质量,甚至危及生命。据WHO报告,全球约有3.5亿不同年龄段的人受到MDD的困扰[1],在我国,MDD终身患病率已达6.9%[2],且呈持续上升趋势,已成为重大公共卫生问题。白质完整性的破坏可导致脑功能障碍,因此脑白质微结构异常是MDD的重要神经基础[3]。扩散张量成像(diffusion tensor imaging, DTI)虽已揭示MDD患者脑体积变化及白质纤维完整性受损,但对微观结构的复杂性解析仍存在局限,磁共振扩散峰度成像(diffusion kurtosis imaging, DKI)能够捕捉水分子扩散的非高斯特性,这些参数对组织微观结构的复杂性更为敏感,能更精确地反映神经元密度减少、髓鞘完整性受损或轴突排列紊乱等病理改变[4],DKI通过测量平均峰度(mean kurtosis, MK)、分数各向异性(fractional anisotropy, FA)、峰度各向异性(kurtosis fractional anisotropy, KFA)、径向峰度(radial kurtosis, RK)、轴向峰度(axial kurtosis, AK)、平均扩散率(mean diffusivity, MD)、轴向扩散率(axial diffusivity, AD)、径向扩散率(radial diffusivity, RD)这8个主要参数,可以更全面地反映组织微观结构的复杂性,从而提供比传统DTI更丰富的组织微观结构信息[5, 6],为揭示MDD患者脑微观结构的复杂改变提供了新的视角。现有研究多侧重于DTI个别参数的解释,不能深入量化MDD的脑白质变化,缺乏全面总结MDD的脑微观变化应用的综述[7, 8]。DKI参数可用于监测治疗反应和评估神经可塑性变化,指导治疗调整,可能成为MDD早期识别和风险预测的有力工具。本文系统综述了DKI全部参数值在MDD患者的脑白质微观结构及MDD临床症状的应用进展,从影像学角度为MDD的发病机制提供有价值的信息,支撑其在MDD等精神障碍疾病领域的实用价值。

1 DKI参数在MDD脑白质微观结构研究中的应用

1.1 MK与MDD脑白质异常

       MK值是DKI的核心参数之一,反映了水分子扩散的总体非高斯分布程度[9],能够敏感地反映出组织微观结构的复杂性变化,MK值降低通常提示脑白质微观结构完整性被破坏[10]。多项研究发现[11, 12],MDD患者在多个脑区的MK值显著降低,特别是前额叶、扣带回和胼胝体等区域,表现为神经元减少和突触密度降低,并且这些区域与情绪调节和认知功能密切相关。且在微血管病变、轻度认知障碍或合并其他神经精神障碍的患者的研究中,同样发现MK值显著下降,这说明MK值与神经认知障碍等临床表现高度关联[13, 14]。NAGAI等[15]发现孤独症谱系障碍患者放射冠、胼胝体等处MK值明显低于健康对照组,表明MK值具有较好的敏感性。有研究[16]指出产后抑郁患者白质和丘脑的MK值明显低于健康对照组,且在胼胝体、内囊部分更为显著,表明其能反映脑微观损害。YANG等[17]研究了电休克治疗对MDD患者脑微结构的影响,发现治疗后患者在额叶、颞叶和海马等区域的MK值发生显著变化,MK值上升且临床症状也得到改善,这说明电休克治疗可能通过促进神经可塑性发挥了治疗作用,这也表明了DKI参数可以动态反映MDD的症状变化。上述研究表明,MK值作为DKI的核心参数,能够敏感地检测MDD相关的白质微观结构异常,并可能作为疾病治疗监测的潜在生物标志物,为评估治疗效果和优化治疗方案提供客观依据。

1.2 FA和KFA与MDD脑白质异常

       FA值是DKI具备的核心参数,代表水分子扩散的各向异性程度,是脑白质完整性的传统衡量标准[18]。大量研究证实[19, 20],MDD患者白质如内囊、胼胝体、放射冠等部位FA值降低,且与疾病持续时间与临床症状相关,并且FA值可反映疾病进程和治疗反应。BREIT等[21]发现MDD患者的动机性快感缺失与抑郁症状严重程度显著相关,并用基于纤维束的空间统计(tract-based spatial statistics, TBSS)方法分析出MDD患者左侧上纵束的FA值降低。也有学者[22]研究发现扣带束FA值与汉密尔顿抑郁量表总分呈负相关,表明白质完整性越差,抑郁症状越严重。WINTER等[23]也利用TBSS方法观察到与无MDD家族风险的健康对照组相比,具有MDD家族风险的健康对照组的钳子小束和右额枕下束的FA值反而增加,这一改变可能反映了存在MDD风险的健康成年人的神经代偿能力。当MDD合并其他精神障碍时,FA值与KFA值联合测量时或在临床量表分析时具有更强的区分力[24, 25]。KFA值是DKI特有的参数,反映了水分子扩散的峰度各向异性,对白质纤维的完整性和组织性变化更为敏感[26]。KFA值能够补充FA值在复杂交叉纤维结构环境下的敏感性,凸显微观结构的完整性,特别是在放射冠、内囊、胼胝体、上纵束为主要受损区域[27]。有研究表明[28],脑白质微结构越致密,脑部结构越完整,KFA值越大。GOGHARI等[29]发现双相情感障碍患者在颞叶和枕叶通路的KFA值降低,而这项值在传统DTI参数中却无法测量到,突显了KFA值在DKI参数中并揭示MDD脑微结构异常方面的独特价值[30]。上述研究表明,KFA值作为DKI的特有参数,能够提供DTI无法获得的白质微观结构信息,由于KFA计算涉及多个峰度张量分量,对图像质量和信噪比要求较高,因此应用较少,未来研究需要进一步优化KFA的采集和分析方法,以提高其在MDD研究中的可靠性和敏感性,有助于更全面地理解MDD的神经生物学基础。

