分享:
分享到微信朋友圈
X
综述
定量磁共振成像技术在评估关节软骨退行性变中的应用进展
罗慕晴 冯智超 廖云杰 钟东 李万猛 容鹏飞 王维

罗慕晴,冯智超,廖云杰,等.定量磁共振成像技术在评估关节软骨退行性变中的应用进展.磁共振成像, 2018, 9(11): 874-880. DOI:10.12015/issn.1674-8034.2018.11.015.


[摘要] 关节软骨在维持关节的正常结构和功能方面发挥着重要作用,关节软骨退行性变则是许多关节疾病的重要早期改变之一。由于关节软骨一旦受损退变就难以愈合、不可逆,因而早期评估和诊断关节软骨退行性变具有至关重要意义。磁共振成像具有优越的软组织对比度,从而能够无创、直接清晰地显示关节软骨,被公认为目前评价关节软骨损伤的最佳方法。随着近年来定量MRI技术的快速发展,可在关节软骨形态学改变出现之前对早期退变软骨生化成分和结构的改变进行定量检测。该文对关节软骨的解剖生理、退行性变病理生理及多种定量MRI技术在关节软骨退行性变中的应用进行综述。
[Abstract] Articular cartilage plays an important role in maintaining the normal structure and function of the joint, and the degeneration of articular cartilage is one of the most important early changes in many joint diseases. Once the articular cartilage is damaged and degenerated, it is difficult to heal and becomes irreversible, so it is very vital to early evaluate and diagnose the degeneration of articular cartilage. MRI can show articular cartilage directly and clearly because of its superior soft tissue contrast. Therefore, it is considered as the best method for evaluating articular cartilage degeneration. With the rapid development of quantitative MRI techniques in recent years, the changes of biochemical composition and structure of early degenerative cartilage can be quantitatively detected before morphological changes occur. In this review, the anatomical physiology of articular cartilage, pathophysiology of degeneration and application advances of various quantitative MRI techniques in degeneration of articular cartilage are summarized.
[关键词] 软骨,关节;软骨疾病;磁共振成像
[Keywords] Cartilage, articular;Cartilage diseases;Magnetic resonance imaging

罗慕晴 中南大学湘雅三医院放射科 长沙 410003

冯智超 中南大学湘雅三医院放射科 长沙 410003

廖云杰 中南大学湘雅三医院放射科 长沙 410003

钟东 中南大学湘雅医院脊柱外科 长沙 410008

李万猛 中南大学湘雅三医院放射科 长沙 410003

容鹏飞* 中南大学湘雅三医院放射科 长沙 410003

王维 中南大学湘雅三医院放射科 长沙 410003

通讯作者:容鹏飞,E-mail:rongpengfei66@163.com


基金项目: 国家自然科学基金 编号:81471715
收稿日期:2018-08-01
中图分类号:R445.2; R681.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2018.11.015
罗慕晴,冯智超,廖云杰,等.定量磁共振成像技术在评估关节软骨退行性变中的应用进展.磁共振成像, 2018, 9(11): 874-880. DOI:10.12015/issn.1674-8034.2018.11.015.

       关节软骨在关节活动中具有重要作用,而关节软骨退行性变是许多骨关节疾病如骨关节炎(osteoarthritis,OA)等的重要早期改变之一。关节软骨内无淋巴、血管组织,损伤后愈合困难[1],常继发出现关节其他结构甚至邻近骨的不同程度损伤,早期评估和诊断关节软骨退变对指导患者治疗、康复锻炼等方面具有重要意义。

       磁共振成像具有多序列、多方位、多参数成像及组织分辨率高、对比度好等优势,能提高对早期软骨受损、骨质侵蚀和软组织及骨髓水肿检测的敏感度,被公认为目前评价关节软骨形态和成分的首选方法[2]。在关节软骨退行性变的早期,软骨中生化成分的改变往往早于形态学改变[3]。近年来,多种定量MRI技术已成功地应用于检测软骨生化成分状态,对早期关节退变的评价方面较形态学成像序列具有更重要的价值。笔者针对该方面的研究进展进行综述。

