分享:
分享到微信朋友圈
X
综述
基于DWI的虚拟磁共振弹性成像原理及临床应用进展
宋学亮 陈姝君 邓萍 熊园 李梅 张小明 李兴辉

本文引用格式:宋学亮, 陈姝君, 邓萍, 等. 基于DWI的虚拟磁共振弹性成像原理及临床应用进展[J]. 磁共振成像, 2026, 17(1): 208-215, 227. DOI:10.12015/issn.1674-8034.2026.01.032.


[摘要] 虚拟磁共振弹性成像(virtual magnetic resonance elastography, vMRE)是一种基于扩散加权成像(diffusion-weighted imaging, DWI),通过水分子扩散推算虚拟剪切模量,无创评估组织硬度的新兴技术。组织力学特性与肝纤维化及肿瘤浸润等多种疾病密切相关,而传统磁共振弹性成像依赖专用振动装置,限制了临床推广。近年研究表明,DWI-vMRE在肝纤维化、颅内肿瘤、乳腺及肺部等器官病变中具有一定诊断价值,可在缺乏专用硬件条件下实现组织力学特性的量化评估。但现有研究多为小样本、单中心研究,模型与扫描流程尚未统一,尚缺乏系统综述与规范。本文全面梳理了vMRE的物理基础、参数计算方法与常用扫描策略,总结其在多个系统疾病中的应用进展,归纳模型假设、混杂因素和结果可重复性等关键局限,并展望其与多模态磁共振成像及人工智能技术融合的研究方向,旨在为后续相关基础与临床研究提供思路,为软组织硬度无创影像学评估提供参考。
[Abstract] virtual magnetic resonance elastography (vMRE) is an emerging technology based on diffusion-weighted imaging (DWI) that noninvasively assesses tissue stiffness by estimating virtual shear modulus through water molecule diffusion. Tissue mechanical properties are closely associated with various diseases such as liver fibrosis and tumor infiltration. However, traditional magnetic resonance elastography relies on specialized vibration devices, limiting its clinical adoption. Recent studies indicate that DWI-vMRE holds diagnostic value in liver fibrosis, intracranial tumors, and lesions in organs such as the breast and lungs, enabling quantitative assessment of tissue mechanical properties without specialized hardware. However, existing research primarily consists of small-sample, single-center studies, with inconsistent models and scanning protocols, and a lack of systematic reviews and standardized guidelines. This paper comprehensively reviews the physical principles, parameter calculation methods, and common scanning strategies of vMRE. It summarizes its application progress in multiple systemic diseases, identifies key limitations such as model assumptions, confounding factors, and reproducibility of results, and explores future research directions integrating vMRE with multimodal MRI and artificial intelligence technologies. This review aims to provide insights for subsequent basic and clinical research and serve as a reference for noninvasive imaging assessment of soft tissue stiffness.
[关键词] 虚拟弹性成像;扩散加权成像;磁共振成像;硬度;无创诊断;多模态成像
[Keywords] virtual elasticity imaging;diffusion-weighted imaging;magnetic resonance imaging;hardness;non-invasive diagnosis;multimodal imaging

宋学亮 1, 2   陈姝君 1, 2   邓萍 1, 2   熊园 1, 2   李梅 1   张小明 1, 2   李兴辉 1, 2*  

1 川北医学院附属医院放射科,南充 637000

2 医学影像四川省重点实验室,南充 637000

通信作者:李兴辉,E-mail:Lixinghui1005@126.com

作者贡献声明:李兴辉设计本研究方案,对稿件的重要内容进行修改,获得四川省卫生健康委员会青年苗圃项目、川北医学院附属医院博士启动基金项目、医学影像四川省重点实验室开放课题基金资助项目的资助;宋学亮起草和撰写论文初稿,负责本研究数据的获取、整理与统计分析,并参与结果解释;陈姝君、邓萍、熊园、李梅、张小明参与本研究的数据获取、分析或结果解释,对稿件的重要内容进行了修改和完善;张小明获得国家自然科学基金面上项目的资助。全体作者均已阅读并同意提交的最终稿,均同意对本研究的所有方面负责,保证研究的真实性、准确性和完整性。


基金项目: 国家自然科学基金面上项目 82371961 四川省卫生健康委员会青年苗圃项目 24QNMP062 川北医学院附属医院博士启动基金项目 BS20211116 医学影像四川省重点实验室开放课题基金资助项目 MIKL202310
收稿日期:2025-11-07
接受日期:2026-01-04
中图分类号:R445.2  R73 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2026.01.032
本文引用格式:宋学亮, 陈姝君, 邓萍, 等. 基于DWI的虚拟磁共振弹性成像原理及临床应用进展[J]. 磁共振成像, 2026, 17(1): 208-215, 227. DOI:10.12015/issn.1674-8034.2026.01.032.

0 引言

       软组织力学特性改变贯穿多种疾病过程,如肝纤维化进展常伴随组织硬度增加[1]、肿瘤浸润及间质重塑亦存在显著的生物力学改变[2]。临床触诊是目前临床评估病灶质地与硬度的传统且常用的初步方法,但其评估范围主要限于浅表病变,深部器官病变的力学状态则主要依赖于影像学和病理学检查来间接判断,难以实现定量、可重复的评估[3, 4, 5]。因此,需要一种能够客观、定量且可重复获取组织力学信息的方法,无创弹性成像技术应运而生。1995年,MUTHUPILLAI等[3]首次系统报道磁共振弹性成像(magnetic resonance elastography, MRE),通过“外源机械激励—生成相位对比成像剪切波—生成反演生成弹性图”的这一流程,实现了被称为“定量触诊”的无创硬度成像[6, 7, 8]。目前,MRE已在多个临床领域展现出应用潜力,尤其是在慢性肝病纤维化的诊断和分期具有独特优势[9, 10, 11],并与组织学纤维化程度具有良好相关性[11],同时在骨骼肌生理病理评估、头颅及乳腺疾病诊断等[11, 12, 13]方面提供了新的思路。然而,MRE的广泛应用仍面临诸多挑战:对外部振动设备的依赖、时间成本较高以及与现有磁共振设备的兼容性等问题。因此,如何有效保留组织“力学信息”的前提下,降低弹性成像硬件门槛与流程成本,已成为推动弹性成像技术临床转化的关键问题[14]

       在此背景下,有学者开始尝试利用常规磁共振成像(Magnetic Resonance Imaging, MRI)序列或多参数成像数据,构建无需外源激励的“虚拟弹性成像”方法。POLLACK等[15]基于常规MRI和临床数据结合,利用机器学习预测体素级肝脏硬度图像,为缺乏MRE硬度条件下获取弹性信息提供了新思路。体素内不相干运动(intravoxel incoherent motion, IVIM)成像通过多b值采集和双指数模型拟合,可同时反应水分子扩散受限程度和微循环灌注特征[16],为从扩散行为间接评估组织力学特性提供了生理学基础。近期,BRAUN等[17]基于DWI和MRE数据构建了研究生物组织中水扩散和黏弹性的组合物理模型,在软组织中建立水扩散与黏弹性之间的定量关系,提示“扩散驱动的虚拟弹性成像”具有作为潜在生物标志物的可行性。在此基础上发展起来基于DWI的vMRE,通过多b值DWI及相应流变学模型,将表观扩散指标映射为虚拟剪切模量(μDiff),无需依赖MRE硬件即可通过DWI图像数据生成虚拟弹性图来无创评估组织力学特性[18]。目前,基于DWI的vMRE已在肝纤维化、颅内肿瘤、乳腺及肺部等多种器官病变中开展初步研究,显示出在疾病分期和良恶性鉴别方面的应用潜力[11]

