分享:
分享到微信朋友圈
X
综述
Gd-EOB-DTPA MRI在监测肝硬化结节多步态癌变早期中的应用进展
额·图娅 欧阳汉

Cite this article as: E Tuya, OU Yanghan. Recent advances in application of Gd- EOB-DTPA MRI in the surveillance for early stage of hepatocarcinogenesis. Chin J Magn Reson Imaging, 2019, 10(4): 312-316.本文引用格式:额·图娅,欧阳汉. Gd-EOB-DTPA MRI在监测肝硬化结节多步态癌变早期中的应用进展.磁共振成像,2019,10(4):312-316. DOI:10.12015/issn.1674-8034.2019.04.015.


[摘要] 肝癌在肝硬化背景下发生发展是一个多步态过程,这一过程处于相邻阶段的高级退变结节及早期肝癌具有发展为下一阶段肝癌的高风险性,因此早期发现并准确诊断高危患者的这些结节具有重要意义。钆塞酸二钠(Gd-EOB-DTPA,Primovist)是一种肝脏特异性磁共振对比剂,因具有细胞内外双重对比剂效应,从而能更多地检出肝脏小病灶(<2 cm,尤其是<1 cm)并具有较高的定性诊断准确率,这有利于肝癌的早期发现及有效治疗从而延长患者生存时间及提高患者生存质量。本文旨在总结回顾并重点阐述退变结节及早期肝癌在动态演变过程中,其相应微观病理及功能改变,可通过Gd- EOB-DTPA联合其他MRI序列应用予以识别观测,用于肝硬化相关结节的鉴别诊断及其转归评价。
[Abstract] Hepatocellular carcinoma, based on liver cirrhosis, develops via the multistep process of hepatocarcinogenesis. Dysplastic nodule and early HCC, which are at the adjacent stages in the process, are in the high risk for transformation into advanced HCC, thus it is important for these nodules to be early detected and accurately diagnosed. Gd-EOB-DTPA is a hepatocyte specific magnetic resonance imaging contrast agent. It has demonstrated an increased ability of Gd-EOB-DTPA for the detection and higher accurate qualitative diagnosis rate of small liver lesions (<2 cm, especially<1 cm) due to its dual performance-extracellular and intracellular contrast agent performance. It benefits early detection of HCC and provides more treatment options with better effectiveness, consequently, prolongs the patient’s survival expectancy and improves the patient’s survival quality. The article aims to summarize, review and focus on the corresponding microscopic pathological and functional changes in the dynamic evolution process of dysplastic nodules and early hepatocellular carcinoma, which can be identified and observed by combining Gd-EOB-DTPA with other MRI sequences for the differential diagnosis and outcome evaluation of liver cirrhosis-associated nodules.
[关键词] 磁共振成像;钆塞酸二钠;退变结节;肝肿瘤;肝硬化
[Keywords] magnetic resonance imaging;Gd-EOB-DTPA;dysplastic nodule;liver neoplasms;liver cirrhosis

额·图娅 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院影像诊断科,北京 100021

欧阳汉* 国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院影像诊断科,北京 100021

通信作者:欧阳汉,E-mail:houybj@126.com

利益冲突:无。


基金项目: 国家自然科学基金项目 编号:81671677
收稿日期:2018-11-02
接受日期:2019-01-30
中图分类号:R445.2; R575.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2019.04.015
本文引用格式:额·图娅,欧阳汉. Gd-EOB-DTPA MRI在监测肝硬化结节多步态癌变早期中的应用进展.磁共振成像,2019,10(4):312-316. DOI:10.12015/issn.1674-8034.2019.04.015.