1 关节软骨的结构与功能

       关节软骨是关节的重要结构之一,是覆盖关节骨面的富有弹性的特殊透明软骨,具有润滑、吸收震荡及缓冲应力等功能,在维持关节的正常结构和功能方面发挥着重要作用。关节软骨由浅至深包括表层(滑动带)、中间层(过渡带)、深层(放射带)和钙化层四部分[4]。关节软骨由细胞外基质(extracellular matrix,ECM)和软骨细胞构成,其中ECM是其主要的物质基础,由水(约60%~80%)、胶原蛋白(约15%~20%)、蛋白多糖(proteoglycan,PG,约1%~10%)和其他糖蛋白底物、矿物质和脂质等组成[5]。其中水在关节面负重时在软骨各层内充分流动,起到润滑关节的作用;胶原蛋白是ECM中含量最多的大分子,排列网格高度有序,构成软骨组织的三维各向异性框架,是关节软骨抗拉力和剪切力的主要成分[6];PG主要以聚集蛋白聚糖的形式存在,由含数百个糖胺聚糖(glycosaminoglycan,GAG)侧链的核心蛋白组成,GAG上的硫酸盐和羧基产生负电荷,使相邻的GAG分子排斥并吸引金属离子(如Na+、Ca2+等),产生渗透压将水吸引到组织中并与水相互作用,使得关节软骨富有弹性,这是关节软骨承受压力的基础。关节软骨中的软骨细胞分布很少(仅占4%湿重),主要参与软骨代谢活动,与PG的合成有关。

2 关节软骨退行性变的病理生理及相应定量MRI技术

       关节软骨退行性变时存在生化成分、结构及形态的改变,并且是一个由量变到质变的过程。关节软骨退变早期,其生化成分及超微结构的改变往往发生在形态改变之前[3]。在分子水平上,关节软骨退变是软骨细胞、ECM及软骨下骨三者代谢和合成失衡的结果,发生的改变包括胶原纤维变性退化、PG丢失、水含量降低以及水渗透性增高等。在形态上则表现为初期软骨浅表层缺损或纤维化,随后裂隙延伸至软骨下骨、形成裂缝或溃疡,软骨厚度逐渐变薄,最终随着疾病的进展导致软骨全层缺损、剥脱。针对关节软骨退变的主要病理生理改变,目前有相应的定量MRI成像技术来进行评估:(1)水含量降低及渗透性增高:T2 mapping、T2* mapping、扩散加权成像(diffusion weighted imaging,DWI)及扩散张量成像(diffusion tensor imaging,DTI);(2) PG含量减少:钠磁共振成像(Sodium MRI,Na-MRI)、T1ρ mapping、延迟钆增强磁共振软骨成像(delayed gadolinium-enhanced magnetic resonance imaging of cartilage,dGEMRIC)和氨基葡聚糖化学交换饱和转移技术(glycosaminoglycan chemical exchange-dependent saturation transfer,gagCEST);(3)胶原纤维变性退化、结构紊乱:主要是DTI,T2 mapping、T2* mapping的评估效果尚存争议。

       此外,近年来有超短回波时间(ultrashort echo-time,UTE)序列、MRI纹理分析(MRI texture analysis,MRTA)技术等被开发应用于显示短T2、T2*信号的软骨组织成分和分析图像异质性等。

3 定量MRI成像技术评估关节软骨退行性变的应用

3.1 T2 mapping

       目前评价关节软骨退变最常用的定量技术是T2 mapping,它是基于多回波自旋回波(multi-echo spin echo,MESE)序列获得T2值来评估软骨内生化成分的改变。T2 mapping对关节软骨退变引起的ECM内水和胶原纤维的变化高度敏感[7],可有效检测关节软骨早期退变或损伤区域。有体外研究表明,关节软骨T2值与水含量呈正相关,与GAG浓度呈负相关,并随退变程度加重而增高[8,9,10];T2值与胶原蛋白含量是否相关尚存争议[8, 11]。Apprich等[12]发现轻中度髌软骨病损周围形态未改变的退变软骨和健康软骨间T2值存在显著差异。Zhong等[13]认为关节软骨T2 mapping的信号变化能预测无症状性膝关节OA患者的病情进展,可作为评估早期OA的一种影像标记物。Kijowski等[14]提出在3.0 T常规MRI扫描方案中增加T2 mapping后,可提高对膝关节软骨损伤检测的敏感度,但特异度略有降低。此外,有学者将T2 mapping与计算机辅助诊断相结合,可用于检测膝关节OA的早期软骨变性[15]。T2 mapping的脉冲序列和后处理软件较容易获取,能被大多数MRI系统兼容,易应用于临床实践中。但缺点是有魔角效应,即当胶原蛋白排列方向与成像基线成55°角时会影响T2值,导致定量评估软骨损伤的精准性下降[16]。今后须进一步探讨其适用范围、技术优化及可重复性问题等[17]

