分享:
分享到微信朋友圈
X
基础研究
钆剂对MR IDEAL-IQ骨髓脂肪定量影响的实验研究
林苑 查云飞 邢栋 胡磊 王娇 曾菲菲 陆雪松

林苑,查云飞,邢栋.等.钆剂对MR IDEAL-IQ骨髓脂肪定量影响的实验研究.磁共振成像, 2016, 7(11): 856-860. DOI:10.12015/issn.1674-8034.2016.11.012.


[摘要] 目的 探讨3.0 T MR IDEAL-IQ序列定量评估的兔腰椎骨髓脂肪分数(FF)是否受到钆类对比剂增强扫描的影响。材料与方法 对8只健康新西兰大白兔在静脉注射钆贝葡胺前及注射后各时间节点5 min、30 min分别行腰椎IDEAL-IQ序列扫描,将ROI分别置于第3~7腰椎,通过脂肪比像、R2*弛豫率像对兴趣区内的脂肪分数(FF)、R2*进行定量测量。取3~7腰椎体行HE染色和普鲁士蓝染色,计算骨髓脂肪含量(FCHIS)及观察骨髓铁沉积。对注射钆剂前后各时间点的脂肪分数FF (FF0 min、FF5 min、FF30 min)及R2* (R2*0 min、R2*5 min、R2*30 min)值分别采用单变量重复测量方差分析。对注射钆剂前脂肪分数(FF0 min)与HE染色计算的脂肪含量(FCHIS)进行Pearson相关分析。采用Bland-Altman分析对注射钆剂前(FF0 min)与注射钆剂后各时间点(FF5 min、FF30 min)分别进行一致性检验。结果 注射钆对比剂前IDEAL-IQ骨髓脂肪分数值(FF0 min)与注射钆对比剂5 min后骨髓脂肪分数值(FF5 min)、30 min后骨髓脂肪分数值(FF30 min)无明显统计学差异(F=3.118,P>0.05,组间比较结果分别为P=0.835、0.916和0.754)。HE染色计算的脂肪含量(FCHIS)与注射钆剂前FF0 min (r=0.813)存在高度正相关性(P<0.05)。注射钆剂前FF0 min与注射钆剂5 min后FF5 min (0.90,1.10)及注射钆剂30 min后FF30 min (0.94,1.07)均具有良好的一致性(测量值比率95%置信区间)。注射钆剂前R2*0 min (121.64)、注射5 min后R2*5 min (125.70)(P=0.046),及注射30 min后R2*30 min (125.21)(P=0.024),差异均有统计学意义。结论 在静脉注射钆剂引起的R2*值增高的情况下,IDEAL-IQ定量椎体骨髓脂肪分数的准确度高,且仍维持较高的稳定性和一致性。
[Abstract] Objective: This study evaluates the robustness of a magnetic resonance (MR) fat quantification method to changes in R2* caused by an intravenous infusion of gadolinium.Materials and Methods: The R2* and fat fraction content (FF) were measured in vertebral marrow in eight New Zealand white rabbits using an investigational sequence (IDEAL IQ) provided by the MR scanner vendor. Measurements were made once before and twice after Gd-BOPTA infusion (5 min, 30 min). Then HE stain was performed for calculating vertebral fat content (FCHIS), Prussian blue stain was performed for showing iron in vertebral.Results: Vertebral marrow FF measurements revealed no significant systematic bias between the three measurements (P>0.05 for all). Good agreement (95% confidence interval) of FF measurements were demonstrated between FF0 min and FF5 min (0.90, 1.10) and FF0 min and FF30 min (0.94, 1.07). A significant positive correlation is found between FF0 min and FCHIS (r=0.813, P<0.05). R2* increased after administration of gadolinium.Conclusion: Although under the impact of an increased R2* in vertebral marrow post-contrast, the investigational sequence can still obtain accurate and stable fat fraction content. the IDEAL IQ method of fat quantification is robust to changes in R2*.
[关键词] 骨髓;脂肪类;磁共振成像;对比剂
[Keywords] Bone marrow;Fats;Magnetic resonance imaging;Contrast media