       肝细胞肝癌(hepatocellular carcinoma,HCC)是肝脏最常见的恶性肿瘤,中国则提供全球每年一半以上的新发病例[1]。由慢性乙型和(或)丙型肝炎等高危因素所致的硬化肝中,由再生结节(regenerative nodule,RN)发展为低级退变结节(low grade dysplastic nodule,LGDN),再演变为高级退变结节(high grade dysplastic nodule,HGDN),而后癌变为早期肝癌(early hepatocellular carcinoma,E-HCC)乃至进展期肝癌,这连续过程符合约80% HCC的多步态演变。DN (尤其是HGDN)及E-HCC是这一过程的关键步骤,也是临床早诊早治的重要环节[2]。长久以来,二者的精准诊断及鉴别诊断无论是在影像方面还是病理方面都是研究热点及难点之一。基于大多数DN及E-HCC的血供变化尚不足以使其在常规细胞外对比剂的影像方法上表现具有特征性,因此利用常规影像方法对二者的检出及诊断并不理想[3]。近年来,钆塞酸二钠(gadolinium ethoxybenzyl diethylene triamine pentaacetic acid,Gd- EOB-DTPA)因其能额外提供肝细胞功能方面的信息,并与MRI其他序列联合应用获得更多有效信息,在DN及E-HCC的检出及预测转归方面体现出重要价值,进而有利于提高患者预后及生存率。

1 Gd-EOB-DTPA的应用原理

       Gd-EOB-DTPA是一种磁共振肝脏双相对比剂,静脉注射后经过肝血窦毛细血管分布于细胞外间隙,从而提供血流动力学信息;肝细胞通过其血窦面细胞膜上的有机阴离子转运多肽1B3(organic anion transporting polypeptide,OATP1B3)将其摄取,而后经位于胆管面的多重耐药相关蛋白2(multidrug resistant protein,MRP2)将比例高达50%的对比剂排泄到胆管内,剩余50%则经肾脏排泄,以此提供肝细胞功能方面的信息。这种双重清除途径在肝或肾功能受损时可以相互代偿,因而具有更高的安全性[4]。Gd-EOB-DTPA因其独特优势,对于小病灶的诊断效能优于多排增强CT及其他MRI对比剂[5,6]。对于E-HCC或小肝癌(small hepatocellular carcinoma,S-HCC)甚至是DN亦具有较高的发现率与确诊率。如Kim等[7]研究显示,Gd-EOB-DTPA MRI较多排增强CT能够显著提高对E-HCC及HGDN的检出率;Renzulli等[8]报道Gd-EOB-DTPA MRI联合扩散加权成像(diffusion weighted imaging,DWI)可有效鉴别HGDN及E-HCC。

2 Gd-EOB-DTPA对肝硬化相关结节诊断的应用评价

       对于DN (最主要是HGDN)及E-HCC的病理诊断标准,现已达成一定的国际共识[9,10]。DN常发生于硬化肝中,直径通常在1~1.5 cm,边界多清晰,无纤维包膜。根据镜下细胞及组织结构异型性分为LGDN及HGDN。LGDN常表现为以大细胞改变为主的结节,几乎无其他明显异常;HGDN则以小细胞改变为主,细胞异型性增加,细胞密度增加,呈膨胀性生长,伴有不规则的细小梁状结构,假腺管结构形成,伴有脂肪变性,间质内有孤立性动脉,肝血窦出现毛细血管化。后者因其具有极高的恶性转化潜能被列为癌前病变,且会以"结节内结节"形式出现局灶癌变。在病理上,E-HCC是基于其生物学行为定义的,即癌组织缺乏纤维组织包裹,边界模糊,通常呈高分化状态,几乎无微血管浸润,称为早期S-HCC或模糊结节型HCC。S-HCC则强调肿瘤体积,通常认为S-HCC为<2 cm的病灶。需说明的是,并非所有的S-HCC均为E-HCC,部分S-HCC分化程度减低,有纤维包膜包裹而边界清晰,可伴有门静脉浸润及肝内微小转移灶,故而被称为进展期S-HCC或明确结节型S-HCC。上述HGDN的病理特征亦可表现于E-HCC,致使二者鉴别诊断颇为困难,二者鉴别要点在于是否出现间质浸润,即肿瘤细胞侵犯汇管区、纤维间隔等结构[9,10,11,12,13]

       肝硬化相关结节在多步态演变过程中,在细胞内部物质成分、功能及血供方面都会发生一系列的复杂变化,其中一些变化可由MRI的不同序列予以识别,用于结节的鉴别诊断及其转归评价。