       需要指出的是,μDiff本质上是一种基于扩散行为的替代性硬度指标,其数值不可简单等同于传统MRE 物理反演得到的剪切模量μMRE,两者在不同器官或成像条件下的可比性,需依赖有效的跨模态校准加以验证[19]。另一方面,vMRE仍处于方法学探索阶段,现有研究多为小样本、单中心、扩散模型选择、b值设计与后处理流程差异较大,尚缺乏可复用的标准化框架[12, 17]。既往综述主要聚焦传统MRE或超声弹性成像[1, 11],对基于DWI的vMRE的技术链路、参数设置及跨器官应用证据缺少系统归纳。基于此,本文从方法学与临床证据两条主线出发,总结vMRE的关键实现环节与应用现状,梳理其主要误差来源与可重复性影响因素,并展望多参数MRI与智能化分析推动其规范化与转化的可能路径,以期为vMRE的参数设置、流程标准化、多中心验证及临床转化提供参考。

1 vMRE技术原理

       vMRE是一种基于DWI的无创弹性评估技术,其核心原理在于利用水分子扩散对组织微结构/微环境的敏感性,把DWI的表观扩散系数(apparent diffusion coefficient, ADC)通过校准的映射函数转换为μDiff,从而间接反映组织“刚度”特征[2]。与MRE的“驱动-成像-反演”不同,vMRE不进行剪切波成像与数值反演,其不确定性主要来源于b值的选取方案、图像参数配准、降噪以及映射系数的跨器官与跨中心可比性等。

       DWI技术利用不同b值下水分子在组织中的信号衰减差异来表征其扩散特性,实现对组织内部微观结构的评估。在纤维化或肿瘤等病变组织中,细胞密度、基质和间质改变导致水分子的扩散受到明显限制,进而引起ADC值的变化。具体而言,vMRE通过位移表观扩散系数(shifted apparent diffusion coefficient, sADC)信号强度衰减比值实现组织器官的弹性信息的提取:sADC可直接通过低关键b值(LKb)与高关键b值(HKb)对应的信号强度比值(SLKb/SHKb)分析扩散图像的衰减情况来推算组织硬度[20, 21, 22]。需要说明的是,LKb/HKb的选择可能随解剖部位而变化:低b值更易受微灌注/IVIM成分影响[16],高b值对受限扩散更敏感但信噪比下降更明显,因此不同器官需在“抑制灌注影响—保证信噪比/降低运动伪影”之间权衡[19, 20, 21]。目前尚无统一跨器官的标准b值组合,不同研究通常沿用各器官可行性研究/验证研究中的参数设置[20, 21, 22]。因此,这一特性使得vMRE能够在无需增加额外扫描时间的情况下,通过优化不同b值的选择,提供重复性高且准确性强的弹性评估结果。

       为进一步提高结果的可靠性和精度,vMRE通常采用标准化处理流程:首先ITK-SNAP software(version 4.0.0;accessible at http://www.itksnap.org)[23]上勾画感兴趣区(region of interests, ROI),并参考对应层面的T2WI图像排除了囊性、坏死、出血和钙化区域,随后在MATLAB软件中生成相应的虚拟三维剪切刚度图,完成μDiff估算[24]。研究表明,这一过程计算出的μDiff与MRE计算的组织硬度和弹性特性呈现较强的线性关系[19]。vMRE的准确性易受到铁沉积、脂肪含量等因素的影响。PARK等[25]研究发现,采用拉伸指数模型的分布扩散系数(distribute diffusion coefficient, DDC)可减弱部分非高斯扩散/异质性影,通过提高了DWI准确性间接提高vMRE的诊断效能(图1)。

       DWI图像数据映射计算vMRE的剪切模量计算公式见式(1)~(2):

       其中,S(b)为在b值为b条件下采集的扩散加权信号强度;S0为b=0 s/mm2时b值信号强度;b为扩散敏感因子;ADC为表观扩散系数;sADC为两组不同高b值信号计算得到的位移ADC;SLKb为低关键b值下获得的扩散加权信号强度;SHKb为高关键b值下获得的扩散加权信号强度;LKb为计算sADC的低关键b值;HKb为计算sADC的高关键b值。

       随后采用线性映射将扩散参数转化为μDiff(单位kPa),见公式(3)

       低b值(Slow, b值= 200 s/mm2)和高b值(Shigh,b值=800/1000/1500s/mm2),DWI其中缩放因子(α)和位移因子(β)分别设置为-9.8和14,由肝脏校准获得[19]

图1  基于DWI 的vMRE 原理示意图。1A:以胰腺为例示意vMRE 的应用对象;1B:MRI 采集流程示意;1C:低b 值DWI 图像(b=200 s/mm²);1D:高b 值DWI 图像(b=1500 s/mm²);1E~1F:由DWI信号计算获得的μDiff硬度图(单位kPa;颜色条表示硬度范围;1E 为全图,1F 为局部放大)。vMRE通过扩散相关指标[如sADC 或ln(Slow/Shigh)]经线性映射得到μDiff:μDiff = α •sADC + β 或 μDiff =α •ln(Slow/Shigh) + β,其中Slow 与Shigh 分别为低/高b 值DWI 信号强度;α、β 为校准参数(引用文献中由肝脏校准获得:α=−9.8,β=14)。DWI:扩散加权成像;vMRE:虚拟磁共振弹性成像;MRI:磁共振成像;sADC:位移表观扩散系数;μDiff:基于扩散推算的虚拟剪切模量/硬度指标(kPa);MRE:磁共振弹性成像;Slow/Shigh:低/高b值DWI信号强度。
Fig. 1  Schematic illustration of diffusion-weighted imaging (DWI)-based virtual MR elastography (vMRE). 1A: The pancreas is shown as an example organ; 1B: schematic of MRI acquisition workflow; 1C: DWI at a low b-value (b = 200 s/mm²); 1D: DWI at a high b-value (b = 1500 s/mm²); 1E to 1F: The resulting μDiff stiffness map (kPa); the color bar indicates the stiffness range; the left panel shows the whole-map view and the right panel shows a zoomed-in view. In vMRE, a diffusion-related metric [e.g., sADC or ln (Slow/Shigh)] is converted to μDiff using a linear mapping: μDiff= α•sADC + β or μDiff= α•ln(Slow/Shigh) + β, where Slow and Shigh denote DWI signal intensities at low and high b-values, respectively. Parameters α and β are calibration constants (adopted from literature calibrated in the liver: α = -9.8, β = 14). DWI: diffusion-weighted imaging; vMRE: virtual magnetic resonance elastography; MRI: magnetic resonance imaging; sADC: shifted apparent diffusion coefficient; μDiff diffusion-derived virtual shear modulus (kPa); MRE: magnetic resonance elastography; Slow/Shigh: DWI signal intensities at low/high b-values.