1.3 RK和AK与MDD脑白质异常

       RK和AK是DKI的两个重要方向性参数,分别反映了垂直于和平行于白质纤维主方向的水分子扩散受限程度[31]。RK在髓鞘完整性变化中特别敏感,AK在轴突结构的改变中特别敏感[32]。在MDD研究中,这些参数为理解白质损伤的特定微观结构基础提供了新的视角。多项研究发现[33, 34],MDD患者脑白质如胼胝体、内囊、顶叶、枕叶等区域的RK值下降显著,提示髓鞘变性和轴突包裹障碍。在轻度认知障碍早期和多发性硬化等疾病中,RK值与AK值的下降更早表现出来,且区域分布更广[35]。PALANIVELU等[36]在孤独症模型大鼠中使用DKI评估丘脑中央深部脑刺激的治疗效果,发现治疗后RK和AK值增加,反映了神经元密度和组织复杂性的增多。LIANG等[37]研究发现,卒中后抑郁患者的左侧额上回、双侧额中回、颞叶这些白质区域的RK值显著降低,且卒中后抑郁的认知功能衰退的风险也会增加[38]。上述研究表明,RK和AK作为DKI的方向性参数,能够提供白质损伤特定微观结构基础的信息,有助于更精确地理解MDD的神经病理机制。这些DKI参数能更全面地表达脑白质完整性变化,使其成为研究MDD白质异常的有力工具,未来研究需要进一步探索这些参数与临床症状和疾病亚型的特异性关联。

1.4 扩散率与MDD脑白质异常

       MD是平均扩散率,反映了水分子无方向扩散的整体水平,主要受细胞水扩散平衡影响[39]。多项研究表明[40, 41],MD值在MDD患者脑区通常升高,例如上纵束、扣带束、前丘脑辐射、内囊和放射冠等脑白质处,MD值增高反映了脑组织结构的松弛,细胞密度下降。AD是轴向扩散率,衡量沿轴突主轴方向的扩散,反映轴突的完整性,RD是径向扩散率,衡量垂直于轴突的扩散,主要反映髓鞘的完整性[42]。AD和RD的升高常与髓鞘损伤、轴突稀疏或水肿有关,值下降则反映组织紧密[43, 44]。LIU等[45]采用7.0 T超高场强研究MDD丘脑底核的白质部分,发现MDD组的MD值、AD值和RD值明显高于非MDD组。这与之前的一项研究[46]结论一致。ASLAN等[47]使用TBSS方法评估白塞病患者脑白质,发现左侧皮质脊髓束、左侧下纵束和左侧上纵束的MD、AD和RD增加。同样地,LAN等[48]研究了伴脑小血管病MDD患者的白质异常,发现MDD组在左侧上纵束、左侧后放射冠和右侧外囊等区域的MD、AD和RD值显著增加,提示广泛的白质完整性缺失。CHURCHILL等[49]对COVID-19感染后患者的研究也发现白质微结构改变与负面情绪相关,进一步支持白质异常在情绪障碍中的重要作用。上述研究表明,MDD患者MD、AD和RD值升高更为普遍且分布广泛。利用DKI技术可以更准确地计算这些传统参数,DKI能很好地量化非高斯扩散特性,其参数反映脑损伤的敏感性优于DTI,具有临床应用价值[50]。DKI的参数值可以更全面精细地评估MDD患者的脑白质微观结构异常,为理解疾病的神经机制提供多角度证据,这些参数也能够为理解脑白质完整性的改变提供补充。

2 DKI参数与MDD临床症状的相关性

2.1 与认知功能障碍的相关性

       MDD患者常伴有认知功能障碍,包括记忆力减退、注意力不集中、执行功能下降等症状[51]。有研究[52]显示MDD患者双侧额叶白质、双侧颞叶白质、胼胝体膝部的FA值降低,且FA值与认知功能测试评分呈正相关,即FA值越低,认知功能评分越低。FA值降低导致大脑信息传递效率下降,影响大脑对认知功能的整体调控,进而导致认知功能障碍。记忆功能损害在MDD患者中也较为常见。TAKAMIYA等[53]研究发现老年MDD患者的双侧海马体积减小,同时连接海马与乳头体的穹窿的MK值降低,且MK值的降低与记忆评分的下降显著相关, 表明MK值与MDD患者内侧颞叶白质微结构的改变及其与记忆功能相关。研究发现[54],前额叶和扣带回白质的FA、MK和KFA值降低与蒙特利尔认知评估量表评分呈正相关,提示这些参数可能作为认知功能障碍的敏感指标,这些区域的微观结构损伤可能导致执行功能和工作记忆障碍[55]。VIEIRA等[56]发现帕罗西汀对MDD患者治疗6~12周后表现出扣带束和上纵束FA值升高、RD值下降,且认知功能有所改善。这代表DKI参数有望成为识别MDD治疗反应的生物标志物。上述研究表明,认知功能障碍可能与广泛脑区的微观结构异常相关,特别是涉及认知控制和情感调节的网络[57, 58]。MDD认知功能障碍的DKI研究也涉及白质完整性与特定认知域的关系。认知症状与前额叶和颞叶白质的FA和MK密切相关,这些区域的微观结构损伤可能导致执行功能障碍和记忆障碍。