2.1 癌变过程中肝硬化相关结节物质成分的变化及其影像表现

       DN及E-HCC在常规MRI上信号多变,这可能与MR场强、参数设置、序列选择、图像质量等有关。

       典型无铁质沉积的DN多呈T1WI高信号而E-HCC则多为等信号,多数学者认为高信号可能为铜或脂肪沉积所致。在非脂肪肝中,部分DN (尤其是HGDN)细胞内常含有丰富的脂肪,利用T1WI双回波技术可提高检出率。E-HCC相较于DN来说,脂肪变性更多见,且会随着肿瘤体积增大而逐渐减少。有学者将其归因于血供不足导致缺血缺氧,而在进一步去分化过程中,随着血流进一步丰富而消失。LGDN多呈T2WI等信号,HGDN多表现为稍高信号,而E-HCC多为高信号[3,4,12,14]

       若病灶含铁质沉积时,含铁物质常导致局部磁场不均匀产生质子失相位,最终使得结节表现为T2WI低信号,尤其是T2*WI能更好地反映铁的沉积。当含铁结节在T2WI上信号升高时需警惕HCC的可能,因硬化结节癌变过程中会逐渐失铁。应用较T2*WI更敏感的磁敏感加权成像(susceptibility weighted imaging,SWI)来检测肝硬化结节内铁含量变化从而鉴别癌前结节及HCC成为近年来的研究热点之一[15,16],但SWI亦受到如脂肪肝背景等多种因素影响而干扰诊断。若将其与Gd- EOB-DTPA联合应用与此领域,互相弥补不足并获得更多诊断信息将具有重要的临床意义。

       肝硬化结节恶变过程中,细胞密度会逐渐增加,得以通过DWI而检测。诸多研究报道联合DWI与Gd-EOB-DTPA MRI在鉴别肝硬化结节中具有重要意义。Inchingolo等[17]报道联合DWI高信号及肝胆期(hepatobiliary phase,HBP)低信号特征,其敏感性、特异性及准确性在HCCs组与DNs组、HCCs+HGDNs组与LGDNs组分别为100%、57.1%、84.21%和96.77%、100%、97.37%。Renzulli等[8]研究亦表明大部分HGDN及E-HCC呈HBP低信号,可根据DWI是否为高信号鉴别二者。Hwang等[18]报道表观扩散系数(apparent diffusion coefficient,ADC)值在乏血供HCC与DN之间无明显差异,但可通过高b值DWI进行鉴别。Zhu等[19]应用体素内不相干运动成像(intravoxel incoherent motion DWI,IVIM-DWI)研究发现D值(diffusion coefficient,D)及ADC值对高分化HCC有更高的诊断效能。Gd- EOB-DTPA MRI联合IVIM-DWI在有效评价癌变结节的功能和代谢水平方面具有较高的临床价值,但国内外对此相关临床研究报道还较少。这可能是由DWI及其衍生技术本身的局限性所致,如DWI易受运动伪影干扰或部分容积效应明显,目前各机构DWI扫描技术的多样性,勾画ADC方式的不统一及DWI衍生的定量参数界值的不确定性等。

2.2 癌变过程中肝硬化相关结节血流变化及其影像表现

       在DN逐步去分化发展为HCC的过程中,血管形成途径被激活,诱导肿瘤新生血管形式,即无胆管或门脉伴行的独立小动脉,称为非配对或非成组小动脉,同时也会逐步出现肝窦毛细血管化[9]

       在至少3期的多期Gd-EOB-DTPA MRI上,LGDN强化特征常同周围正常肝实质相仿,这是因其血流绝大部分仍由门静脉供应所致。虽然HGDN及E-HCC新生肿瘤血管都在逐步增加,但形成尚不完全,肝窦毛细血管化稀少。在大多数情况下,二者动脉期与周围肝实质相比常呈等/低强化,亦称为动脉期乏血供强化模式[2,3]。诸多研究结果亦证实这点,88.2%~96.7%的HGDN和71.4%~86.6%的E-HCC呈乏血供强化模式[7,20]。可见,仍有少部分HGDN及E-HCC会表现为动脉期强化,这种不同的动脉期强化模式,亦说明二者的血供变化呈动态演变,且常有重叠,仅凭借常规动脉期难以互相鉴别。