3.2 T2* mapping

       与T2 mapping类似,T2* mapping也与关节软骨中水分子含量和胶原纤维排列方式密切相关[18]。然而,Newbould等[10]研究表明不同级别退变软骨的T2和T2*值存在显著差异。OA关节软骨T2*值随软骨退变程度加重而缩短[18,19,20],具有很好的重复性[10]。但Taehee等[21]却发现,T2*值虽然随关节软骨退变分级增加而降低,但两者无显著相关性。尽管T2* mapping具有成像速度快、图像分辨率高、能进行三维各向同性评价等优势,但T2*值可能在评估软骨退变分级的敏感性不如T2值[22],还易受到磁场不均匀性影响[19],因此需要更多的科学证据来确定T2*值评估关节软骨退变的可靠性、有效性和潜在机制。

3.3 DWI和DTI

       DWI成像能获得关节软骨内水分子的扩散信息,通过表观扩散系数(apparent diffusion coefficient,ADC)值来量化组织结构特性。正常软骨中水分子扩散受到胶原成分各向异性的限制,软骨发生变性(包括胶原网络结构破坏、PG含量减少)时水含量相对增多、流动性增强,导致扩散阻力降低、ADC值增高。因此,ADC值可用来评估关节软骨的变性退变[23,24]。Xu等[25]发现早期膝关节退变软骨ADC值明显高于正常软骨,软骨DWI成像作为膝关节OA早期诊断工具的技术可行性已得到证实[26]。DWI不需要注射对比剂、扫描时间相对较短,与T2 mapping相比,它易受到运动和伪影的影响、图像分辨率不高,在3.0 T MRI上更明显,需要采用良好的脂肪抑制及更短的回波时间来达到类似T2 mapping成像的效果。此外,DWI还会受到b值和组织各向异性的影响等。

       DTI不仅能提供软骨中水分子扩散状态的定量信息,还能反映胶原纤维细微结构变化,其量化指标包括平均ADC和部分各向异性(fractional anisotropy,FA)[24,27]。软骨退变时PG含量减少、胶原纤维变形紊乱,水分子含量相对增多且扩散程度增加、各向异性减少,导致平均ADC值增高、FA值降低[28]。DTI能够有效区分正常软骨和退变损伤软骨[29]。Raya等[28]比较DTI和T2 mapping在鉴别正常软骨和膝关节OA软骨的效果时发现,平均ADC和FA的敏感度、FA的特异度均优于T2值,并具有良好的重测可重复性。他们的后续研究表明,DTI成像还有助于对早期软骨损伤进行分级评价[30]。此外,在7.0 T MRI上进行线扫描DTI也能区分正常软骨与OA软骨退变,并能覆盖所有软骨区域[31]。DTI技术量化水分子各向异性扩散,故不受魔角效应影响,但其数据分析复杂、扫描时间较长。

       此外,有研究者提出了磁敏感张量成像(susceptibility tensor imaging,STI)在9.4 T高场强MRI中量化猪软骨胶原纤维磁化率各向异性的可行性和适用性,可作为分析胶原纤维微观结构的一种新型敏感、无创技术,但其在人体关节软骨成像尚无应用[32]

3.4 Na-MRI

       Na-MRI是通过磁共振波谱成像(magnetic resonance spectroscopy,MRS)测量Na+在软骨内的分布,反映软骨中的固定电荷密度及PG含量[33]。关节软骨退变时PG含量减少,导致固定电荷密度降低、释放出Na+,此时软骨中钠浓度降低、Na-MRI信号减低。Wheaton等[34]对早期膝关节OA患者和健康人的关节软骨进行Na-MRI扫描,发现OA患者软骨变性区信号减低,提示局部PG丢失。此外,Madelin等[35]发现与传统的Na-MRI序列相比,采用施加了绝热反转脉冲水抑制的Na-MRI序列能抑制关节腔滑液内游离Na+信号,减少了滑液对钠信号的干扰,提高了Na-MRI检测膝关节OA的准确度,该序列对精准评估早期关节软骨退变是一种更具前景的技术。Na-MRI在不同场强水平都具有良好的可重复性[36],但存在较多局限性,包括钠浓度测量困难、信噪比和空间分辨率低、需要高场强条件(≥3.0 T)、采集时间长、需有特殊射频线圈与相关硬件设备、周围组织(如软骨下水肿或滑液)的部分容积效应可能影响定量测量等[37,38],有待深入研究和技术优化以提高临床实用性。