2.2 与焦虑症状的相关性

       焦虑是MDD常见的共病症状。有研究发现[59],焦虑症状量表评分高的MDD患者,其边缘系统(如杏仁核、海马、扣带等)FA、MK、RK和AK下降,MD、RD升高,且越严重的焦虑症状脑白质损伤越严重。HUANG等[60]的前瞻性纵向研究发现,母亲妊娠期焦虑症状会对婴儿脑白质发育产生影响,51名8岁儿童的左侧穹窿和钩束的MD和RD值增加、神经突密度指数和FA值降低,强调了生命早期白质发育对后期情绪和行为问题的重要性,这一前瞻性研究为早期环境因素会影响白质发育而增加精神疾病风险提供了重要证据,表明围产期母亲焦虑可能通过影响后代白质发育,从而增加焦虑症状风险,DKI参数为焦虑症的早期预防提供了依据。TANG等[61]对注意缺陷多动障碍儿童的研究也发现额叶、尾状核和颞叶等区域的MK、AK、RK、FA值下降,MD值升高,表明DKI参数能够揭示大脑白质的发育异常。SHEN等[62]对自闭症儿童白质异常的研究发现,左后放射冠和右上放射冠的AD值、AK值、MK值的改变与症状密切相关,这些通路在情绪调节和焦虑处理中起关键作用,对理解焦虑症的神经基础也有启示意义。上述研究表明,焦虑症状可能与边缘系统的微观结构异常相关,涉及情绪调节和躯体感知的神经环路[63]。脑白质的损害不仅会引起焦虑,焦虑又会推动抑郁的发生。MDD与焦虑共病患者,其白质束结构异常区域广泛扩散至主要情感调节网络,并表现为FA、MK、RK和AK值下降,MD、RD值升高,这一发现有助于揭示抑郁-焦虑共病的神经机制。

2.3 与睡眠障碍的相关性

       睡眠障碍是MDD的常见症状,有研究[64]发现阻塞性睡眠呼吸暂停患者丘脑放射束和前放射冠的MK值降低,这会削弱丘脑-皮层唤醒信号传递,引起广泛的神经和精神症状。且MK与主观睡眠质量评分呈负相关[65],提示髓鞘修复障碍。有研究[66]发现,与睡眠质量良好的MDD患者相比,睡眠质量差的MDD患者在认知测试上表现更差,且睡眠障碍还会加重MDD患者的认知缺陷。ABRAHAM等[67]的动物模型进一步证实,慢性睡眠剥夺导致少突胶质前体细胞凋亡,导致MK值降低。脑白质损害可能会影响睡眠质量,这为理解MDD相关睡眠障碍的神经基础提供了新线索。ZHAO等[68]探索了PER1基因多态性对白质完整性与抑郁水平关系的影响,发现携带风险等位基因G的个体抑郁水平更高,且胼胝体、内囊、放射冠和穹窿等情绪相关白质的完整性更差,KFA值更低,表明昼夜节律基因可能通过影响白质发育增加抑郁和睡眠障碍风险。上述研究表明,睡眠障碍可能与特定白质通路的微观结构异常相关,涉及情绪调节和昼夜节律的神经环路[69]。这些区域参与睡眠-觉醒调节和情绪处理,其完整性受损可能导致睡眠障碍。

2.4 与自杀倾向的相关性

       自杀是MDD最严重的后果之一,早期识别有自杀倾向的MDD患者并挽救其生命至关重要。LIU等[70]研究发现难治性MDD患者脑白质投射纤维FA值降低与焦虑和自杀意念严重程度相关。FA 值降低表明脑白质纤维束完整性受损更严重,影响脑区间的信息传递和情绪调节网络,从而增加自杀风险。ZHANG等[71]比较了有自杀倾向和无自杀倾向MDD患者的脑白质差异,发现有自杀倾向的患者胼胝体压部、左侧下额枕束和右侧前丘脑辐射等白质纤维的扩散特性异常。HU等[72]研究发现,与没有自伤行为的MDD患者和健康对照组相比,伴有自伤行为的MDD患者左背扣带回的扣带完整性降低,且自伤行为的严重程度与扣带回完整性呈负相关。有研究发现[73, 74],内囊前肢作为连接前额叶皮层与纹状体、丘脑的重要通路,具有自杀未遂史的MDD患者中FA值下降更为显著,提示该通路的结构损害可能导致脑功能异常,进而增加自杀风险。LANGHEIN等[75]探索了MDD患者外周炎症与白质微结构的关系,发现氯胺酮治疗后IL-8/IL-10比值下降,提示抗炎作用可能通过影响白质完整性从而降低自杀风险。上述研究表明,自杀倾向可能与特定白质通路的微观结构异常相关,涉及前额叶对情绪和冲动的调控。白质损伤可导致情绪波动加大、认知控制力降低,因此MDD患者会产生自杀倾向的极端冲动行为。DKI参数有望成为评估MDD患者自杀风险的客观生物标志物,为制订个体化干预策略和预防自杀行为提供重要参考。然而,现有研究样本量较小,且缺乏统一的自杀风险评估标准,未来需要开展大样本、多中心的前瞻性研究来验证DKI参数的预测价值。