林苑 武汉大学人民医院放射科,武汉 430060

查云飞* 武汉大学人民医院放射科,武汉 430060;医学信息分析及肿瘤诊疗湖北省重点实验室,武汉 430060

邢栋 武汉大学人民医院放射科,武汉 430060

胡磊 武汉大学人民医院放射科,武汉 430060

王娇 武汉大学人民医院放射科,武汉 430060

曾菲菲 武汉大学人民医院放射科,武汉 430060

陆雪松 医学信息分析及肿瘤诊疗湖北省重点实验室,武汉 430060;中南民族大学生物医学工程学院,武汉 430060

通讯作者:查云飞,E-mail:zhayunfei@hotmail.com


基金项目: 医学信息分析及肿瘤诊疗湖北省重点实验室开放课题基金项目 编号:PJS140011511 湖北省卫生厅科研资助项目 编号:JX6B68
收稿日期:2016-09-26
接受日期:2016-10-20
中图分类号:R445.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2016.11.012
林苑,查云飞,邢栋.等.钆剂对MR IDEAL-IQ骨髓脂肪定量影响的实验研究.磁共振成像, 2016, 7(11): 856-860. DOI:10.12015/issn.1674-8034.2016.11.012.

       骨髓脂肪组织作为骨质疏松、糖尿病等代谢性疾病、神经厌食症、血液系统疾病及良恶性骨肿瘤等的重要生物学标记物,与骨髓的各种生理性、病理性改变都密切相关[1,2,3],迭代最小二乘法六回波梯度回波非对称采集水脂分离磁共振成像(iterative decomposition of water and fat with echoasymmetry and least square estimation-ironquantification,IDEAL-IQ)是在IDEAL技术上改良的MR三维脂肪定量技术,其在肝脏、骨髓组织脂肪定量的准确性已得到充分肯定[4,5,6]

       常规MRI增强和动态对比磁共振成像(DCE-MRI)对鉴别骨髓良恶性病变、评估恶性肿瘤预后、监测肿瘤对放化疗和抗血管基因治疗的反应以及评价骨髓病变血流灌注具有重要意义[7,8,9]。IDEAL-IQ序列定量评估骨髓脂肪分数(FF)是否受到钆对比剂增强扫描的影响尚未见专题研究报道,本研究旨在探讨静脉注射钆对比剂对IDEAL-IQ定量兔腰椎体骨髓脂肪含量的影响,以评估增强扫描后应用IDEAL-IQ技术定量骨髓脂肪含量的可行性。

1 材料与方法

1.1 研究对象

       于武汉大学动物实验中心购进新西兰大白兔8只,雌雄不限,3~5月龄。所有实验兔在武汉大学实验动物中心单笼饲养,予以标准兔饲料及卫生水喂养,室温控制在25℃。本实验遵循武汉大学关于保护和使用实验动物的相关规定。

1.2 MRI成像方法

       将实验兔固定后,用留置针(20 G)穿刺耳缘静脉,注射3%戊巴比妥钠溶液1.5 ml/kg进行麻醉。取仰卧位、足先进置于8通道膝关节专用相控阵线圈,运用3.0 T超导MR机(Discovery MR 750 Plus,GE Healthcare)行三平面定位扫描后,对每只兔常规行腰椎矢状面FSE-T1WI、FSE-T2WI和IDEAL-IQ扫描,扫描范围包括第3~7腰椎。随后采用MEDRAD Spectris Solaris EP磁共振压力注射器,经兔耳缘静脉留置针注射钆贝葡胺(Gd-BOPTA,商品名:莫迪司)3 ml,用6 ml生理盐水以相同流率(0.5 ml/s)进行冲洗。注射后5 min、30 min分别行腰椎矢状面IDEAL-IQ序列扫描,注射钆对比剂前后IDEAL-IQ扫描参数保持一致,扫描参数如下。

       矢状面T1WI扫描参数:TR 400 ms,TE 13 ms,扫描层厚3 mm,视野16 cm×16 cm,矩阵512×512,激励次数为1,扫描时间2 min 20 s。

       矢状面T2WI扫描参数:TR 2500 ms,TE 102.9 ms,扫描层厚3 mm,视野16 cm×16 cm,矩阵512×284,激励次数为1,扫描时间3 min 25 s。

       矢状面IDEAL-IQ扫描参数:反转角6°,TR 19.6 ms,TE1 1.2 ms,ΔTE 2 ms,带宽125 kHz,扫描层厚3 mm,视野16 cm×12.8 cm,矩阵288×288,激励次数为2,扫描时间4 min 22 s。

1.3 组织病理学检查

       于MR扫描后当日采用空气栓塞法将实验兔处死,取出第3~7腰椎,4%多聚甲醛固定24 h后,用EDTA脱钙液进行脱钙3周,随后脱水、石蜡包埋、切片,沿每个椎体短轴切4 μm厚薄片两张,分别行HE染色和普鲁士蓝铁染色。