3.5 T1ρ mapping

       T1ρ mapping可获得关节软骨T1ρ弛豫时间,其对软骨内PG含量变化较为敏感[39]。Kester等[40]发现早期膝关节OA患者在关节软骨形态尚未发生明显改变时,软骨T1ρ值因PG含量减少而增高。因而,T1ρ mapping可作为定量评估关节软骨早期退变的一种技术手段。Wang等[41]发现T1ρ mapping在评估膝关节早期OA软骨变性较T2 mapping效果更好。Hu等[42]研究表明,与T2 mapping和T2* mapping相比,T1ρ mapping在检测小关节软骨退变的生化成分改变时更敏感,能用于评估腰椎小关节软骨早期退行性变。另外,T1ρ mapping在鉴别Ⅰ、Ⅱ级软骨退变方面也较T2 mapping有一定优势[43]。T1ρ mapping在临床研究或应用中有很大潜力,它不需要使用对比剂,也不需要进行关节运动和长时间等待,可部分替代延迟增强成像。但同时也存在一些技术挑战,如需要特殊的脉冲序列、耗时较长及需要高场强、高射频脉冲能量水平等[44]

3.6 dGEMRIC

       dGEMRIC是根据退变软骨ECM中固定电荷密度分布不均的特点,利用钆对比剂进行成像来间接估计GAG乃至PG含量的变化。关节软骨退变早期PG含量下降,相应GAG带有负电荷减少,从而对带阴离子的顺磁性钆螯合物DTPA2-等排斥力减弱,能够进入到软骨退变区的钆螯合物就会增多。采用静脉内注射双倍剂量对比剂钆喷酸葡胺,经长时间自主运动使其渗入关节软骨,然后多次进行反转恢复序列扫描,分析测定软骨T1值。健康软骨的T1值较高,退变后T1值降低。dGEMRIC可准确反映软骨内PG或GAG含量,能用于评估关节软骨退变及其修复情况[18, 45,46,47],具有较好的可重复性[48]。Van Tiel等[49]对膝关节OA患者在全膝关节置换术前进行dGEMRIC和T1ρ mapping,与术中软骨标本中测量的硫酸化糖胺聚糖(sulphated glycosaminoglycan,sGAG)和胶原含量进行相关性分析,发现仅T1值与sGAG含量显著正相关,与胶原含量相关性弱,而T1ρ值与sGAG和胶原含量均无关。这说明dGEMRIC评估软骨sGAG含量的效果优于T1ρ mapping。此外,联合T2 mapping和dGEMRIC会对关节软骨的生化评估更全面[50]。但dGEMRIC具有成像时间长、需要关节运动、T1值测定缺乏统一标准及大剂量钆对比剂有潜在副作用(如肾源性系统性纤维化)等缺点,影响了该技术的广泛临床应用。

3.7 磁化传递对比技术(包括gagCEST技术)

       关节软骨的ECM中含大量大分子偶联,其磁化传递效应明显,这是关节软骨形成磁化传递对比(magnetization transfer contrast,MTC)的基础。MTC技术通过磁化传递率(magnetization transfer ratio,MTR)来反映软骨中蛋白含量变化,利用水与大分子内质子间MTR值的差异产生组织对比来显示软骨结构或病变。当关节软骨中胶原蛋白含量减少时MTR值降低[51]。但MTC技术的准确性及特异性均不高,应用价值有限。

       近年来,基于MTC技术和化学交换理论的gagCEST技术被用于软骨评估中。gagCEST利用特定频率的偏共振预饱和脉冲照射GAG内结合水中的质子,使之达到饱和状态后,通过化学交换作用转移到自由水中导致信号降低,来间接反映GAG含量[52]。Schmitt等[53]发现在7.0 T MRI上gagCEST和Na-MRI的软骨测量结果具有显著相关性。Wei等[54]采用dGEMRIC、gagCEST和T2 mapping评估膝关节软骨的GAG浓度,发现gagCEST与dGEMRIC的测量结果基本一致,但敏感性偏低,T2值与它们相关性差且不敏感。因此,仍需进一步研究如何改善gagCEST技术,使之成为一种临床上敏感可靠的方法。最近,Kogan等[55]开发了一种用于关节软骨容积成像的多层gagCEST序列,在胫距关节软骨成像中可行、有效,还发现软骨容积成像和减少扫描时间有助于提高gagCEST技术的临床应用价值。Krishnamoorthy等[56]设计了一种新型3D gagCEST技术,可得到可靠、可重复的高质量膝关节软骨图像,能在7.0 T MRI上对人膝关节软骨的GAG含量进行精准测量。随着图像采集技术的不断发展更新,gagCEST有望在在评估软骨退变方面发挥更加重要的作用。由于3.0 T MRI常难以提供更高的信噪比和更均匀的静磁场,gagCEST多用于超高场强MRI的应用研究。另外,它所需的后处理工具相对复杂,也限制了它的临床应用。