3 小结与展望

       综上所述,DKI通过量化脑组织微观结构复杂性,能更准确地描述脑白质微结构的改变,超越了以往DTI的见解,为理解MDD的神经基础提供了新的思路。DKI可以计算出多种峰度值和扩散值,为研究脑组织微观结构提供了有用的信息,当MDD患者脑白质出现损伤时,如髓鞘脱失、轴突丢失等病理变化,MK、FA、KFA、RK、AK值通常下降,MD、AD、RD值则通常上升,这表示脑白质复杂性下降和结构完整性的缺失,表明白质完整性越差,结构越疏松,抑郁症状越严重。反之则提示相关区域结构更为致密和复杂。DKI尤其在前额叶-丘脑回路、冠状放射、胼胝体等关键白质束,这些区域异常与症状严重程度、认知功能障碍、焦虑症状、睡眠障碍和自杀倾向等相关。DKI的参数对神经元密度、树突分支和髓鞘完整性等微观结构变化具有高度敏感性[76],这些为理解MDD的神经影像学提供了新的视角。

       然而,尽管DKI技术在MDD的研究取得了一定进展,但仍存在一些挑战,如样本量较小、研究方法不一致等。由于不同研究间的样本特征(如年龄、抑郁亚型、病程和用药状况)差异较大,限制了结果的可比性和可重复性。其次,DKI数据采集和分析方法尚未完全标准化,不同研究间在磁场强度、b值选择、扩散方向数量、图像预处理等方面存在差异,导致研究结果难以直接比较和整合。第三,大多数研究采用横断面设计,缺乏大规模队列和长期随访,难以确定DKI参数异常与MDD发生、发展及预后的因果关系。此外,DKI通常需要比DTI更长的采集时间,且对运动伪影敏感,这使得该技术更容易出现扫描中断的情况[77]。而MDD患者可能更难保持扫描时的静止状态,这增加了数据采集的难度。随着高场强7.0 T MRI普及、fMRI的进步,结合基因组学、蛋白组学,DKI能够为MDD这一复杂疾病提供更有效的解决方案。未来研究需要加强多中心研究、扩大样本含量、更长随访时间和更统一的方法,使DKI参数作为治疗反应和复发预测的生物标志物的潜力,指导个体化治疗选择,此外,开发更先进的DKI分析方法和计算模型,提高对复杂白质微结构变化的敏感性和特异性,以进一步明确DKI在MDD研究和临床实践中的作用。随着技术的不断发展和研究的深入,DKI有望成为MDD诊断、亚型鉴别、治疗选择和疗效监测的重要工具。