1.4 数据分析

1.4.1 IDEAL-IQ骨髓脂肪分数(FF)及R2*测定

       注射钆对比剂前后扫描获得IDEAL-IQ的图像应用AW 4.6工作站(GE Healthcare)进行后处理,选择L3~7椎体正中矢状面,避开头尾侧软骨终板,勾画感兴趣区(region of interest,ROI),在脂肪比图像上(fat fraction map)及R2*弛豫率像(R2* map)可以直接测量ROI区域的脂肪分数及R2*值,重复测量3个不同平面ROI区域的FF及R2*,取其平均值作为对该样本的最终评估结果,将注射对比剂前及注射对比剂后5 min、30 min椎体骨髓脂肪分数分别记为FF0 min、FF5 min、FF30 min,相应的R2*值分别记为R2*0 min、R2*5 min、R2*30 min。

1.4.2 HE染色骨髓脂肪含量

       在Image-Pro Plus 6.0图像分析系统对骨髓脂肪含量进行定量分析,按照下列公式计算脂肪含量:FCHIS=选中空泡区域的面积/整体面积。每张HE病理切片随机选择5个200倍光镜视野计算平均值。

1.4.3 普鲁士蓝染色椎体骨髓铁沉积

       在显微镜(OLYMPUS BX51)下观察腰椎普鲁士蓝染色切片,确定腰椎骨髓内有无铁沉积。

1.5 统计学分析

       对注射钆剂前后各时间点的脂肪分数FF (FF0 min、FF5 min、FF30 min)及R2*(R2*0 min、R2*5 min、R2*30 min)值分别采用单变量重复测量方差分析。对注射钆剂前脂肪分数(FF0 min)与HE染色计算的脂肪含量(FCHIS)进行Pearson相关分析。采用Bland-Altman分析对注射钆剂前(FF0 min)与注射钆剂后各时间点(FF5 min、FF30 min)分别进行一致性检验。

2 结果

       兔腰椎IDEAL-IQ扫描FF图及R2*图如图1所示,兔腰椎HE染色和普鲁士蓝染色结果如图2所示。注射钆对比剂前后各时间段IDEAL-IQ定量的椎体骨髓脂肪分数值(FF0 min、FF5 min、FF30 min)及R2*值(R2*0 min、R2*5 min、R2*30 min)见表1

       注射钆对比剂前IDEAL-IQ骨髓脂肪分数值(FF0 min)与注射钆对比剂5 min后骨髓脂肪分数值(FF5 min)、30 min后骨髓脂肪分数值(FF30 min)均服从正态分布,且组间方差齐,应用单变量重复测量的方差分析,各时间点骨髓脂肪分数(FF)无明显统计学差异(F=3.118,P>0.05,组间比较结果分别为P=0.835、0.916和0.754)

       Pearson相关分析结果显示HE染色计算的脂肪含量(FCHIS)与注射钆剂前FF0 min(r=0.813)存在高度正相关性(P<0.05)(图3)。

       Bland-Altman分析显示注射钆剂前FF0 min与注射钆剂5 min后FF5 min (0.90、1.10)及注射钆剂30 min后FF30 min (0.94、1.07)均具有良好的一致性(测量值比率95%置信区间),提示95%置信区间内骨髓脂肪分数测量值最大差值分别为2.89%、2.42%(图4图5)。

       注射钆剂后IDEAL-IQ弛豫率图像上测得的R2*值增高,注射前R2*0 min (121.64)到注射5 min后R2*5 min (125.70)(P=0.046),及注射30 min后R2*30 min (125.21)(P=0.024),差值均有统计学意义,提示钆对比剂影响骨髓T2*弛豫而导致R2*值升高。R2*5 min (125.70)与R2*30 min (125.21)差异无明显统计学意义(P=0.786)。

图1  兔腰椎矢状面IDEAL-IQ图像。A、B分别为注射钆剂前FF图、R2*图;C、D分别为注射钆剂5 min后FF图、R2*图;E、F分别为注射钆剂30 min后FF图、R2*
图2  A:兔腰椎骨髓HE染色(HE ×200)。红色箭头所示为脂肪空泡,黑色箭头所示为骨髓细胞;B:兔腰椎骨髓普鲁士蓝染色( ×400)光镜下细胞排列整齐,形态规则,未见明显铁颗粒
Fig. 1  The fat fraction (FF) and R2* mappings of the spleen. A, B: The spine fat fraction (FF) and R2* mappings before administration of Gd-BOPTA. C, D: The spine fat fraction (FF) and R2* mappings 5 min after administration of Gd-BOPTA. E, F: The spine fat fraction (FF) and R2* mappings 30 min after administration of Gd-BOPTA.
Fig. 2  A: Bone marrow HE staining (HE ×200), the fat cell (red arrow) and the bone marrow cells (black arrow). B: Bone marrow (BM) iron deposits were assessed by Prussian blue staining( ×400).
图3  注射钆剂前IDEAL-IQ定量的骨髓脂肪分数(FF0 min)与HE染色计算的骨髓脂肪含量(FCHIS)的相关性
图4  IDEAL-IQ定量的注射钆剂前及注射钆剂5 min后兔腰椎FF值Bland-Altman分析结果
图5  IDEAL-IQ定量的注射钆剂前及注射钆剂30 min后兔腰椎FF值Bland-Altman分析结果
Fig. 3  Correlation between the IDEAL-IQ fat fraction (FF0 min) and the historic fat content(FCHIS).
Fig. 4  Pre- and post-contrast (5 min) Bland-Altman plots.
Fig. 5  Pre- and post-contrast (30 min) Bland-Altman plots.
表1  注射钆剂前后兔腰椎骨髓FF值和R2*值时序性变化
Tab. 1  Fat fraction (FF) and R2* (±s, n=40) for the spine before and after gadolinium-based contrast media injection