3.8 UTE成像序列

       传统MRI序列的回波时间较长,不能采集到短T2/T2*的软骨组织成分信号,UTE序列采用超短回波时间,能对短T2、T2*的软骨深层和钙化层进行直接显示及生化定量分析,包括UTE T2* mapping、UTE T1ρ mapping等。正常软骨内自由水产生长T2*信号,与胶原纤维或PG结合的水产生短T2*信号[57]。UTE T2* mapping通过采集不同的T2*信号能间接量化软骨内胶原或PG含量。Pauli等[58]发现健康软骨的短T2*信号百分比从浅到深逐渐增加,随着软骨退变的加重,短T2*信号百分比增加、UTE T2*值降低,这是由于退变导致PG甚至胶原丢失、结合水减少,但胶原基质微结构紊乱使水分子结合的胶原纤维表面积显著增加,后者更为明显并抵消了结合水的减少,导致总结合水分数净增高。此时UTE T2*值降低提示胶原基质微结构破坏,而非胶原含量减少。Williams等[59]证明3D UTE T2* mapping技术评估健康膝关节软骨生化成分具有临床可行性及短期可重复性。同时,短T2*信号百分比受魔角效应影响较小[60],对评估关节软骨退变稳定性较好。UTE T2* mapping能超早期发现关节软骨内生化成分的微变化,可实现早期敏感监测和诊断。UTE T1ρ mapping也能反映软骨深层及钙化层的生化状态。Bae等[61]发现UTE T1ρ值增高和软骨变性有显著相关性,反映软骨中GAG含量减少。但受魔角效应影响较大,结果稳定性欠佳[62]。最近,Chaudhari等[63]提出了超短回波时间双回波稳态序列(ultrashort echo-time double-echo steady-state,UTEDESS),可用于短T2组织中T2值的测量,同时具有高信噪比、高分辨率的形态学成像,在常规临床检查和纵向研究中有很好的应用前景。

       UTE序列与常规定量MRI技术相比,最突出的特点是在显示软骨中短T2/T2*信号成分方面具有天然优势,但对软骨深层和钙化层各自情况、PG或胶原结合的水无法区分评估。今后需探讨减小磁场不均和部分容积效应对UTE的影响,及开展UTE序列的临床体内研究,以提高其对不同软骨层生化成分检测的特异性和实用性。

3.9 MRTA技术

       MRTA技术通过提取MRI图像中与体素级信号强度相关的多阶纹理特征后统计建模,实现对疾病的检测、定性及预测等,进而辅助临床诊疗决策。该技术能够挖掘图像深层次的潜在有价值信息,是影像组学的重要手段。Boutsikou等[64]发现单侧膝损伤的关节软骨与正常软骨相比,存在多种纹理参数的差异,说明MRTA技术可作为MRI形态学成像的补充手段,以提高对细微软骨改变的检测。另有研究表明,在出现明显的软骨形态改变之前,膝关节损伤的软骨T2图的灰度共生矩阵(grey-level co-occurrence matrix,GLCM)参数大部分出现改变[65],提示具有更高的异质性。Urish等[66]的随访研究发现,基于基线状态软骨T2图的纹理参数建立的反映T2图像异质性的综合标志物,能作为临床前期预测膝关节OA进展的重要指标。此外,短期复查软骨T2图并进行MRTA还可为前交叉韧带损伤和重建后可能发生退变的软骨进行早期评估[67]。采用MRTA来量化软骨T2图像上局部异质性具有可行性[68],但其应用于关节软骨退变早期检测的研究尚少,今后可深入研究MRTA在软骨形态及定量成像方面的应用价值,并可尝试拓展到基于多模态影像的深度学习实现人工智能评估并预警关节软骨的早期退变。