[1]
World Health Organization. Depressive disorder(Depression)[EB/OL]. [2023-03-31]. https://www.who.int/news-room/fact-sheets/detail/depression.
[2]
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. DOI: 10.1016/S2215-0366(18)30511-X.
[3]
BALLER E B, COOPER E C, SCHINDLER M K, et al. Depression as a disease of white matter network disruption: Learning from Multiple Sclerosis[J/OL]. Biol Psychiatry, 2025 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC41275952. DOI: 10.1016/j.biopsych.2025.11.011.
[4]
MCKENNA F, MILES L, DONALDSON J, et al. Diffusion kurtosis imaging of gray matter in young adults with autism spectrum disorder[J/OL]. Sci Rep, 2020, 10(1): 21465 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722927. DOI: 10.1038/s41598-020-78486-w.
[5]
NOVELLO L, HENRIQUES R N, IANUŞ A, et al. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner[J/OL]. Neuroimage, 2022, 254: 119137 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35339682. DOI: 10.1016/j.neuroimage.2022.119137.
[6]
HU R, KIM H, KIM J, et al. Fast diffusion kurtosis imaging in acute ischemic stroke shows mean kurtosis-diffusivity mismatch[J]. J Neuroimaging, 2022, 32(5): 941-946. DOI: 10.1111/jon.13000.
[7]
LI Z, LIU W, XIAO C, et al. Abnormal white matter microstructures in Parkinson's disease and comorbid depression: A whole-brain diffusion tensor imaging study[J/OL]. Neurosci Lett, 2020, 735: 135238 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC32645398. DOI: 10.1016/j.neulet.2020.135238.
[8]
SCHRÄDER J, MELLER T, EVERMANN U, et al. Multi-modal morphometric association study of subclinical depressive symptoms using voxel-based morphometry, cortical thickness, and diffusion tensor imaging (DTI)[J]. J Affect Disord, 2024, 351: 755-764. DOI: 10.1016/j.jad.2024.01.221.
[9]
ZHU T, PENG Q, OUYANG A, et al. Neuroanatomical underpinning of diffusion kurtosis measurements in the cerebral cortex of healthy macaque brains[J]. Magn Reson Med, 2021, 85(4): 1895-1908. DOI: 10.1002/mrm.28548.
[10]
NOTHDURFTER D, JAWINSKI P, MARKETT S. White Matter Tract Integrity Is Reduced in Depression and in Individuals With Genetic Liability to Depression[J]. Biol Psychiatry, 2024, 95(12): 1063-1071. DOI: 10.1016/j.biopsych.2023.11.028.
[11]
LIU D, MA X, LI X, et al. Correlation study between the microstructural abnormalities of medial prefrontal cortex and white matter hyperintensities with mild cognitive impairment patients: A diffusion kurtosis imaging study[J/OL]. Psychiatry Res Neuroimaging, 2025, 348: 111958 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39893732. DOI: 10.1016/j.pscychresns.2025.111958.
[12]
NAKAYA M, KAMIYA K, KUROKAWA R, et al. Brain microstructure alterations in bipolar disorder subtypes revealed by diffusion kurtosis imaging[J]. J Psychiatr Res, 2025, 189: 505-512. DOI: 10.1016/j.jpsychires.2025.07.006.
[13]
LI T, QIN R, LI C, et al. Diffusion kurtosis imaging of brain white matter alteration in patients with coronary artery disease based on the TBSS method[J/OL]. Front Aging Neurosci, 2024, 16: 1301826 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901985. DOI: 10.3389/fnagi.2024.1301826.
[14]
ZHANG N, PENG K, GUO J X, et al. Microstructural brain abnormalities and associated neurocognitive dysfunction in obstructive sleep apnea: a pilot study with diffusion kurtosis imaging[J]. J Clin Sleep Med, 2024, 20(10): 1571-1578. DOI: 10.5664/jcsm.11184.
[15]
NAGAI Y, KIRINO E, TANAKA S, et al. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI[J]. Cereb Cortex, 2024, 34(13): 129-145. DOI: 10.1093/cercor/bhad451.
[16]
SASAKI Y, ITO K, FUKUMOTO K, et al. Cerebral diffusion kurtosis imaging to assess the pathophysiology of postpartum depression[J/OL]. Sci Rep, 2020, 10(1): 15391[2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505968. DOI: 10.1038/s41598-020-72310-1.
[17]
YANG J, TONG P, DONG P L, et al. A novel approach to investigate the mechanism of electroconvulsive therapy in the treatment of major depression disorder: Diffusion kurtosis imaging[J]. J Psychiatr Res, 2024, 179: 372-378. DOI: 10.1016/j.jpsychires.2024.09.036.
[18]
MOLLOY C J, NUGENT S, BOKDE A L W. Alterations in diffusion measures of white matter integrity associated with healthy aging[J]. J Gerontol A Biol Sci Med Sci, 2019, 76(6): 945-954. DOI: 10.1093/gerona/glz289.
[19]
HE C, GONG M, LI G, et al. Evaluation of White Matter Microstructural Alterations in Patients with Post-Stroke Cognitive Impairment at the Sub-Acute Stage[J]. Neuropsychiatr Dis Treat, 2022, 18: 563-573. DOI: 10.2147/NDT.S343906.
[20]
CHEN M, WU Y, WANG Y, et al. Functional connectivity and white matter microstructural alterations in patients with left basal ganglia acute ischemic stroke[J]. Brain Imaging Behav, 2025, 19(2): 421-432. DOI: 10.1007/S11682-025-00982-2.
[21]
BREIT S, DENIER N, MERTSE N, et al. The neurobiology of motivational anhedonia in patients with depression[J]. Brain Imaging Behav, 2025, 19(3): 680-701. DOI: 10.1007/S11682-025-00999-7.
[22]
MERTSE N, DENIER N, WALTHER S, et al. Associations between anterior cingulate thickness, cingulum bundle microstructure, melancholia and depression severity in unipolar depression[J]. J Affect Disord, 2022, 301: 437-444. DOI: 10.1016/j.jad.2022.01.035.