       Channual等[21]研究结果显示,通过比较不同增强时相结节与周围肝组织的信号强度比值,可获取LGDN、HGDN与HCC的相关定量信息并进行鉴别诊断,但仍是易于鉴别LGDN与HGDN+HCC,而不同分化HCC组内仍有较多重叠。覃夏丽等[22]研究显示,应用Gd-EOB-DTPA增强T1 mapping鉴别DN及不同分化程度的HCC,DN的T1值及T1增加率均低于不同分化HCC。由于肿瘤新生血管结构紊乱扭曲,基底膜欠连续,导致渗透性增加,Gd-EOB-DTPA在病灶中的分布及代谢不同于正常组织。基于此病理基础,Gd-EOB-DTPA经过后处理可获得一系列药代动力学参数(Ktrans、Vp、Kep),以此来反映病灶微血管密度(microvessel density,MVD)的状态。Kitao等[23]报道Ktrans与Ki-67增生及HCC分级显著相关,Vp和Kep与肿瘤微血管浸润有关。IVIM亦可通过灌注参数D*及f值来反映肝脏局灶性病变的血流灌注信息[24]

       上述基于Gd-EOB-DTPA自身或联合IVIM-DWI多模态定量参数,可通过反映病灶内部血液动力学改变来检测结节是否癌变,在一定程度上反映了潜在的肿瘤细胞特征,为评估肝硬化相关结节早期恶变及预后提供了可能性。Gd-EOB-DTPA剂量较低、浓度稍低,且硬化结节癌变早期血供并不丰富等原因可能致使此项技术在肝癌早期病变中应用较少,但因其为非创技术并提供丰富的诊断信息在此领域仍具有发展潜力和应用前景,有待于进一步挖掘。需注意的是,Gd- EOB-DTPA更易出现呼吸伪影,从而影响动脉晚期图像,对于诊断亦造成一定困难。应用动脉多期增强技术以弱化这种伪影,且基于此项新技术更易最大程度地区分并捕捉到个体化的最佳动脉晚期以便于肝硬化相关结节的诊断及鉴别诊断[25]

2.3 癌变过程中肝硬化相关结节细胞功能变化及其影像表现

2.3.1 乏血供肝胆期低信号的肝硬化相关结节及随访

       肝细胞膜OATP1B3表达量会随着肝硬化结节演变而逐渐减少乃至缺失,MRP2表达量维持正常或增加,从而导致70%~82.4%的HGDN及76.2%~86%的E-HCC表现为HBP低信号。同时,二者多数情况下在Gd-EOB-DTPA MRI上呈乏血供强化模式,从而被称为乏血供肝胆期低信号结节(hypovascular hypointense nodule,HHN)[7,26]。需补充的是,并非所有HHN都为HGDN及E-HCC,部分不典型HCC亦可表现为此征象。诸多研究将此种征象归因于结节OATP1B3表达量下调表现早于血流改变。随着时间的推进,部分HHN会转化为富血供HCC,因而具有高风险性。一项荟萃分析报道HHN混合总体转化率为28.2%,1年、2年、3年混合累积发生率为18.3%、25.2%、30.3%[27]。不少研究报道以下信息与HHN进展为富血供HCC有关:(1)初始大小直径≥9 mm[27];(2)T1WI呈高信号或体积倍增时间短[28,29];(3) T2WI呈高信号或DWI呈高信号[30,31];(4)包含脂质成分[30];(5)伴有HCC治疗史[31]。Chou等[32]也报道,在随访过程中若结节T1WI信号较前减低、T2WI信号较前增高,并检测到动脉期强化,这些可能作为结节恶性转变的征象。除此之外,Toyoda等[33]及Lee等[34]研究表明,在肝癌行手术切除及消融治疗之前并存HHN是其治疗后复发的独立预测子。综上所述,早期发现高危患者HHN并谨慎随访,重点观察其不同序列MRI信号及强化改变在预测肿瘤生物学行为和确定治疗方案中尤为重要。