4 总结与展望

       定量MRI技术通过量化反映关节软骨生化成分包括水分子、胶原纤维及PG含量的变化,能有效评估关节软骨早期退变损伤。尤其是,随着近年来高场强MRI (≥3.0 T)的广泛应用及线圈技术、脉冲序列的进一步完善,高分辨率的软骨定量MRI技术在关节软骨退变的诊断分级、指导治疗及修复效果评估等精准诊疗方面的价值已逐渐凸显。然而,目前在临床中关节软骨定量MRI序列的选择尚缺乏统一标准,临床研究大多也只针对单一技术,而这些技术也各具优势和不足,今后对这些技术进行优化、组合有望构建优势互补、全面有效的评价技术体系。且大部分研究是评估膝关节等大关节软骨,这些技术在小关节方面的应用价值尚不明确。但定量MRI技术作为无创、敏感且有效的检查手段,必将在关节退变为主的疾病评估中发挥着不可替代的重要作用,下一步应当主要针对扫描和后处理技术的优化及标准化、定量参数与生化病理改变的关系、可重复性评价等方面开展深入研究,临床关注内容也可从早期发现软骨退变延伸到筛检有迅速进展的高危人群、早期干预或修复治疗后的纵向监测评估等。

[1]
Madry H, Kon E, Condello V, et al. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc, 2016, 24(6): 1753-1762.
[2]
Möller I, Loza E, Uson J, et al. Recommendations for the use of ultrasound and magnetic resonance in patients with rheumatoid arthritis. Reumatol Clin, 2018, 14(1): 9-19.
[3]
Gellhorn AC, Katz JN, Suri P. Osteoarthritis of the spine: the facet joints. Nat Rev Rheumatol, 2013, 9(4): 216-224.
[4]
Liu Y, Wan YD. Progresses of 3T MRI biochemical composition imaging in articular cartilage. Internat J Med Radiol, 2014, 37(5): 453-456.
刘艳,万业达. 3T MRI关节软骨生化成分成像的研究进展.国际医学放射学杂志, 2014, 37(5): 453-456.
[5]
Zhang LJ, Jerry Hu, Kyriacos A. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng, 2009, 37(1-2): 1-57.
[6]
Burstein D, Gray M, Mosher T, et al. Composition and structure in osteoarthritis. Radiol Clin North Am, 2009, 47(4): 675-686.
[7]
Kim T, Min BH, Yoon SH, et al. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skeletal radiol, 2014, 43(7): 947-54.
[8]
Wei B, Mao F, Guo Y, et al. Using 7.0 T MRI T2 mapping to detect early changes of the cartilage matrix caused by immobilization in a rabbit model of immobilization-induced osteoarthritis. Magn Reson Imaging, 2015, 33(8): 1000-1006.
[9]
Soellner S, Goldmann A, Muelheims D, et al. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee. Osteoarthritis Cartilage, 2017, 25(11): 1841-1849.
[10]
Newbould RD, Miller SR, Toms LD, et al. T2* measurement of the knee articular cartilage in osteoarthritis at 3 T. J Magn Reson Imaging, 2012, 35(6): 1422-1429.
[11]
Kretzschmar M, Bieri O, Miska M, et al. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted doubleecho steady-state sequence (dwDESS). Eur Radiol, 2015, 25(4): 980-986.
[12]
Apprich S, Mamisch TC, Welsch GH, et al. Quantitative T2 mapping of the patella at 3.0 T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol, 2012, 81(4): 438-443.
[13]
Zhong H, Miller DJ, Urish KL. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative. Skeletal Radiol, 2016, 45(7): 909-913.
[14]
Kijowski R, Blankenbaker DG, Munoz Del Rio A, et al. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology, 2013, 267(2): 503-513.
[15]
Wu Y, Yang R, Jia S, et al. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping. Biomed Mater Eng, 2014, 24(6): 3379-3388.
[16]
Moshe TJ, Smith H, Dardzinski BJ, et al. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol, 2001, 177(3): 665-669.
[17]
Surowiec RK, Lucas EP, Ho CP. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1385-1395.
[18]
Bittersohl B, Hosalkar HS, Miese FR, et al. Zonal T2 and T1Gd assessment of knee joint cartilage in various histological grades of cartilage degeneration: an observational in vitro study. BMJ Open, 2015, 5(2): e006895.
[19]
Bittersohl B, Miese FR, Hosalkar HS, et al. T2* mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthritis Cartilage, 2012, 20(7): 653-660.
[20]
Siebenrock KA, Kienle KP, Steppacher SD, et al. Biochemical MRI predicts hip osteoarthritis in an experimental ovine femoroacetabular impingement model. Clin Orthop Relat Res, 2015, 473(4): 1318-1324.
[21]
Taehee K, Byoung-Hyun M, Seung-Hyun Y, et al. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skeletal Radiol, 2014, 43(7): 947-954.
[22]