[23]
WINTER A, THIEL K, MEINERT S, et al. Familial risk for major depression: differential white matter alterations in healthy and depressed participants[J]. Psychol Med, 2023, 53(11): 4933-4942. DOI: 10.1017/S003329172200188X.
[24]
LI B, ZENG B, ZENG P, et al. Thalamic microstructural alterations in cerebral small vessel disease with mild cognitive impairment: insights from diffusion kurtosis imaging[J]. Neuroradiology, 2025, 67(3): 623-641. DOI: 10.1007/s00234-025-03578-1.
[25]
GAO B, QU M, JIANG Y, et al. Fractional Anisotropy is a More Sensitive Diagnostic Biomarker Than Mean Kurtosis for Patients with Parkinson Disease with Cognitive Dysfunction: A Diffusional Kurtosis Map Tract-Based Spatial Statistics Study[J]. JNR Am J Neuroradiol, 2024, 45(8): 1098-1105. DOI: 10.3174/ajnr.A8297.
[26]
HARRITZ T, HANSEN B, ZHANG B, et al. Exploring IVIM-DKI and DKI for Assessing Microvascular and Microstructural Changes After Traumatic Brain Injury[J/OL]. NMR Biomed, 2025, 38(9): e70110 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40751360. DOI: 10.1002/nbm.70110.
[27]
FLINKENFLÜGEL K, BORGERS T, KLUG M, et al. Longitudinal associations between white matter integrity, early life adversities, and treatment response following cognitive-behavioral therapy in depression[J]. Neuropsychopharmacology, 2025, 50(6): 1000-1007. DOI: 10.1038/S41386-025-02070-X.
[28]
ZUO L, TIAN T, WANG B, et al. Microstructural white matter abnormalities in overactive bladder syndrome evaluation with diffusion kurtosis imaging tract-based spatial statistics analysis[J/OL]. World J Urol, 2024, 42(1): 36 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC38217714. DOI: 10.1007/s00345-023-04709-0.
[29]
GOGHARI V M, KUSI M, SHAKEEL M K, et al. Diffusion kurtosis imaging of white matter in bipolar disorder[J/OL]. Psychiatry Res Neuroimaging, 2021, 317: 111341[2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34411810. DOI: 10.1016/j.pscychresns.2021.111341.
[30]
刘颖, 曾祥柱, 王筝, 等. 基于扩散张量成像及扩散峰度成像各向异性评估抑郁症脑部改变[J]. 临床放射学杂志, 2018, 37(1): 17-21. DOI: 10.13437/j.cnki.jcr.2018.01.004.DOI:10.13437/j.cnki.jcr.2018.01.004.
LlU Y, ZENG X Z, WANG Z, et al. Fractional Anisotropy in Diffusion Tensor Imaging and Diffusion Kurtosis Imaging for Cerebral Changes of Patients with Depression[J]. Journal of Clinical Radiology, 2018, 37(1): 17-21. DOI: 10.13437/j.cnki.jcr.2018.01.004.DOI:10.13437/j.cnki.jcr.2018.01.004.
[31]
LU P, HONG R, TIAN G, et al. Diffusional kurtosis imaging in differentiating nonarteritic anterior ischemic optic neuropathy from acute optic neuritis[J]. Neuroradiology, 2024, 66(5): 797-807. DOI: 10.1007/s00234-024-03301-6.
[32]
陆婷, 鲁际. 多模态MRI在终末期肾病合并认知障碍中的研究进展[J]. 磁共振成像, 2024, 15(1): 229-234. DOI: 10.12015/issn.1674-8034.2024.01.039.
LU T, LU J. Progress of multimodal MRI in end-stage renal disease co mplicated with cognitive impairment[J]. Chin J Magn Reson Imaging, 2024, 15(1): 229-234. DOI: 10.12015/issn.1674-8034.2024.01.039.
[33]
QIAO P G, CHENG X, LI G J, et al. MR Diffusional Kurtosis Imaging-Based Assessment of Brain Microstructural Changes in Patients with Moyamoya Disease before and after Revascularization[J]. AJNR Am J Neuroradiol, 2020, 41(2): 246-254. DOI: 10.3174/ajnr.A63922.
[34]
ZHOU J, LIU J, LU L J, et al. White-matter alterations in dysthyroid optic neuropathy: a diffusion kurtosis imaging study using tract-based spatial statistics[J]. Jpn J Radiol, 2024, 43(4): 603-611. DOI: 10.1007/s11604-024-01710-4.
[35]
LUO D, PENG Y, ZHU Q, et al. U-fiber diffusion kurtosis and susceptibility characteristics in relapsing-remitting multiple sclerosis may be related to cognitive deficits and neurodegeneration[J]. Eur Radiol, 2024, 34(3): 1422-1433. DOI: 10.1007/s00330-023-10114-3.
[36]
PALANIVELU L, CHEN Y Y, LIANG Y W, et al. Diffusion kurtosis imaging biomarkers associated with amelioration of neuroinflammation, gray matter microstructural abnormalities, and gut dysbiosis by central thalamic deep brain stimulation in autistic -like young rats[J/OL]. Neuroimage, 2025, 317: 121344 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC40544899. DOI: 10.1016/j.neuroimage.2025.121344.
[37]
LIANG W, FAN Z, CUI S, et al. The association between White matter microstructure alterations detected by Diffusional kurtosis imaging in Neural circuit and post-stroke depression[J]. Neurol Res, 2021, 43(7): 535-542. DOI: 10.1080/01616412.2021.1888033.
[38]
LIANG W, FAN Z, CUI S, et al. The association between White matter microstructure alterations detected by Diffusional kurtosis imaging in Neural circuit and post-stroke depression[J]. Neurol Res, 2021, 43(7): 535-542. DOI: 10.1080/01616412.2021.1888033.
[39]
O'KANE A, VEZINA G, CHANG T, et al. Early Versus Late Brain Magnetic Resonance Imaging after Neonatal Hypoxic Ischemic Encephalopathy Treated with Therapeutic Hypothermia[J/OL]. J Pediatr, 2021, 232: 73-79.e2 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979415. DOI: 10.1016/j.jpeds.2021.01.050.
[40]
AHN J Y, KANG Y, KIM A, et al. Association Between White Matter Tract Integrity and Frontal-Executive Function in Non-Geriatric Adult Patients With Major Depressive Disorder[J]. Psychiatry Investig, 2024, 21(2): 133-141. DOI: 10.30773/pi.2023.0229.