2.3.2 乏血供肝胆期等或高信号的肝硬化相关结节及随访

       部分HGDN及4%的E-HCC也会表现为HBP等或高信号[26],这有可能与OATP1B3发生突变有关。研究显示,当OATP1B3高表达,此时HBP的信号则取决于MRP的表达量。MRP2并不会固定在肝细胞膜上,当细胞处于氧化应激状态时,MPR2会从膜上回缩至胞内;Gd-EOB-DTPA也可能通过MRR3排泄,肝细胞功能正常时其处于低表达状态,当处于胆汁淤积等病理状态时会表达上调[35,36]。研究显示,当肿瘤细胞MRP3为高表达时(这可能是因为胆管的缺失导致MRP2并不起作用或者表达量下降),因其排泄率低于OATP1B3的摄取率,而呈HBP等或高信号,且更多见于中分化HCC[37,38]。Tsuboyama等[39]研究表明,当肿瘤细胞MRP2为低表达或肿瘤细胞内假腺体膜上MRP2为高表达,则呈HBP高信号。Sano等[40]报道肝胆期高信号的结节预后较好。与其相反,Matsuda等[41]报道这类结节有恶变为富血供肝癌的可能性。显然,目前研究资料对此尚有争议,仍需大样本研究进一步验证。

3 小结与展望

       DN及E-HCC常因其体积小且内部成分不均匀,在病理上进行精确活检并鉴别诊断存在一定困难。但二者又有进一步恶性转化的高风险性,因此,影像手段在预测其恶变及预后方面显得尤为重要。随着Gd- EOB-DTPA的广泛应用,亦发现其一定的不足,如易产生动脉期运动伪影;无真正的平衡期,部分结节可能因为假性廓清而被过度诊断;其药物浓度相对较低,可能导致结节动脉期呈假性未强化模式。但因其高敏感性检出越来越多的高风险肝硬化相关结节,尤其是HHN (主要为HGDN及E-HCC)。如前所述,这二者在病理及影像表现上均有诸多重叠,仅凭单纯的某征象难以精准诊断。但二者在演变的动态过程中,会逐步发生一系列复杂的除血流动力学以外的改变,如脂肪变性、铁含量、细胞密度等的变化,并构成如T1WI双回波技术、SWI、DWI、IVIM-DWI等多模态MRI的病理基础。但不同序列均有各自的优势与不足,将其有效的与Gd-EOB-DTPA MRI联合应用,不仅在高风险肝硬化相关结节的诊断及鉴别诊断方面,而且在预测这些结节进一步恶变及预后方面均具有较大的潜力和临床价值,这些仍需进一步的系统研究和探索。