Mamisch TC, Hughes T, Mosher TJ, et al. T2 star relaxation times for assessment of articular cartilage at 3T: a feasibility study. Skeletal Radiol, 2012, 41(3): 287-292.
[23]
Yao K, Troupis JM. Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol, 2016, 71(11): 1071-1782.
[24]
Raya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging, 2015, 41(6): 1487-1504.
[25]
Xu J, Xie G, Di Y, et al. Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep, 2011, 5(2): 13-18.
[26]
Guha A, Wyatt C, Karampinos DC, et al. Spatial variations in magnetic resonance-based diffusion of articular cartilage in knee osteoarthritis. Magn Reson Imaging, 2015, 33(9): 1051-1058.
[27]
Ferizi U, Rossi I, Lee Y, et al. Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model. Magn Reson Med, 2017, 78(1): 69-78.
[28]
Raya JG, Horng A, Dietrich O, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology, 2012, 262(2): 550-559.
[29]
Zhao DD, Li H, Qin H, et al. Initial application and clinical significance of DTI in normal adult patella cartilage. Chin J Magn Reson Imaging, 2016, 7(2): 131-135.
赵丹丹,李红,秦灏,等. DTI在正常成人髌骨软骨的初步应用及临床意义.磁共振成像, 2016, 7(2): 131-135.
[30]
Raya JG, Melkus G, Adam-Neumair S, et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology, 2013, 266(3): 831-841.
[31]
Raya JG, Dettmann E, Notohamiprodjo M, et al.Feasibility of in vivo diffusion tensor imaging of articular cartilage with coverage of all cartilage regions. Eur Radiol, 2014, 24(7): 1700-1706.
[32]
Wei H, Gibbs E, Zhao P, et al. Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage. Magn Reson Med, 2017, 78(5): 1683-1690.
[33]
Newbould RD, Miller SR, Tielbeek JA, et al. Reproducibility of sodium MRI measures of articular cartilage of the knee in osteoarthritis. Osteoarthritis Cartilage, 2012, 20(1): 29-35.
[34]
Wheaton AJ, Borthakur A, Shapiro EM, et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging-feasibility study. Radiology, 2004, 231(3): 900-905.
[35]
Madelin G, Babb JS, Xia D, et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology, 2013, 268(2): 481-491.
[36]
Chang G, Madelin G, Sherman OH, et al. Improved assessment of cartilage repair tissue using fluid-suppressed 23 Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol, 2012, 22(6): 1341-1349.
[37]
Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging, 2013, 38(3): 511-529.
[38]
Newbould RD, Miller SR, Upadhyay N, et al. T1-weighted sodium MRI of the articulator cartilage in osteoarthritis: a cross sectional and longitudinal study. PloS One, 2013, 8(8): e73067.
[39]
Yoon MA, Hong SJ, Im AL, et al. Comparison of T1rho and T2 Mapping of knee articular cartilage in an asymptomatic population. Korean J Radiol, 2016, 17(6): 912-918.
[40]
Kester BS, Carpenter PM, Yu HJ, et al. T1ρ/T2 mapping and histopathology of degenerative cartilage in advanced knee osteoarthritis. World J Orthop, 2017, 8(4): 350-356.
[41]
Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0T: parallel changes in T2, T1rho, and dGEMRIC. Acad Radiol, 2014, 21(4): 463-471.
[42]
Hu J, Zhang Y, Duan C, et al. Feasibility study for evaluating early lumbar facet joint degeneration using axial T1ρ, T2, and T2* mapping in cartilage. Magn Reson Imaging, 2017, 46(2): 468-475.
[43]
Sasho T, Katsuragi J, Yamaguchi S. Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage. Clin Rheumatol, 2017, 36(9): 2109-2119.
[44]
Wang L, Regatte RR. T1ρ MRI of human musculoskeletal system. J Magn Reson Imaging, 2015, 41(3): 586-600.
[45]
Hangaard S, Gade JS, Hansen P, et al. Single-vs. double-dose gadolinium contrast in delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in knee osteoarthritis: is dose reduction possible on 3-T MRI?Acta Radiol, 2018, 24: DOI: .
[46]