2 vMRE在不同系统疾病中的研究进展

2.1 肝脏疾病

2.1.1 肝纤维化与肝硬化无创分期

       肝脏是vMRE技术应用最广泛、研究最深入的器官,相关研究主要聚焦于纤维化分期、脂肪变性评估及肿瘤性质鉴别等方面。肝纤维化作为多种慢性肝病共同的病理终点,其发生机制与炎症驱动的肝星状细胞活化和细胞外基质过度沉积密切相关,是影响肝病预后及肝细胞癌(hepatocellular carcinoma, HCC)风险的关键因素[26, 27],在这一过程中,组织的力学表型-硬度与疾病进展存在内在联系[28]。因此,实现纤维化的准确分期对于评估病程和预测肝硬化及HCC风险至关重要,也使得建立客观、可重复的无创评估手段成为临床关注的焦点。

       目前,肝纤维化分期评估方法众多,包括超声弹性成像、常规MRI、CT以及MRE等。其中,传统的MRE已被证实能高精度诊断肝纤维化[29, 30],但因其设备昂贵、操作复杂且部分患者耐受差等因素,限制了其在基层医院的普及[31, 32]。此外,DWI在纤维化评估中也被广泛应用。研究表明,肝脏ADC值可用于评估肝脏炎症及肝纤维化程度[32],JANG等[31]的Meta分析(60项研究,6620例)显示,DWI对肝纤维化分期的汇总AUC约为0.83~0.88,提示其在区分肝纤维化分期方面具有一定诊断准确性,并可用于纵向监测组织结构演变[33]。研究表明,vMRE在晚期肝纤维化评估中的准确性明显高于常规血清纤维化指标(FIB-4和Fibro Q评分),若将μDiff与血清指标结合,更能提升对晚期纤维化和肝硬化的鉴别能力[34];一项以组织病理学为金标准的研究对比比较vMRE与二维剪切波弹性成像(two-dimensional shear-wave elastography, 2D SWE),结果显示两者在各期肝纤维化诊断准确性方面无显著差异[35]。此外,也有研究将以DWI为基础的vMRE用于肝纤维化评估,并与超声弹性成像进行对照,结果提示vMRE在临床上具有可行性,但对不同纤维化分期的区分能力仍有待进一步提升[36]

       以上研究表明vMRE在评估肝纤维化上展现出与MRE和2D-SWE相似的潜力,甚至优于部分血清指标,但其对不同纤维化分期的精确区分能力仍有待进一步提升。未来亟需开展大规模、多中心的前瞻性研究,以进一步验证其诊断效能与稳定性,推动该技术向常规临床实践的转化。

2.1.2 非酒精性脂肪性肝病评估

       非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)作为全球最常见的慢性肝病之一,其进展为肝纤维化、肝硬化或肝癌将显著增加患者死亡风险[37, 38]。目前,超声是NAFLD的常用初筛工具,但其对肥胖及大量腹水的患者敏感性较低,且结果易受操作者主观影响[39, 40, 41]。相比之下,CT和MRI能提供更客观的肝脂肪定量评估,其中化学位移编码MRI在量化脂肪方面具有优势[42],但以上技术均无法直接评估肝硬度。MRE基于剪切波传播,可无创、定量反映组织纤维化程度。一项Meta分析显示[43],MRE检出高级别纤维化的汇总敏感性84%、特异性90%,AUC 0.96(最高),总体诊断准确性优于血清学评分及超声相关方法;动物实验亦证实,MRE参数可有效预测肝病模型中NAS评分,为评估炎症和纤维化严重程度提供了无创替代手段[44]。然而,MRE的临床应用受限于高昂设备成本,并对体型、脂肪分布较为敏感。

       近年来,vMRE作为替代方案受到关注[45]。HANNIMAN等[21]对49例NAFLD患者的研究发现,经过脂肪校正的vMRE结果与纤维化病理分期无显著相关性,推测可能与高BMI患者脂肪抑制不完全有关。尽管如此,vMRE的理论潜力仍受支持。有研究[46]通过动物模型证实,MRE获得的剪切模量与DWI扩散参数对细胞与间质完整性变化具有较高敏感性,可分别从力学与微观结构维度反映组织状态,为“扩散-力学”关联及vMRE用于监测疾病微环境变化提供实验依据。

       综上,NAFLD背景下肝脏脂肪浸润及脂肪抑制不完全会影响DWI信号稳定性,是vMRE应用的主要限制。后续研究应重点优化DWI采集与重建,并完善脂肪校正与标准化后处理流程;随着硬件与序列技术进步带来的图像质量提升,vMRE在NAFLD评估中的稳定性与准确性有望进一步提高。

2.1.3 肝脏局灶性病变鉴别与预后预测

       DWI在肿瘤检测、分级和治疗效果评估中已成为常用功能成像手段。与之相比,超声弹性成像虽能通过测量组织硬度提供“虚拟活检”信息,用于鉴别肝脏良恶性病变及治疗随访监测[47],但其结果易受操作者影响,稳定性受限。近年来,vMRE研究进展显著,王矜涵等[48]报道,vMRE可有效区分不典型血管瘤、HCC、转移瘤及胆管细胞癌。OTA等[49]发现传统MRE与vMRE参数在正常肝实质、HCC和转移瘤均显著相关。尽管vMRE单独区分HCC与转移瘤效能有限(AUC=0.46),但将其与MRE参数联合后,模型AUC提高至0.96,敏感性与特异性均显著改善。CHEN等[50]进一步证实,vMRE的μDiff值与HCC组织的CK19表达及Ki-67标记指数相关,可预测HCC患者肝切除术后的无病生存期。

       然而,目前各研究中的最佳b值选取尚不统一,不同组织器官和病变可能需要个性化设置。同时,vMRE在肝脏局灶性病变中若单独使用,其对特定病变的鉴别效能仍有限。未来应开展多中心大样本研究,进一步规范vMRE的采集参数与后处理流程,并在此基础上探索将vMRE与传统MRE参数或其他影像学指标联合,构建多参数模型,以提升肝脏肿瘤的鉴别诊断与预后评估的可靠性和推广性,为临床诊疗提供更客观的量化依据。

2.2 中枢神经系统疾病:术前质地评估与潜在应用

       脑肿瘤的力学特性(质地)直接影响手术策略与风险,脑MRE虽可量化此特性,但受限于专用设备,难以普及[51]。然而,在方法学上,一项基于健康志愿者研究显示:采用b=1000 s/mm2的DWI较b=1500 s/mm2可获得更高稳定性和效率的μDiff,能够可靠地检测出大于约5%的硬度变化[11]。在相关性方面,MIYOSHI等[52]发现:脑膜瘤的标准ADC/位移ADC值与硬度计测量的“硬肿瘤”(≥20.8 kPa)呈中度负相关,区分硬瘤的AUC约0.82~0.85,联合“低标准+低移位ADC”判定硬瘤的阳性预测值约89%。在临床验证层面,一项基于vMRE的前瞻性队列研究进一步证实,vMRE预测的剪切模量与术中一致性评估呈正相关(b=1000 s/mm2时,OR=5.63,95% CI:1.12~28.30),并能表征力学异质性:机械均质与不均质肿瘤的平均剪切模量约为8.13 kPa和18.07 kPa[53, 54]

       vMRE在脑肿瘤应用中的研究尚处早期阶段。现有研究主要集中于脑膜瘤,且其参数与肿瘤硬度的相关性仅为中等。此外,针对胶质瘤等其他常见肿瘤的质地评估研究仍然空白。未来应扩大研究范围,纳入更多类型的颅内肿瘤,以验证vMRE的普适性。同时,需进一步优化b值选择和映射模型,以提高预测的剪切模量与术中实际质地的一致性。