[1]
Chen WQ, Sun KX, Zheng RS, et al. Cancer incidence and mortality in China, 2014. Chin J Cancer Res, 2018, 30(1): 1-12.
[2]
Park HJ, Choi BI, Lee ES, et al. How to differentiate borderline hepatic nodules in hepatocarcinogenesis: Emphasis on imaging diagnosis. Liver Cancer, 2017, 6(3): 189-203.
[3]
Choi BI, Lee JM, Kim TK, et al. Diagnosing borderline hepatic nodules in hepatocarcinogenesis: imaging performance. AJR Am J Roentgenol, 2015, 205(1): 10-21.
[4]
Inchingolo R, Faletti R, Grazioli L, et al. MR with Gd-EOB-DTPA in assessment of liver nodules in cirrhotic patients. World J Hepatol, 2018, 10(7): 462-473.
[5]
Lee YJ, Lee JM, Lee JS, et al. Hepatocellular carcinoma: Diagnostic performance of multidetector CT and MR imaging-A systematic review and meta-analysis. Radiology, 2015, 275(1): 97-109.
[6]
Duncan JK, Ma N, Vreugdenburg TD, et al. Gadoxetic acid-enhanced MRI for the characterization of hepatocellular carcinoma: A systematic review and Meta-analysis. J Magn Reson Imaging, 2017, 45(1): 281-290.
[7]
Kim BR, Lee JM, Lee DH, et al. Diagnostic performance of gadoxetic acid-enhanced liver MR imaging versus multidetector CT in the detection of dysplastic nodules and early hepatocellular carcinoma. Radiology, 2017, 285(1): 134-146.
[8]
Renzulli M, Biselli M, Brocchi S, et al. New hallmark of hepatocellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: A new diagnostic algorithm. Gut, 2018, 67(9): 1674-1682.
[9]
The International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: A report of The International Consensus Group for Hepatocellular Neoplasia. Hepatology, 2009, 49(2): 658-664.
[10]
Kojiro M. Pathological diagnosis at early stage: Reaching international consensus. Oncology, 2010, 78(Suppl 1): 31-35.
[11]
Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma:part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology, 2014, 272(3): 635-654.
[12]
Ichikawa T, Sano K, Morisaka H. Diagnosis of pathologically early HCC with EOB-MRI: Experiences and current consensus. Liver Cancer, 2014, 3(2): 97-107.
[13]
Gheonea IA, Streba CT, Cristea CG, et al. MRI and pathology aspects of hypervascular nodules in cirrhotic liver: from dysplasia to hepatocarcinoma. Rom J Morphol Embryol, 2015, 56(3): 925-935.
[14]
Scali EP, Walshe T, Tiwari HA, et al. A pictorial review of hepatobiliary magnetic resonance imaging with hepatocyte-specific contrast agents: Uses, findings, and pitfalls of gadoxetate disodium and gadobenate dimeglumine. Can Assoc Radiol J, 2017, 68(3): 293-307.
[15]
Li RK, Zeng MS, Qiang JW, et al. Improving detection of iron deposition in cirrhotic liver using susceptibility-weighted imaging with emphasis on histopathological correlation. J Comput Assist Tomogr, 2017, 41(1): 18-24.
[16]
Yang WH, Liu HY, Zhang XH, et al. The clinical application of magnetic sensitive weighted imaging in liver cirrhosis nodules multi-step canceration. J Med Imaging, 2017, 27(6): 1112-1118.
杨文海,刘红宇,张雪红, 等. 磁敏感加权成像在肝硬化结节多步癌变中的临床应用. 医学影像学杂志, 2017, 27(6): 1112-1118.
[17]
Inchingolo R, De Gaetano AM, Curione D, et al. Role of diffusion-weighted imaging, apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver. Eur Radiol, 2015, 25(4): 1087-1096.
[18]
Hwang J, Kim YK, Jeong WK, et al. Nonhypervascular hypointense nodules at gadoxetic acid-enhanced MR imaging in chronic liver disease: Diffusion-weighted imaging for characterization. Radiology, 2015, 276(1): 137-146.
[19]
Zhu SC, Liu YH, Wei Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: Comparison with conventional diffusion-weighted imaging. World J Gastroenterol, 2018, 24(8): 929-940.
[20]
Bartolozzi C, Battaglia V, Bargellini I, et al. Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging, 2013, 38(2): 290-296.
[21]
Channual S, Tan N, Siripongsakun S, et al. Gadoxetate disodium-enhanced MRI to differentiate dysplastic nodules and grade of hepatocellular carcinoma: Correlation with histopathology. AJR Am J Roentgenol, 2015, 205(3): 546-553.
[22]
Qin XL, Huang ZK, Long LL, et al. The value of gadolinium-ethoxybenzyl- diethylenetriamine pentaacetic acid enhanced T1 mapping in dysplastic nodule and hepatocellular carcinoma with different degrees of differentiation. Chin J Radiol, 2018, 52(8): 603-607.
覃夏丽,黄仲奎,龙莉玲, 等. 钆塞酸二钠增强MRI T1mapping鉴别诊断不典型增生结节及不同分化程度肝细胞癌的价值. 中华放射学杂志, 2018, 52(8): 603-607.
[23]
Chen J, Chen C, Xia C, et al. Quantitative free-breathing dynamic contrast-enhanced MRI in hepatocellular carcinoma using gadoxetic acid: correlations with Ki67 proliferation status, histological grades, and microvascular density. Abdom Radiol (NY), 2018, 43(6): 1393-1403.