[41]
BAN M, HE J, WANG D, et al. Association between segmental alterations of white matter bundles and cognitive performance in first-episode, treatment-naïve young adults with major depressive disorder[J]. Affect Disord, 2024, 358: 309-317. DOI: 10.1016/j.jad.2024.05.001.
[42]
彭婷, 高舒展, 蒋静, 等. 髓鞘损伤在双相情感障碍发生发展中的作用[J]. 国际精神病学杂志, 2025, 52(1): 1-4, 12. DOI: 10.13479/j.cnki.jip.2025.01.083.
PENG T, GAO S Z, JIANG J, et al. The role of myelin injury in the occurrence and development of bipolar disorder[J]. Journal of International Psychiatry, 2025, 52(1): 1-4, 12. DOI: 10.13479/j.cnki.jip.2025.01.083.
[43]
VAN VELZEN L S, COLIC L, CEJA Z, et al. Transdiagnostic alterations in white matter microstructure associated with suicidal thoughts and behaviours in the ENIGMA Suicidal Thoughts and Behaviours consortium[J/OL]. Transl Psychiatry, 2025, 15(1): 429 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12552667. DOI: 10.1038/s41398-025-03602-1.
[44]
HERTING M M, BURNOR E, AHMADI H, et al. Air Pollution Exposure, Prefrontal Connectivity, and Emotional Behavior in Early Adolescence[J]. Res Rep Health Eff Inst, 2025, 2025(225): 1-56.
[45]
LIU W, HEIJ J, LIU S, et al. Structural connectivity of thalamic subnuclei in major depressive disorder: An ultra-high resolution diffusion MRI study at 7-Tesla[J]. J Affect Disord, 2025, 370: 412-426. DOI: 10.1016/j.jad.2024.11.009.
[46]
李坤, 刘东涛, 卜乔, 等. 基于扩散峰度成像的脑小血管病抑郁患者杏仁核微结构变化的研究[J]. 中华老年心脑血管病杂志, 2020, 22(8): 847-850. DOI: 10.3969/j.issn.1009-0126.2020.08.016.
LI K, LIU D T, BU Q, et al. Changes of amygdala microstructure detected in patients with depression induced by CSVD based on diffusion kurtosis imaging[J]. Chin J Geriatr Heart Brain Vessel Dis, 2020, 22(8): 847-850. DOI: 10.3969/j.issn.1009-0126.2020.08.016.
[47]
ASLAN K, GENÇ B, BOLAT N, et al. Diffusion tensor imaging in Behcet's disease with and without neurological involvement patients: evaluation of microstructural white matter abnormality with a tract-based spatial statistical analysis[J]. Br J Radiol, 2024, 97(1162): 1645-1652. DOI: 10.1093/bjr/tqae150.
[48]
LAN L, HE H, ZHANG J. An integration of neuroimaging and serum proteomics analysis suggests immune and inflammation are associated with white matter microstructure changes in cerebral small vessel disease with depressive symptoms[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(10): 107921 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC29137823. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107921.
[49]
CHURCHILL W N, ROUDAIA E, CHEN J J, et al. Effects of post-acute COVID-19 syndrome on cerebral white matter and emotional health among non-hospitalized individuals[J/OL]. Front Neurol, 2024, 15: 1432450 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333225. DOI: 10.3389/fneur.2024.1432450.
[50]
LIU H, XIANG Y, LIU J, et al. Diffusion kurtosis imaging and diffusion tensor imaging parameters applied to white matter and gray matter of patients with anti-N-methyl-D-aspartate receptor encephalitis[J/OL]. Front Neurosci, 2022, 16: 1030230 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730699. DOI: 10.3389/fnins.2022.1030230.
[51]
VARGHESE S, FREY B N, SCHNEIDER M A, et al. Functional and cognitive impairment in the first episode of depression: A systematic review[J]. Acta Psychiatr Scand, 2022, 145(2): 156-185. DOI: 10.1111/acps.13385.
[52]
田斌, 丁辉, 张琴, 等. 基于DTI观察针刺联合盐酸舍曲林治疗中度抑郁症的临床疗效研究[J]. 中国CT和MRI杂志, 2025, 23(6): 8-11.
TIAN B, DING H, ZHANG Q, et al. Therapeutic Effect of the Combined Treatment with Acupuncture and Sertraline Hydrochloride on Moderate Depression Based on Diffusion Tensor Imaging Technology[J]. Chinese Journal of CT and MRI, 2025, 23(6): 8-11.
[53]
TAKAMIYA A, RADWAN A, CHRISTIAENS D, et al. Gray and white matter differences in the medial temporal lobe in late-life depression: a multimodal PET-MRI investigation[J/OL]. Psychol Med, 2025, 55: e10 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968119. DOI: 10.1017/S0033291724003362.
[54]
LIU Y, LIU D, LIU M, et al. The microstructural abnormalities of cingulum was related to patients with mild cognitive impairment: a diffusion kurtosis imaging study[J]. Neurol Sci, 2023, 44(1): 171-180. DOI: 10.1007/s10072-022-06408-x.
[55]
ZHANG W, ZHANG C, ZHAO J, et al. Microstructure Abnormalities of Diffusion Tensor Imaging Measures in First-Episode, Treatment-Naïve Adolescents With Major Depressive Disorder: An Integrated AFQ and TBSS Study[J/OL]. Brain Behav, 2025, 15(3): e70416 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905106. DOI: 10.1002/brb3.70416.
[56]
VIEIRA R, COELHO A, REIS J, et al. White Matter Microstructure Alterations Associated With Paroxetine Treatment Response in Major Depression[J/OL]. Front Behav Neurosci, 2021, 15: 693109 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341904. DOI: 10.3389/fnbeh.2021.693109.
[57]
ZAVALIANGOS-PETROPULU A, AL-SHARIF N B, TARAKU B, et al. Neuroimaging-Derived Biomarkers of the Antidepressant Effects of Ketamine[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(4): 361-386. DOI: 10.1016/j.bpsc.2022.11.005.
[58]