2.3 乳腺疾病:良恶性鉴别与BI-RADS诊断优化

       vMRE在乳腺病灶的良恶性鉴别上表现出优于剪切波弹性成像(shear-wave elastography, SWE)的诊断性能。一项纳入153个病灶的前瞻性研究显示:恶性病灶的sADC(200~800)与sADC(200~1500)值显著低于良性病灶,且与SWE测得的剪切模量呈中等负相关(r=-0.44~-0.49);vMRE区分良恶性AUC可达0.89,高于SWE的0.78[55]。SHI等[13]进一步指出,病灶边缘硬度与正常组差异显著,且ADC与组织硬度显著相关,提示vMRE可作为界定肿瘤边界的有效工具,为肿瘤的准确分期与术前规划提供参考依据。跨模态研究表明,以MRE硬度值作为校准标准时,SWE与vMRE参数呈中度相关(r=0.49/0.44),提示两者具有协同应用潜力[55, 56];同时,SWE在乳腺可疑肿块的良恶性鉴别中仍具有较高的诊断效能[57]

       在多模态融合方面,研究证实声脉冲辐射力成像(acoustic pulse radiation force imaging, ARFI)超声与DWI定量参数存在显著相关性[58],而无模型扩散MRI标志物的引入可显著提升BI-RADS评估的特异性,有望与vMRE互补,减少不必要的穿刺[59]。在风险与预后评估方面,乳腺MRE提示全局组织僵硬度与乳腺密度及乳腺癌风险相关,基于微结构成像技术可进一步从细胞层面提供预后信息[60, 61]

       综上,现有研究提示乳腺弹性相关影像参数与扩散定量指标具有一定互补性,多模态信息融合有望提升BI-RADS评估特异性并减少不必要穿刺。需要强调的是,vMRE与SWE等弹性成像参数相关性多为中等,说明“扩散推算的虚拟硬度”与“剪切波测得的物理硬度”尚难完全等同,其生物学基础及影响因素仍待阐明。未来vMRE更适宜作为多模态框架中的一环,与SWE/ARFI及其他扩散MRI指标联合建模并推进标准化与大样本验证,同时其应用也在向乳腺以外的器官与疾病场景拓展。

2.4 其他新兴应用领域

       除肝脏、脑部和乳腺外,vMRE的应用正不断拓展到全身多个系统,展现出其技术的广泛适应性,为疾病的评估提供新思路。

2.4.1 肺部肿瘤

       ZHANG等[24]研究结果证实,基于IVIM的vMRE在无创区分肺部良恶性肿瘤方面具有潜力。该研究显示腺癌和鳞癌的μDiff高于良性组(P=0.008、0.001),提示恶性病灶组织硬度更高。需要强调的是,胸部DWI本身就受呼吸运动、心脏搏动及含气组织磁敏感效应影响,易出现畸变从而放大vMRE对图像质量的依赖并降低参数稳定性;相关胸部DWI临床应用与局限亦已有综述性讨论[62]。因此,未来研究需聚焦胸部DWI稳健采集与畸变校正、将DWI与IVIM甚至形态学联合建模、与术中肿瘤质地进行定量对应,以明确其生物可解释与可迁移阈值。

2.4.2 胎盘功能评估

       基于IVIM和vMRE的多模态MRI可无创评估胎盘功能,在不良预后的小于胎龄儿婴儿中,胎盘μDiff显著升高,且μDiff联合IVIM灌注分数f构建的模型预测不良结局AUC达0.87,优于任何单一参数[63]。此外,子痫前期妊娠胎盘μDiff较正常妊娠增加约32%(P<0.01),诊断效能(AUC=0.91)优于ADC(AUC=0.76),且不受胎龄影响[64]。现有研究主要集中于小于胎龄儿(small for gestational age infant, SGA)和子痫前期等特定高危妊娠,样本量有限。胎盘vMRE技术的可重复性,以及其在多大程度上受到母体和胎儿运动的影响,尚待进一步评估。未来的研究方向可验证vMRE在不同妊娠并发症中的诊断效能。特别是将其μDiff与IVIM灌注分数f相结合,有望建立一个强大的多参数模型,作为评估胎盘功能和预测不良妊娠结局的无创生物标志物。

2.4.3 头颈部肿瘤转移淋巴结

       在肿瘤相关淋巴结转移的评估中,基于DWI的多参数模型联合形态学特征能够提高对转移淋巴结的鉴别能力[65]。vMRE通过量化淋巴结μDiff,可更有效区分转移性与非转移性淋巴结(P<0.01)。ÖZTÜRK等[33]进一步证实,恶性淋巴结呈现高硬度(SWE)与低ADC(DWI)的特征,提示力学-扩散参数可能互补以提升诊断效能。综上,vMRE在区分转移性淋巴结与炎性反应性增生的淋巴结时,后者也可能表现出硬度增高和扩散受限,导致诊断特异性不足。未来研究不应孤立使用vMRE,而应探索联合ADC值与μDiff的多模态模型有望在保持敏感度的同时提高特异性以减少不必要活检,为头颈部良恶性病变及淋巴结转移提供更全面的影像学诊断依据。

2.4.4 唾液腺肿瘤

       研究发现[66],基于DWI的vMRE技术在唾液腺肿瘤鉴别诊断中具有潜在价值,可用于区分良恶性肿瘤并提示不同病理亚型间的差异。该研究显示,在所纳入的肿瘤类型中,Warthin肿瘤(良性)显示出最高的μDiff,而其他良性肿瘤的μDiff相对较低,差异具有统计学意义(P<0.01)。目前关于Warthin肿瘤μDiff偏高的组织学基础尚不明确,为增强该方向的生物学解释,除继续补充vMRE队列外,还可引用传统MRE在腮腺(健康人)硬度定量与技术可行性研究作为旁证:SOLAK等[67]在3T条件下建立了腮腺MRE可行方案并报告正常硬度测量的可重复性;ATAMANIUK等[68]进一步通过定制驱动器实现更高频剪切波以提升腮腺MRE空间分辨率,强调小器官弹性成像对波场与驱动设计的依赖。综上,当前vMRE证据以先导研究为主,唾液腺肿瘤μDiff差异的组织学基础(淋巴样基质、囊变/乳头状结构、纤维化程度等)仍需病理-影像对照验证,未来应开展多中心与标准化ROI/后处理流程研究,以评估其稳定性与可推广性。

2.4.5 膝关节病变

       髌下脂肪垫(infrapatellar fat pad, IFP)参与膝骨关节炎的炎症与纤维化过程,其力学改变与功能受限密切相关。TAN等[69]最新研究表明,vMRE可无创量化IFP纤维化,采用高b值(1500 s/mm2)计算得到的μDiff参数较低b值(800 s/mm2)具有更好的测量可重复性,并对微结构受限更敏感,能够提供更稳定的μDiff。目前对膝关节vMRE的研究主要集中在技术可行性的验证上。而超声弹性成像研究提示IFP更高硬度与临床疼痛(如前膝痛)存在关联,为“硬度-症状”链条提供证据[70],同时,基于MRI的IFP纹理/定量特征与,膝骨关节炎发生风险相关,支持IFP作为影像学生物标志物的可行性[71]。据此,后续研究重点应从技术可行性转向临床验证:分型分层、疗效监测及与症状/结构损伤的纵向关联。研究已证实采用高b值可获得稳定的μDiff,未来的研究重点应转向临床验证vMRE在膝骨关节炎表型分层、疗效监测中的增量价值。