[24]
Yoon JH, Lee JM, Yu MH, et al. Evaluation of hepatic focal lesions using diffusion-weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived parameters. J Magn Reson Imaging, 2014, 39(2): 276-285.
[22]
Bartolozzi C, Battaglia V, Bargellini I, et al. Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging, 2013, 38(2): 290-296.
[23]
Kitao A, Matsui O, Yoneda N, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol, 2011, 21(10): 2056-2066.
[24]
Erra P, Puglia M, Ragozzino A, et al. Appearance of hepatocellular carcinoma on gadoxetic acid enhanced hepato-biliary phase MR imaging: a systematic review. Radiol Med, 2015, 120(11): 1002-1011.
[25]
Min JH, Kim YK, Kang TW, et al. Artifacts during the arterial phase of gadoxetate disodium-enhanced MRI: Multiple arterial phases using view-sharing from two different vendors versus single arterial phase imaging. Eur Radiol, 2018, 28(8): 3335-3346.
[26]
Erra P, Puglia M, Ragozzino A, et al. Appearance of hepatocellular carcinoma on gadoxetic acid-enhanced hepato-biliary phase MR imaging: a systematic review. Radiol Med, 2015, 120(11): 1002-1011.
[27]
Suh CH, Kim KW, Pyo J, et al. Hypervascular transformation of hypovascular hypointense nodules in the hepatobiliary phase of gadoxetic acid-enhanced MRI: A systematic review and meta-analysis. AJR Am J Roentgenol, 2017, 209(4): 781-789.
[28]
Kim YS, Song JS, Lee HK, et al. Hypovascular hypointense nodules on hepatobiliary phase without T2 hyperintensity on gadoxetic acid-enhanced MR images in patients with chronic liver disease: long-term outcomes and risk factors for hypervascular transformation. Eur Radiol, 2016, 26(10): 3728-3736.
[29]
Cho YK, Kim JW, Kim MY, et al. Non-hypervascular hypointense nodules on hepatocyte phaseGadoxetic acid-Enhanced MR images: Transformation of MR hepatobiliary hypointense nodules into hypervascular hepatocellular carcinomas. Gut Liver, 2018, 12(1): 79-85.
[30]
Higaki A, Ito K, Tamada T, et al. High-risk nodules detected in the hepatobiliary phase of Gd-EOB-DTPA-enhanced mr imaging in cirrhosis or chronic hepatitis: Incidence and predictive factors for hypervascular transformation, preliminary results. J Magn Reson Imaging, 2013, 37(6): 1377-1383.
[31]
Yang HJ, Song JS, Choi EJ, et al. Hypovascular hypointense nodules in hepatobiliary phase without T2 hyperintensity: long-term outcomes and added value of DWI in predicting hypervascular transformation. Clin Imaging, 2018, 50: 123-129.
[32]
Chou CT, Chou JM, Chang TA, et al. Differentiation between dysplastic nodule and early-stage hepatocellular carcinoma: The utility of conventional MR imaging. World J Gastroenterol, 2013, 19(42): 7433-7439.
[33]
Toyoda H, Kumada T, Tada T, et al. Non-hypervascular hypointense nodules detected by Gd-EOBDTPA-enhanced MRI are a risk factor for recurrence of HCC after hepatectomy. J Hepatol, 2013, 58(6): 1174-1180.
[34]
Lee DH, Lee JM, Lee JY, et al. Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MRI: Risk of HCC recurrence after radiofrequency ablation. J Hepatol, 2015, 62(5): 1122-1130.
[35]
Van Beers BE, Pastor CM, Hussain HK. Primovist, eovist: What to expect?. J Hepatol, 2012, 57(2): 421-429.
[36]
Sciarra A, Schmidt S, Pellegrinelli A, et al. OATPB1/B3 and MRP3 expression in hepatocellular adenoma predicts Gd-EOB-DTPA uptake and correlates with risk of malignancy. Liver Int, 2019, 39(1): 158-167.
[37]
Kitao A, Zen Y, Matsui O, et al. Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR imaging -correlation with molecular transporters and histopathologic features. Radiology, 2010, 256(3): 817-826.
[38]
Erra P, Puglia M, Ragozzino A, et al. Appearance of hepatocellular carcinoma on gadoxetic acid-enhanced hepato-biliary phase MR imaging: a systematic review. Radiol Med, 2015, 120(11): 1002-1011.
[39]
Tsuboyama T, Onishi H, Kim T, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging-correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology, 2010, 255(3): 824-833.
[40]
Sano K, Ichikawa T, Motosugi U, et al. Outcome of hypovascular hepatic nodules with positive uptake of gadoxetic acid in patients with cirrhosis. Eur Radiol, 2017, 27(2): 518-525.
[41]
Matsuda M, Tsuda T, Yoshioka S, et al. Incidence for progression of hypervascular HCC in hypovascular hepatic nodules showing hyperintensity on gadoxetic acid-enhanced hepatobiliary phase in patients with chronic liver diseases. Jpn J Radiol, 2014, 32(7): 405-413.

上一篇 孤立性纤维瘤的影像研究进展
下一篇 AQP磁共振分子成像在肿瘤中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2