WU Q, LU L J, ZHOU J, et al. Effect of glucocorticoid therapy on brain white matter microstructure in thyroid-associated ophthalmopathy: a longitudinal diffusion kurtosis imaging study[J]. Brain Imaging Behav, 2025, 19(4): 919-929. DOI: 10.1007/S11682-025-01025-6.
[59]
ZHOU H, LI H, LIU S, et al. Shared and distinctive changes of the white matter integrity in generalized anxiety disorder with or without depressive disorder[J]. J Psychiatr Res, 2025, 182: 430-437. DOI: 10.1016/j.jpsychires.2025.01.047.
[60]
HUANG Y, KOSCIK R T, ANDRES A, et al. Brain white matter development in 8-year-old children is associated with maternal mental health during pregnancy[J/OL]. Front Hum Neurosci, 2025, 19: 1603022 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213767. DOI: 10.3389/fnhum.2025.1603022.
[61]
TANG S, LIU X, NIE L, et al. Diffusion kurtosis imaging reveals abnormal gray matter and white matter development in some brain regions of children with attention-deficit/hyperactivity disorder.[J/OL]. J Neurosci Res, 2024, 102(1): e25284 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC38284864. DOI: 10.1002/jnr.25284.
[62]
SHEN Y, ZHAO X, WANG K, et al. Exploring White Matter Abnormalities in Young Children with Autism Spectrum Disorder: Integrating Multi-shell Diffusion Data and Machine Learning Analysis[J]. Acad Radiol, 2024, 31(5): 2074-2084. DOI: 10.1016/j.acra.2023.12.023.
[63]
SINDERMANN L, REDLICH R, OPEL N, et al. Systematic transdiagnostic review of magnetic-resonance imaging results: Depression, anxiety disorders and their co-occurrence[J]. J Psychiatr Res, 2021, 142: 226-239. DOI: 10.1016/j.jpsychires.2021.07.022.
[64]
ROSTAMPOUR M, NOORI K, HEIDARI M, et al. White matter alterations in patients with obstructive sleep apnea: a systematic review of diffusion MRI studies[J]. Sleep Med, 2020, 75: 236-245. DOI: 10.1016/j.sleep.2020.06.024.
[65]
BENSON K L, WINKELMAN J W, GÖNENÇ A. Disrupted white matter integrity in primary insomnia and major depressive disorder: relationships to sleep quality and depression severity[J/OL]. J Sleep Res, 2023, 32(5): e13913 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC37138521. DOI: 10.1111/jsr.13913.
[66]
BERDZENISHVILI E, ROINISHVILI M, OKRUASHVILI M, et al. Impact of subjective sleep quality on objective measures of neurocognitive dysfunction in patients with major depressive disorder[J]. Ind Psychiatry J, 2024, 33(1): 154-159. DOI: 10.4103/ipj.ipj_136_23.
[67]
ABRAHAM M, MUNDORF A, BRODMANN K, et al. Unraveling the mystery of white matter in depression: A translational perspective on recent advances[J/OL]. Brain Behav, 2022, 12(7): e2629 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304855. DOI: 10.1002/brb3.2629.
[68]
ZHAO R, SUN J B, DENG H, et al. Per1 gene polymorphisms influence the relationship between brain white matter microstructure and depression risk[J/OL]. Front Psychiatry, 2022, 13: 1022442 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691780. DOI: 10.3389/fpsyt.2022.1022442.
[69]
OTA M, NODA T, SATO N, et al. Common Relationship Between Causality Orientation and the Prefrontal Region in Psychiatric Disorders as Revealed by Diffusional Kurtosis Imaging[J/OL]. Cureus, 2024, 16(5): e61138 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199088. DOI: 10.7759/cureus.61138.
[70]
LIU X, WEI Z, LI L, et al. Effect of continuous esketamine infusion on brain white matter microstructure in patients with major depression: A diffusion tensor imaging study[J]. J Affect Disord, 2025, 372: 173-181. DOI: 10.1016/j.jad.2024.12.002.
[71]
ZHANG H, LI H, YIN L, et al. Aberrant White Matter Microstructure in Depressed Patients with Suicidality[J]. J Magn Reson Imaging, 2021, 55(4): 1141-1150. DOI: 10.1002/jmri.27927.
[72]
HU C, JIANG W, WU Y, et al. Microstructural abnormalities of white matter in the cingulum bundle of adolescents with major depression and non-suicidal self-injury[J]. Psychol Med, 2024, 54(6): 1113-1121. DOI: 10.1017/S003329172300291X.
[73]
SUN H, YAN R, HUA L, et al. Based on white matter microstructure to early identify bipolar disorder from patients with depressive episode[J]. J Affect Disord, 2024, 350: 428-434. DOI: 10.1016/j.jad.2024.01.147.
[74]
XU Z, ZHOU Z, TAO W, et al. Altered topology in cortical morphometric similarity network in recurrent major depressive disorder[J]. J Psychiatr Res, 2025, 181: 206-213. DOI: 10.1016/j.jpsychires.2024.11.038.
[75]
LANGHEIN M, SEITZ-HOLLAND J, LYALL A E, et al. Association between peripheral inflammation and free-water imaging in Major Depressive Disorder before and after ketamine treatment - A pilot study[J]. J Affect Disord, 2022, 314: 78-85. DOI: 10.1016/j.jad.2022.06.043.
[76]
LIAO Y, COELHO S, CHEN J, et al. Mapping tissue microstructure of brain white matter in vivo in health and disease using diffusion MRI[J/OL]. Imaging Neurosci (Camb), 2024, 2: imag-2-00102 [2025-08-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224470. DOI: 10.1162/imag_a_00102.
[77]
FOUTO A R, HENRIQUES R N, GOLUB M, et al. Impact of truncating diffusion MRI scans on diffusional kurtosis imaging[J]. MAGMA, 2024, 37(5): 859-872. DOI: 10.1007/s10334-024-01153-y.

上一篇 多模态结构-功能MRI在孤独症谱系障碍大尺度脑网络层级异常中的研究进展
下一篇 脑类淋巴系统相关中枢神经系统疾病中gBOLD-CSF耦合异常的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2