Jungmann PM, Baum T, Bauer JS, et al. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques?Biomed Res Int, 2014, 2014(7): 840170.
[47]
Zilkens C, Miese F, Herten M, et al. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. Eur J Radiol, 2013, 82(2): e81-e86.
[48]
Tiel JV, Bron EE, Tiderius CJ, et al. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage(dGEMRIC)of the knee at 3.0 T in patients with early stage osteoarthritis. Eur Radiol, 2013, 23(2): 496-504.
[49]
Van Tiel J, Kotek G, Reijman M, et al. is T1ρ Mapping an alternative to Delayed gadolinium-enhanced Mr imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees?Radiology, 2016, 279(2): 523-531.
[50]
Verschueren J, van Tiel J, Reijman M, et al. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?Osteoarthritis Cartilage, 2017, 25(9): 1484-1487.
[51]
Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am, 2011, 19(2): 249-282.
[52]
Brinkhof S, Nizak R, Khlebnikov V, et al. Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol, 2018, 28(7): 2874-2881.
[53]
Schmitt B, Zbyn S, Stelzeneder D, et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23) Na MR imaging at 7T. Radiology, 2011, 260(1): 257-264.
[54]
Wei W, Lambach B, Jia G, et al. A Phase I clinical trial of the knee to assess the correlation of gagCEST MRI, delayed gadolinium-enhanced MRI of cartilage and T2 mapping. Eur J Radiol, 2017, 90(6): 220-224.
[55]
Kogan F, Hargreaves BA, Gold GE. Volumetric multiclice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn Reson Med, 2017, 77(3): 1134-1141.
[56]
Krishnamoorthy G, Nanga RP, Bagga P, et al. High quality three dimensional gagCEST imaging of in vivo human knee cartilage at 7 Tesla. Magn Reson Med, 2017, 77(5): 1866-1873.
[57]
Rehnitz C, Kupfer J, Streich NA, et al. Comparison of biochemical cartilage imaging techniques at 3T MRI. Osteoarthritis Cartilage, 2014, 22(10): 1732-1742.
[58]
Pauli C, Bae WC, Lee M, et al. Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings. Radiology, 2012, 264(2): 484-493.
[59]
Williams A, Qian Y, Chu CR. UTE-T2* mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthritis Cartilage, 2011, 19(1): 84-88.
[60]
Shao H, Chang EY, Pauli C, et al. UTE bi-component analysis of T2* relaxation in articular cartilage. Osteoarthritis Cartilage, 2016, 24(2): 364-373.
[61]
Bae WC, Biswas R, Statum S, et al. Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc. Skeletal Radiol, 2014, 43(9): 1217-1223.
[62]
Du J, Statum S, Znamirowski R, et al. Ultrashort TE T1ρ magic angle imaging. Magn Reson Med, 2013, 69(3): 682-687.
[63]
Chaudhari AS, Sveinsson B, Moran CJ, et al. Imaging and T2 relaxometry of short-T2 connective tissues in the knee using ultrashort echo-time double-echo steady-state (UTEDESS). Magn Reson Med, 2017, 78(6): 2136-2148.
[64]
Boutsikou K, Kostopoulos S, Glotsos D, et al. Texture analysis of articular cartilage traumatic changes in the knee calculated from morphological 3.0T MR imaging. Eur J Radiol, 2013, 82(8): 1266-1272.
[65]
Hofmann FC, Neumann J, Heilmeier U, et al. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative. Skeletal Radiol, 2018, 47(1): 93-106.
[66]
Urish KL, Keffalas MG, Durkin JR, et al. T2 texture index of cartilage can predict early symptomatic OA progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2013, 21(10): 1550-1557.
[67]
Williams A, Winalski CS, Chu CR. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J Orthop Res, 2017, 35(3): 699-706.
[68]
Neumann J, Hofmann FC, Heilmeier U, et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the osteoarthritis initiative. Osteoarthritis Cartilage, 2018, 26(6): 751-761.

上一篇 青少年特发性脊柱侧凸的神经影像学研究进展
下一篇 MRI对胎儿侧脑室扩张合并中枢神经系统病变诊断的临床应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2