2.4.6 鼻咽癌

       基于vMRE的定量模型参数可作为鼻咽癌患者长期生存的独立预测因子,其预测效能显著优于传统影像学评估方法[72]。进一步研究显示,经流程简化的vMRE亦能够有效预测肿瘤侵袭性相关指标(如局部浸润深度、淋巴结转移风险等),从而精准评估鼻咽癌患者的5年疗效,为个体化治疗方案的制订提供了重要依据[73]。总体而言,现有研究主要集中于vMRE对鼻咽癌患者长期生存的预测价值。然而,vMRE在鼻咽癌的初始诊断和鉴别诊断方面的应用价值尚不明确。未来的研究一方面需要多中心验证vMRE作为独立预后因子的稳定性;另一方面,应探索将vMRE参数纳入治疗决策模型,评估其在预测肿瘤侵袭性和个体化治疗方案制订中的作用。

2.4.7 直肠癌

       直肠癌的组织学分级与新辅助治疗方案选择、复发及预后密切相关,术前获得可重复的功能影像标志物具有明确临床价值。WANG等[74]构建了一种新型多模态评估体系,整合功能性放射组学特征(fractional-order calculus, FROC)参数、vMRE和DWI技术用于直肠癌分级诊断。研究结果显示:FROC联合模型在分级诊断上显著优于任一单参数或单模态(P<0.05);进一步纳入μDiff多参数后,模型判别能力进一步提升,提示微结构扩散信息与力学刚度信息具有互补性,为临床决策提供了客观量化依据。而XUE等[75]的研究其将连续时间随机游走(continuous-time random walk, CTRW)扩散模型与vMRE联合,用于直肠癌生物学行为(如增殖相关指标)的预测探索,进一步支持“扩散-力学”联合表征的研究路线。总体而言,直肠癌领域更适合将vMRE作为联合模型的一部分进行验证,而非孤立使用单一μDiff阈值。

3 小结与展望

       vMRE是一种基于DWI推导组织力学信息的无创成像技术,具备低成本、无需额外硬件、易于整合入常规MRI流程等优势。现有研究提示其在肝纤维化分期、脑肿瘤术前评估及乳腺病变鉴别等多个临床场景中具有应用潜力,并已从肝纤维化评估逐步拓展至肿瘤侵袭性预测等多病种方向;乳腺、直肠癌分级、胎盘功能评估等探索性证据亦提示生物力学标志物在精准诊疗中可能具有增量价值。尽管样本量与证据层级仍有限,但这些研究共同表明vMRE具有较好的临床延展性,未来有望进一步拓展至前列腺癌、胰腺疾病及肌骨系统等领域,推动医学影像从形态学向组织力学评估的转变。

       其临床转化仍面临多个关键限制,亟需进一步标准化与验证。主要挑战集中于三个方面:(1)对图像质量依赖性高。vMRE对DWI图像质量高度敏感,运动伪影、磁敏感畸变及低信噪比会影响ADC稳定性并引入弹性估算误差。为改善DWI质量与畸变,已有研究在脉冲序列中增加运动敏感梯度以校正体素内相位色散[76]、ZOOMit小视野成像技术减少变形[77, 78]、减视野DWI及优化采集参数等策略以减少运动相关伪影并提升图像质量[79]。(2)模型标准化与验证不足。目前vMRE尚缺乏统一的物理模型和标准化后处理流程。不同研究采用不同的数学模型与参数设置将ADC值转换为弹性模量(如线性模型、幂律模型等),导致跨研究可比性受限。其诊断效能与组织学相关性仍需大样本、多中心研究进一步验证。(3)组织特异性与病理混杂因素:生物组织的力学特性受脂肪变性、炎症、充血等多因素影响,若未进行充分校正,可能导致vMRE在特定病理学背景下偏倚;例如脂肪抑制不完全可导致sADC值测量误差并影响vMRE对纤维化分期的准确性[21, 46]。因此,建立面向器官与病理状态的校正策略仍是关键。

       未来发展趋势可概括为两条主线:(1)序列与重建的协同优化。通过优化DWI序列设计(如缩短回波时间、优化扩散加权梯度、多b值采集)来提高图像信噪比和空间分辨率[78, 80];同时,深度学习技术(如卷积神经网络)已被成功应用于DWI图像去噪、超分辨率重建及自动分割,显著改善了图像质量和分析效率[81];另一方面,结合人工智能、压缩感知和并行成像技术深度融合,可在不牺牲图像质量的前提下大幅缩短扫描时间的同时实现后处理过程的智能识别和自动分割[82]。有望提升弹性估算的精度和鲁棒性。(2)多模态融合与标准体系构建:将vMRE与常规MRI、T1 mapping技术和及超声弹性成像等技术联合,可从形态-功能-力学多维度综合评估病变,同时还可构建联合风险/预后模型[83]。此外,未来需基于更大规模临床数据建立不同组织的标准虚拟剪切模量参考范围,并借鉴传统MRE的研究经验校正器官特异性映射系数,以提升其跨器官、跨中心的可比性与一致性。

       总体而言,vMRE作为一种基于DWI推导组织力学信息的定量MRI技术,虽受限于图像质量、模型与流程标准化不足及病理等混杂因素影响,但随着序列优化、智能化分析与多参数MRI融合的推进,有望在现有功能成像体系中补充“力学表征”维度,成为疾病分层与预后评估的潜在影像学生物标志物。未来研究应聚焦多中心大样本验证、标准化采集与诊断阈值建立,并评估其临床可行性与成本效益。