3 讨论

       本实验中根据钆对比剂在体内的代谢时间曲线特点[10],设定在注射钆剂前及注射后5 min、30 min三个时间点分别采用IDEAL-IQ序列对兔腰椎进行扫描,将相应时间点椎体骨髓脂肪分数进行分析且将增强前脂肪分数与组织病理学脂肪含量进行对比,结果显示注射钆剂前后各时间段IDEAL-IQ测得的椎体骨髓脂肪分数无明显差异,且增强前脂肪分数与组织病理学脂肪含量具有高度相关性。Bland-Altman一致性分析显示注射钆剂前IDEAL-IQ测得的脂肪分数与注射后各时间段测得的脂肪分数一致性良好。这证明了IDEAL-IQ序列定量骨髓脂肪含量准确度高,稳定性及可重复性好,且不受钆对比剂增强扫描的影响,即在静脉注射钆对比剂后采用IDEAL-IQ序列定量骨髓脂肪含量具有可行性。

       DIXON方法可利用水脂分离技术测得组织脂肪含量,传统的两点式DIXON[11]技术通过调节回波时间TE做两次采集,得到同相位及反相位图像,对两幅图像进行加减,可得到水像和脂像,进一步算出脂肪分数,然而传统的两点式DIXON方法受T2*效应影响,在进行水脂分离时产生相位误差,导致测量结果误差[12]。IDEAL-IQ采用小角度激发降低T1偏倚,采集多个(≥6)梯度回波拟合T2*衰减曲线,将生成的T2*值用来校正源数据,从而修正T2*效应的影响[13]。并用fly-back方法进行k空间填充,生成水像、脂像以及脂肪比像等六幅图像,在脂肪比图像上及弛豫率图像放置ROI可以直接得到脂肪分数(FF)及R2*值而无需进一步计算。本实验将骨髓脂肪分数(FF)与病理学定量的骨髓脂肪细胞面积比(FCHIS)进行相关性分析,进一步验证IDEAL-IQ技术定量骨髓脂肪含量准确度高。

       MR钆类对比剂具有一定程度的T1弛豫时间和T2、T2*弛豫时间缩短效应。横向弛豫率R2*是T2*的倒数,钆剂能缩短T2*弛豫时间,相对应增加R2*值,本实验注射钆剂后骨髓R2*值升高,亦予以证实。Ge等的研究[14]显示IDEAL-IQ技术定量的肝脏脂肪分数不受静脉注射钆对比剂带来的R2*值变化的影响而保持较高的稳定性,但是无法排除铁沉积对R2*定量参数测量的影响。Liau等[15]通过实验证实IDEAL-IQ定量的肝脏脂肪分数不受铁剂的影响,但是Hines等[16]通过对不同浓度的水-脂-铁试剂进行定量分析,发现随着铁剂浓度的增高,IDEAL-IQ定量的脂肪分数与实际脂肪含量差异增大,其原因可能是铁剂对水组织的T2*弛豫的影响大于对脂肪组织的影响。本实验中,对兔腰椎椎体切片后进行普鲁士蓝染色,在400倍显微镜下观察骨髓内铁沉积情况,见细胞排列整齐,形态规则,未见明显铁颗粒,参照Sehgal等[17]铁沉积半定量分析评价标准可归为0级即无铁沉积。因此,可基本排除椎体骨髓内铁沉积对R2*值的影响,在本实验中R2*值的变化主要代表钆剂对骨髓组织T2*弛豫的影响。