[1]
CHATTERJEE A, MILLER F H, PANG E. Magnetic resonance elastography of liver: current status and future directions[J]. J Gastrointest Abdom Radiol, 2024, 7(3): 215-225. DOI: 10.1055/s-0044-1786812.
[2]
CHEN Y, LI R K, YANG Y C, et al. Correlation analysis of structural and biomechanical properties of hepatocellular carcinoma tissue[J/OL]. J Biomech, 2022, 141: 111227 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/35917630/. DOI: 10.1016/j.jbiomech.2022.111227.
[3]
MUTHUPILLAI R, LOMAS D J, ROSSMAN P J, et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves[J]. Science, 1995, 269(5232): 1854-1857. DOI: 10.1126/science.7569924.
[4]
MEYER T, CASTELEIN J, SCHATTENFROH J, et al. Magnetic resonance elastography in a nutshell: Tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation[J/OL]. Prog Nucl Magn Reson Spectrosc, 2024, 144/145: 1-14 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39645347/. DOI: 10.1016/j.pnmrs.2024.05.002.
[5]
MOURA CUNHA G, FAN B Y, NAVIN P J, et al. Interpretation, reporting, and clinical applications of liver MR elastography[J/OL]. Radiology, 2024, 310(3): e231220 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38470236/. DOI: 10.1148/radiol.231220.
[6]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: Principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[7]
YIN M, EHMAN R L. MR elastography: practical questions, from the AJR special series on imaging of fibrosis[J/OL]. AJR Am J Roentgenol, 2024, 222(1): e2329437 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37162036/. DOI: 10.2214/AJR.23.29437.
[8]
MCGEE K P. Virtual palpation: the role of MR elastography in quantifying and spatially resolving tissue stiffness as a biomarker of disease[J/OL]. J Am Coll Radiol, 2018, 15(5): 778-780. DOI: 10.1016/j.jacr.2017.12.011.
[9]
FEUILLE C, KARI S, PATEL R, et al. Utility and impact of magnetic resonance elastography in the clinical course and management of chronic liver disease[J/OL]. Sci Rep, 2024, 14: 1765 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38242967/. DOI: 10.1038/s41598-024-51295-1.
[10]
ZHANG Y N, FOWLER K J, OZTURK A, et al. Liver fibrosis imaging: a clinical review of ultrasound and magnetic resonance elastography[J]. J Magn Reson Imaging, 2020, 51(1): 25-42. DOI: 10.1002/jmri.26716.
[11]
DILLMAN J R, TROUT A T, TAYLOR A E, et al. Association between MR elastography liver stiffness and histologic liver fibrosis in children and young adults with autoimmune liver disease[J/OL]. AJR Am J Roentgenol, 2024, 223(1): e2431108 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38630086/. DOI: 10.2214/AJR.24.31108.
[12]
RASMUSSEN A M, FRIISMOSE A I, MUSSMANN B, et al. Repeatability of diffusion-based stiffness prediction-A healthy volunteer study[J]. Radiography, 2024, 30(2): 524-530. DOI: 10.1016/j.radi.2024.01.008.
[13]
SHI J, CHEN L Z, WANG B, et al. Diagnostic value of ultrasound elastography in the differentiation of breast invasive ductal carcinoma and ductal carcinoma in situ[J]. Curr Med Imaging, 2023, 19(3): 286-291. DOI: 10.2174/1573405618666220721091940.
[14]
SIRLI R, SPOREA I, POPESCU A. When to refer patients for liver elastography[J]. Expert Rev Gastroenterol Hepatol, 2024, 18(12): 753-755. DOI: 10.1080/17474124.2024.2444554.
[15]
POLLACK B L, BATMANGHELICH K, CAI S S, et al. Deep learning prediction of voxel-level liver stiffness in patients with nonalcoholic fatty liver disease[J/OL]. Radiol Artif Intell, 2021, 3(6): e200274 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34870213/. DOI: 10.1148/ryai.2021200274.
[16]
LE BIHAN D. What can we see with IVIM MRI [J/OL]. NeuroImage, 2019, 187: 56-67 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/29277647/. DOI: 10.1016/j.neuroimage.2017.12.062.
[17]
BRAUN J, BERNARDING J, SNELLINGS J, et al. On the relationship between viscoelasticity and water diffusion in soft biological tissues[J/OL]. Acta Biomater, 2024, 182: 42-53 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38729549/. DOI: 10.1016/j.actbio.2024.05.007.
[18]
OPHIR J, CÉSPEDES I, PONNEKANTI H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues[J]. Ultrason Imaging, 1991, 13(2): 111-134. DOI: 10.1177/016173469101300201.
[19]
LE BIHAN D, ICHIKAWA S, MOTOSUGI U. Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: a hypothesis-generating study in the liver[J]. Radiology, 2017, 285(2): 609-619. DOI: 10.1148/radiol.2017170025.
[20]
KROMREY M L, LE BIHAN D, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
[21]
HANNIMAN E, COSTA A F, BOWEN C V, et al. Prospective evaluation of virtual MR elastography with diffusion-weighted imaging in subjects with nonalcoholic fatty liver disease[J]. J Magn Reson Imaging, 2022, 56(5): 1448-1456. DOI: 10.1002/jmri.28154.
[22]
JUNG H N, RYOO I, SUH S, et al. Evaluating the elasticity of metastatic cervical lymph nodes in head and neck squamous cell carcinoma patients using DWI-based virtual MR elastography[J]. Magn Reson Med Sci, 2024, 23(1): 49-55. DOI: 10.2463/mrms.mp.2022-0082.
[23]
YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128. DOI: 10.1016/j.neuroimage.2006.01.015.
[24]
ZHANG S, DU Y H, LIANG T, et al. Diagnostic efficiency of intravoxel incoherent motion-based virtual magnetic resonance elastography in pulmonary neoplasms[J/OL]. Cancer Imaging, 2024, 24(1): 88 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38971790/. DOI: 10.1186/s40644-024-00728-1.
[25]
PARK J H, SEO N, CHUNG Y E, et al. Noninvasive evaluation of liver fibrosis: comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography[J]. Eur Radiol, 2021, 31(7): 4813-4823. DOI: 10.1007/s00330-020-07600-3.
[26]
PAROLA M, PINZANI M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies[J/OL]. Mol Aspects Med, 2024, 95: 101231 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38056058/. DOI: 10.1016/j.mam.2023.101231.
[27]
ROEHLEN N, CROUCHET E, BAUMERT T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J/OL]. Cells, 2020, 9(4): 875 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/32260126/. DOI: 10.3390/cells9040875.
[28]
HAMMERICH L, TACKE F. Hepatic inflammatory responses in liver fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(10): 633-646. DOI: 10.1038/s41575-023-00807-x.
[29]
LIANG Y Z, LI D W. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy[J/OL]. BMC Gastroenterol, 2020, 20(1): 89 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/32252641/. DOI: 10.1186/s12876-020-01234-x.
[30]
ICHIKAWA S, MOTOSUGI U, MORISAKA H, et al. MRI-based staging of hepatic fibrosis: Comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic resonance elastography[J]. J Magn Reson Imaging, 2015, 42(1): 204-210. DOI: 10.1002/jmri.24760.
[31]
JANG W, JO S, SONG J S, et al. Comparison of diffusion-weighted imaging and MR elastography in staging liver fibrosis: a meta-analysis[J]. Abdom Radiol, 2021, 46(8): 3889-3907. DOI: 10.1007/s00261-021-03055-2.
[32]