       本实验结果显示由于钆剂可通过加快骨髓的T2*弛豫率而导致R2*值的升高,然而进行骨髓脂肪定量时,通过采集多个回波拟合T2*衰减曲线,能修正T2*效应的影响,因此在注射钆剂后,IDEAL-IQ序列定量的脂肪分数值(FF)依然能保持一定的稳定性,这与Ge等[14]证实的IDEAL-IQ对静脉注射钆喷酸葡胺保持良好稳定性的结果一致,进一步提示磁共振钆类对比剂等影响T2*弛豫率的物质对IDEAL-IQ定量组织脂肪含量影响较小。

       本研究的局限性:(1)本研究试验样本量较小,增大样本量及变异程度的改变可能会得到不同的结果,所以仍需后续大样本实验研究证实;(2)本实验未对IDEAL-IQ技术T2*校准效应对骨髓脂肪分数(FF)的影响进行评估,即未比较经T2*校准的FF值和未经T2*校准的FF值的差异。然而根据Meisamy等[18]的报道,在未注射钆剂的情况下,肝脏经T2*校准的FF值和未经T2*校准的FF值有统计学差异,笔者推断IDEAL-IQ可修正骨髓T2*效应而保持FF测量结果的稳定性。

       总之,在静脉注射钆剂引起的R2*值增高的情况下,IDEAL-IQ定量椎体骨髓脂肪分数的准确度高,且仍维持较高的稳定性和一致性。在静脉注射钆对比剂后采用IDEAL-IQ序列定量骨髓脂肪含量具有可行性。

[1]
Rosen CJ, Ackert-Bicknell C, Rodriguez JP, et al. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr, 2009, 19(2): 109-124.
[2]
Krings A, Rahman S, Huang S, et al. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone, 2012, 50(2): 546-552.
[3]
Shen W, Chen J, Gantz M, et al. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. Eur J Clin Nutr, 2012, 66(9): 983-988.
[4]
Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology, 2013, 267(2): 422-431.
[5]
Hu L, Zha YF, Lin Y, et al. The feasibility of IDEAL-IQ quantitative evaluation of vertebral fat fraction content in rabbit models of diabetes mellitus. Chin J Magn Reson Imaging, 2015, 6(12): 941-946.
胡磊,查云飞,林苑,等. IDEAL-IQ定量评价兔糖尿病模型椎体骨髓脂肪含量的可行性研究.磁共振成像, 2015, 6(12): 941-946.
[6]
Idilman IS, Aniktar H, Idilman R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology, 2013, 267(3): 767-775.
[7]
Hawighorst H, Libicher M, Knopp MV, et al. Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging, 1999, 10(3): 286-294.
[8]
Bluemke DA, Petri M, Zerhouni EA. Femoral head perfusion and composition: MR imaging and spectroscopic evaluation of patients with systemic lupus erythematosus and at risk for avascular necrosis. Radiology, 1995, 197(2): 433-438.
[9]
Bollow M, Knauf W, Korfel A, et al. Initial experience with dynamic MR imaging in evaluation of normal bone marrow versus malignant bone marrow infiltrations in humans. J Magn Reson Imaging, 1997, 7(1): 241-250.
[10]
Men WW, Li N, Yu JH, et al. Accurate depicting metabolic process of macromolecule gadolinium magnetic resonance contrast agent. Chin J Inter Imag Ther, 2010, 7(3): 320-324.
门卫伟,李娜,余家会,等.大分子钆磁共振对比剂代谢曲线的精确描绘.中国介入影像与治疗学, 2010, 7 (3): 320-324.
[11]
Dixon WT. Simple proton spectroscopic imaging. Radiology, 1984, 153(1): 189-194.
[12]
Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging, 2008, 28(3): 543-558.
[13]
Yu H, Shimakawa A, Mckenzie CA, et al. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med, 2008, 60(5): 1122-1134.
[14]
Ge M, Zhang J, Wu B, et al. Effect of gadolinium on hepatic fat quantification using multi-echo reconstruction technique with T2* correction and estimation. Eur Radiol, 2016, 26(6): 1913-1920.
[15]
Liau J, Shiehmorteza M, Girard O M, et al. Evaluation of MRI fat fraction in the liver and spine pre and post SPIO infusion. Magn Reson Imaging, 2013, 31(6): 1012-1016.
[16]
Hines CD, Yu H, Shimakawa A, et al. T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging, 2009, 30(5): 1215-1222.
[17]
Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging, 2006, 24(1): 41-51.
[18]
Meisamy S, Hines CD, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology, 2011, 258(3): 767-775.

上一篇 CT指数及MR成像对盆腔淋巴结转移诊断价值的研究
下一篇 基于磁共振脑功能和脑结构成像的TMS线圈定位方法
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2