HENNEDIGE T P, WANG G, LEUNG F P, et al. Magnetic resonance elastography and diffusion weighted imaging in the evaluation of hepatic fibrosis in chronic hepatitis B[J]. Gut Liver, 2017, 11(3): 401-408. DOI: 10.5009/gnl16079.
[33]
ÖZTÜRK V S, ERTEKIN E. Diagnostic performance of shear wave elastography and diffusion-weighted magnetic resonance imaging in cervical lymph nodes: a comparative study[J]. Turk J Med Sci, 2021, 51(6): 2931-2942. DOI: 10.3906/sag-2012-62.
[34]
YANG L, ZHOU G, LIU L, et al. Staging chronic hepatitis B related liver fibrosis with diffusion-weighted MRI-based virtual elastography: comparisons with serum fibrosis indexes[J/OL]. Clin Radiol, 2025, 80: 106750 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39657563/. DOI: 10.1016/j.crad.2024.106750.
[35]
YANG L, ZHOU G F, LIU L H, et al. Assessing liver fibrosis in chronic liver disease: Comparison of diffusion-weighted MR elastography and two-dimensional shear-wave elastography using histopathologic assessment as the reference standard[J/OL]. Ann Hepatol, 2025, 30(1): 101743 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39662592/. DOI: 10.1016/j.aohep.2024.101743.
[36]
ONAR M A, NURAL M S, DEVECI A, et al. Evaluation of liver fibrosis using diffusion-weighted virtual magnetic resonance elastography and ultrasound elastography[J/OL]. Abdom Radiol, 2025 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40500481/. DOI: 10.1007/s00261-025-05043-2.
[37]
PAIK J M, HENRY L, YOUNOSSI Y, et al. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019[J/OL]. Hepatol Commun, 2023, 7(10): e0251 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37782469/. DOI: 10.1097/HC9.0000000000000251.
[38]
WONGTRAKUL W, CHARATCHAROENWITTHAYA N, CHARATCHAROENWITTHAYA P. Lean non-alcoholic fatty liver disease and the risk of all-cause mortality: an updated meta-analysis[J/OL]. Ann Hepatol, 2024, 29(3): 101288 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38278181/. DOI: 10.1016/j.aohep.2024.101288.
[39]
DAG N, SARICI B, IGCI G, et al. Diagnostic performance of ultrasound-based liver fat quantification with reference to magnetic resonance imaging proton density fat fraction and histology[J]. J Clin Ultrasound, 2025, 53(6): 1265-1271. DOI: 10.1002/jcu.24010.
[40]
OZTURK A, GRAJO J R, GEE M S, et al. Quantitative hepatic fat quantification in non-alcoholic fatty liver disease using ultrasound-based techniques: a review of literature and their diagnostic performance[J]. Ultrasound Med Biol, 2018, 44(12): 2461-2475. DOI: 10.1016/j.ultrasmedbio.2018.07.019.
[41]
BOHTE A E, VAN WERVEN J R, BIPAT S, et al. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis[J]. Eur Radiol, 2011, 21(1): 87-97. DOI: 10.1007/s00330-010-1905-5.
[42]
STAREKOVA J, HERNANDO D, PICKHARDT P J, et al. Quantification of liver fat content with CT and MRI: state of the art[J]. Radiology, 2021, 301(2): 250-262. DOI: 10.1148/radiol.2021204288.
[43]
XIAO G Q, ZHU S X, XIAO X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis[J]. Hepatology, 2017, 66(5): 1486-1501. DOI: 10.1002/hep.29302.
[44]
YIN Z Y, MURPHY M C, LI J H, et al. Prediction of nonalcoholic fatty liver disease (NAFLD) activity score (NAS) with multiparametric hepatic magnetic resonance imaging and elastography[J]. Eur Radiol, 2019, 29(11): 5823-5831. DOI: 10.1007/s00330-019-06076-0.
[45]
LE BIHAN D, BOWEN C, CLARKE S. Diffusion-based virtual MR elastography in subjects with nonalcoholic fatty liver disease[J]. J Magn Reson Imaging, 2023, 57(2): 648-649. DOI: 10.1002/jmri.28304.
[46]
DE SCHELLENBERGER A A, TZSCHÄTZSCH H, POLCHLOPEK B, et al. Sensitivity of multifrequency magnetic resonance elastography and diffusion-weighted imaging to cellular and stromal integrity of liver tissue[J/OL]. J Biomech, 2019, 88: 201-208 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/30961968/. DOI: 10.1016/j.jbiomech.2019.03.037.
[47]
MARTELLETTI C, ARMANDI A, CAVIGLIA G P, et al. Elastography for characterization of focal liver lesions: current evidence and future perspectives[J]. Minerva Gastroenterol, 2021, 67(2): 196-208. DOI: 10.23736/S2724-5985.20.02747-6.
[48]
王矜涵, 李香, 李晨霞, 等. 基于磁共振扩散加权成像的虚拟弹性成像在肝脏局灶性病变中的应用价值[J]. 磁共振成像, 2023, 14(11): 56-61. DOI: 10.12015/issn.1674-8034.2023.11.010.
WANG J H, LI X, LI C X, et al. The application value of virtual magnetic resonance elastography based on diffusion weighted imaging in focal liver lesions[J]. Chin J Magn Reson Imag, 2023, 14(11): 56-61. DOI: 10.12015/issn.1674-8034.2023.11.010.
[49]
OTA T, HORI M, LE BIHAN D, et al. Diffusion-based virtual MR elastography of the liver: can it be extended beyond liver fibrosis [J/OL]. J Clin Med, 2021, 10(19): 4553 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34640568/. DOI: 10.3390/jcm10194553.
[50]
CHEN J J, SUN W, WANG W T, et al. Diffusion-based virtual MR elastography for predicting recurrence of solitary hepatocellular carcinoma after hepatectomy[J/OL]. Cancer Imaging, 2024, 24(1): 106 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39138500/. DOI: 10.1186/s40644-024-00759-8.
[51]
ARANI A, MANDUCA A, EHMAN R L, et al. Harnessing brain waves: a review of brain magnetic resonance elastography for clinicians and scientists entering the field[J/OL]. Br J Radiol, 2021, 94(1119): 20200265 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/33605783/. DOI: 10.1259/bjr.20200265.
[52]
MIYOSHI K, WADA T, UWANO I, et al. Predicting the consistency of intracranial meningiomas using apparent diffusion coefficient maps derived from preoperative diffusion-weighted imaging[J]. J Neurosurg, 2020, 135(3): 969-976. DOI: 10.3171/2020.6.JNS20740.
[53]
LAGERSTRAND K, GAEDES N, ERIKSSON S, et al. Virtual magnetic resonance elastography has the feasibility to evaluate preoperative pituitary adenoma consistency[J]. Pituitary, 2021, 24(4): 530-541. DOI: 10.1007/s11102-021-01129-4.
[54]
AUNAN-DIOP J S, ANDERSEN M C S, FRIISMOSE A I, et al. Virtual magnetic resonance elastography predicts the intraoperative consistency of meningiomas[J]. J Neuroradiol, 2023, 50(4): 396-401. DOI: 10.1016/j.neurad.2022.10.006.
[55]
SUN K, ZHU Y, CHAI W M, et al. Diffusion-weighted MRI-based virtual elastography and shear-wave elastography for the assessment of breast lesions[J]. J Magn Reson Imaging, 2024, 60(5): 2207-2213. DOI: 10.1002/jmri.29302.
[56]
DU Y N, WANG D W, LIU M H, et al. Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images[J]. J Cancer Res Ther, 2024, 20(2): 625-632. DOI: 10.4103/jcrt.jcrt_1796_23.
[57]
ZHOU W Y, ZHANG L L, ZHOU X, et al. The diagnostic performance of shear-wave elastography combined with ultrasound and magnetic resonance imaging in breast lesions: a single center retrospective study[J/OL]. Adv Clin Exp Med, 2025 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40748772/. DOI: 10.17219/acem/203584.
[58]
KAPETAS P, CLAUSER P, MILOS R I, et al. Microstructural breast tissue characterization: a head-to-head comparison of Diffusion Weighted Imaging and Acoustic Radiation Force Impulse elastography with clinical implications[J/OL]. Eur J Radiol, 2021, 143: 109926 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34438330/. DOI: 10.1016/j.ejrad.2021.109926.
[59]
GOTO M, LE BIHAN D, YOSHIDA M, et al. Adding a model-free diffusion MRI marker to BI-RADS assessment improves specificity for diagnosing breast lesions[J]. Radiology, 2019, 292(1): 84-93. DOI: 10.1148/radiol.2019181780.
[60]
WANG X Y, ZHANG Y, CHENG J L, et al. Microstructural diffusion MRI for differentiation of breast tumors and prediction of prognostic factors in breast cancer[J/OL]. Front Oncol, 2025, 15: 1498691 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40110196/. DOI: 10.3389/fonc.2025.1498691.
[61]
PATEL B K, PEPIN K, BRANDT K R, et al. Association of breast cancer risk, density, and stiffness: global tissue stiffness on breast MR elastography (MRE)[J]. Breast Cancer Res Treat, 2022, 194(1): 79-89. DOI: 10.1007/s10549-022-06607-2.
[62]
USUDA K, ISHIKAWA M, IWAI S, et al. Combination assessment of diffusion-weighted imaging and T2-weighted imaging is acceptable for the differential diagnosis of lung cancer from benign pulmonary nodules and masses[J/OL]. Cancers, 2021, 13(7): 1551 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/33800560/. DOI: 10.3390/cancers13071551.
[63]
DENG J, CAO Y W, LU Y, et al. Value of placental virtual magnetic resonance elastography and intravoxel incoherent motion-based diffusion and perfusion in predicting adverse outcomes of small-for-gestational-age infants[J/OL]. Insights Imaging, 2023, 14(1): 153 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37741945/. DOI: 10.1186/s13244-023-01503-9.
[64]
XU J L, MAO Y J, QU F F, et al. Detection of placental stiffness using virtual magnetic resonance elastography in pregnancies complicated by preeclampsia[J]. Arch Gynecol Obstet, 2024, 310(4): 2283-2289. DOI: 10.1007/s00404-024-07585-0.
[65]
ZHONG S X, AI C H, DING Y Y, et al. Combining multimodal diffusion-weighted imaging and morphological parameters for detecting lymph node metastasis in cervical cancer[J]. Abdom Radiol, 2024, 49(12): 4574-4583. DOI: 10.1007/s00261-024-04494-3.
[66]
JUNG H N, RYOO I, SUH S, et al. Differentiation of salivary gland tumours using diffusion-weighted image-based virtual MR elastography: a pilot study[J]. Dentomaxillofac Radiol, 2024, 53(4): 248-256. DOI: 10.1093/dmfr/twae010.
[67]
SOLAK M, KABA E, BEYAZAL M, et al. Parotid gland magnetic resonance elastography feasibility study: clinical diagnostic potential and future perspectives as a radiological palpation method[J/OL]. Diagnostics, 2025, 15(18): 2351 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/41008723/. DOI: 10.3390/diagnostics15182351.
[68]
ATAMANIUK V, CHEN J, OBRZUT M, et al. High-frequency shear wave MR elastography of parotid glands: custom driver design and preliminary results[J/OL]. Sci Rep, 2024, 14: 24496 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39424898/. DOI: 10.1038/s41598-024-75806-2.
[69]
TAN H, FAN Q J, YU Y, et al. Evaluation of infrapatellar fat pad elasticity in knee osteoarthritis using IVIM-DWI-based virtual MR elastography: repeatability and reproducibility analysis[J/OL]. BMC Musculoskelet Disord, 2025, 26(1): 402 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40264123/. DOI: 10.1186/s12891-025-08660-6.
[70]
SATAKE Y, IZUMI M, ASO K, et al. Association between infrapatellar fat pad ultrasound elasticity and anterior knee pain in patients with knee osteoarthritis[J/OL]. Sci Rep, 2023, 13: 20103 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37973859/. DOI: 10.1038/s41598-023-47459-0.
[71]
LI J, FU S, GONG Z, et al. MRI-based texture analysis of infrapatellar fat pad to predict knee osteoarthritis incidence[J]. Radiology, 2022, 304(3): 611-621. DOI: 10.1148/radiol.212009.
[72]
YANG F, WEI H R, LI X L, et al. The potential of model-free parameters derived from IVIM in evaluating pathological indicators and long-term survival in NPC[J]. J Magn Reson Imaging, 2025, 62(1): 73-86. DOI: 10.1002/jmri.29725.
[73]
YANG F, PENG W J, WEI H R, et al. Model-free parameters derived from intravoxel inherent motion combined with tumor aggressiveness indicators in predicting 5-year treatment outcome in NPC[J/OL]. Oral Oncol, 2025, 162: 107187 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39987710/ DOI: 10.1016/j.oraloncology.2025.107187.
[74]
WANG S N, JIN X X, BA Y W, et al. Differentiating rectal cancer grades using virtual magnetic resonance elastography and fractional order Calculus diffusion model[J/OL]. BMC Cancer, 2025, 25(1): 734 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40251492/. DOI: 10.1186/s12885-025-13983-7.
[75]
XUE M M, FENG H L, HE Y H, et al. Proliferation status assessment in rectal cancer with continuous-time random walk and virtual magnetic resonance elastography[J]. Acad Radiol, 2025, 32(10): 5878-5886. DOI: 10.1016/j.acra.2025.07.019.
[76]
汤世雄, 符淳, 陈红亮, 等. ZOOMit-DWI序列和常规DWI序列在子宫内膜癌中的对比[J]. 中南大学学报(医学版), 2023, 48(1): 76-83. DOI: 10.11817/j.issn.1672-7347.2023.220018.
TANG S X, FU C, CHEN H L, et al. Comparison of ZOOMit-DWI sequence and conventional DWI sequence in endometrial cancer[J]. J Cent South Univ Med Sci, 2023, 48(1): 76-83. DOI: 10.11817/j.issn.1672-7347.2023.220018.
[77]
GUMUS K Z, NICOLAS J, GOPIREDDY D R, et al. Deep learning algorithms for bladder cancer segmentation on multi-parametric MRI[J/OL]. Cancers, 2024, 16(13): 2348 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39001410/. DOI: 10.3390/cancers16132348.
[78]
KAMEL P, KANHERE A, KULKARNI P, et al. Optimizing acute stroke segmentation on MRI using deep learning: self-configuring neural networks provide high performance using only DWI sequences[J]. J Imaging Inform Med, 2025, 38(2): 717-726. DOI: 10.1007/s10278-024-00994-2.
[79]
SHI J J, LIN J, ZHOU X B, et al. Comparison of reduced and full field of view in diffusion-weighted MRI on image quality: a meta-analysis[J]. J Magn Reson Imaging, 2025, 61(2): 690-701. DOI: 10.1002/jmri.29487.
[80]
ZHU Y J, WANG P, WANG B Z, et al. Accelerated multi-b-value DWI using deep learning reconstruction: image quality improvement and microvascular invasion prediction in BCLC stage a hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(7): 3924-3937. DOI: 10.1016/j.acra.2025.01.043.
[81]
MURPHY M C, MANDUCA A, TRZASKO J D, et al. Artificial neural networks for stiffness estimation in magnetic resonance elastography[J]. Magn Reson Med, 2018, 80(1): 351-360. DOI: 10.1002/mrm.27019.
[82]
HONG S J, KIM S H, YOO B, et al. Deep learning algorithm for tumor segmentation and discrimination of clinically significant cancer in patients with prostate cancer[J]. Curr Oncol, 2023, 30(8): 7275-7285. DOI: 10.3390/curroncol30080528.
[83]
ZHENG S, HE K, ZHANG L, et al. Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging[J/OL]. Eur J Radiol, 2023, 165: 110912 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37290363/. DOI: 10.1016/j.ejrad.2023.110912.

上一篇 骨骼肌脂肪浸润的评估方法:定量磁共振成像
下一篇 基于电磁超材料的MRI临床应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2