分享:
分享到微信朋友圈
X
临床研究
DSC-MRI和IVIM在鉴别高级别脑胶质瘤术后复发和放射性脑损伤的初步研究
陕曼玉 杨国强 秦江波 张辉

Cite this article as: Shan MY, Yang GQ, Qin JB, et al. Preliminary study of DSC-MRI and IVIM in differentiating postoperative recurrence and radiation brain injury of high-grade glioma. Chin J Magn Reson Imaging, 2020, 11(5): 326-331.本文引用格式:陕曼玉,杨国强,秦江波,等. DSC-MRI和IVIM在鉴别高级别脑胶质瘤术后复发和放射性脑损伤的初步研究.磁共振成像, 2020, 11(5): 326-331. DOI:10.12015/issn.1674-8034.2020.05.002.


[摘要] 目的 探讨磁共振动态磁敏感对比增强(dynamic susceptibility weighted contrast enhanced,DSC-MRI)和体素不相干运动扩散加权成像(intravoxel incoherent motion,IVIM)在鉴别高级别脑胶质瘤术后复发及放射性脑损伤的应用价值。材料与方法 收集高级别脑胶质瘤术后切除+同步放化疗后行MRI检查的32例患者,且MRI影像检查中出现新增异常强化灶。根据二次手术或随访结果分为肿瘤复发组(22例)及放射性脑损伤组(10例)。测量两组患者的相对脑血容量(relative cerebral blood volume,rCBV)、纯扩散系数(true diffusion coefficient,D)、灌注相关扩散系数(perfusion related diffusion coefficient,D*)、灌注分数(perfusion fraction,f)等参数。采用独立样本t检验分析两组间的差异,进行受试者工作特征(receiver operating characteristic,ROC)曲线的绘制并计算曲线下面积、敏感度、特异度;采用Pearson检验分析参数间相关性。结果 复发组rCBV值、D*值、f值均高于放射性脑损伤组,差异有统计学意义(P<0.05),复发组D值低于放射性脑损伤组,差异有统计学意义(P<0.05),ROC曲线分析,rCBV值、D值、D*值、f值曲线下面积为0.832、0.709、0.814、0.780,灵敏度分别为72.7%、86.4%、81.8%、95.5%,特异度分别为90.0%、50.0%、80.0%、50.0%。DSC-MRI联合IVIM诊断时,曲线下面积为0.891,灵敏度及特异度分别为81.8%、90.0%;D*值(r=0.542,P<0.05)、f值(r=0.352,P<0.05)与rCBV值成正相关。结论 DSC-MRI联合IVIM在胶质瘤复发和放射性脑损伤的鉴别诊断中具有重要的临床应用价值,且rCBV值与D*、f值之间有一定的相关性。
[Abstract] Objective: To investigate the dynamic susceptibility weighted contrast enhanced (DSC-MRI) and intravoxel incoherent motion (IVIM) of magnetic resonance imaging in differentiating high-grade glioma recurrence and radiation brain injury.Materials and Methods: Thirty-two patients with high-grade gliomas who underwent postoperative resection and concurrent chemoradiotherapy and MRI were collected, and new abnormally enhanced lesions appeared in the MRI imaging. According to the results of the second operation or follow- up, they were divided into tumor recurrence group (n=22) and radiation brain injury group (n=10). Measure the relative cerebral blood volume (rCBV), pure diffusion coefficient (D), perfusion related diffusion coefficient (D*), and perfusion fraction (f) and other parameters. The independent sample t test was used to analyze the differences between the two groups, and the receiver operating characteristic (ROC) curve was plotted and the area under the curve, sensitivity, and specificity were calculated; and the correlation between the parameters was analyzed using the Pearson test.Results: The rCBV value, D* value, and f value of the relapse group were higher than those of the radiation brain injury group, and the difference was statistically significant (P<0.05). The D value of the relapse group was lower than that of the radiation brain injury group, and the difference was statistically significant (P<0.05), ROC curve analysis, rCBV value, D value, D* value, area under the f value curve are 0.832, 0.709, 0.814, 0.780, sensitivity is 72.7%, 86.4%, 81.8%, 95.5%, specificity is 90.0%, 50.0%, 80.0%, 50.0%. When DSC-MRI combined with IVIM was diagnosed, the area under the curve was 0.891, and the sensitivity and specificity were 81.8% and 90.0%, respectively; the D* value (r=0.542, P<0.05), and the f-value (r=0.352, P<0.05), there is a positive correlation with the rCBV value.Conclusions: DSC-MRI combined with IVIM has important clinical application value in the differential diagnosis of glioma recurrence and radiation brain damage, and there is a certain correlation between rCBV value and D*, f value.
[关键词] 磁共振成像;神经胶质瘤;术后复发;放射性脑损伤
[Keywords] magnetic resonance imaging;glioma;postoperative recurrence;brain radiation injury

陕曼玉 山西医科大学医学影像学院,太原 030001

杨国强 山西医科大学第一医院影像科,太原 030001

秦江波 山西医科大学第一医院影像科,太原 030001

张辉* 山西医科大学第一医院影像科,太原 030001

通信作者:张辉,E-mail:zhanghui_mr@163.com

利益冲突:无。


收稿日期:2019-12-31
接受日期:2020-03-26
中图分类号:R445.2; R739.41 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.05.002
本文引用格式:陕曼玉,杨国强,秦江波,等. DSC-MRI和IVIM在鉴别高级别脑胶质瘤术后复发和放射性脑损伤的初步研究.磁共振成像, 2020, 11(5): 326-331. DOI:10.12015/issn.1674-8034.2020.05.002.

       脑胶质瘤是成人最常见的颅内原发性肿瘤[1],根据病理特征可分为四级,其中WHO Ⅲ级及WHO Ⅳ级肿瘤因存在更多细胞间变和核异型,微血管增殖及坏死,将其统称为高级别胶质瘤。因侵袭性强,现如今采用对肿瘤进行最大安全范围的切除,同时进行同步放化疗+辅助化疗的治疗方案[2]。但是,部分患者在治疗过程中出现放射性脑损伤,其在临床及影像方面均与肿瘤复发类似。临床上,对两种情况的治疗完全不同,肿瘤复发需要再次手术或进一步放疗,而放射性脑损伤应减少剂量或其他支持治疗,故无创、精确地鉴别肿瘤复发及放射性脑损伤具有重要诊疗意义。磁共振动态磁敏感对比增强(dynamic susceptibility weighted contrast enhanced,DSC-MRI)可以通过量化脑组织的血流量,反映脑组织的血管密度及增生情况[3,4],而体素不相干运动扩散加权成像(intravoxel incoherent motion,IVIM)可以反映组织的微观结构变化,量化水分子扩散,并且可以提供部分的灌注信息[5]。本研究旨在探讨DSC-MRI和IVIM在鉴别高级别脑胶质瘤术后复发和放射性脑损伤的诊断价值。

1 材料与方法

1.1 一般资料

       收集山西医科大学第一医院2015年12月至2019年10月的32例患者,均为高级别脑胶质瘤手术切除、术后同步放化疗后出现异常强化灶者,其中男︰女=2.2︰1,年龄22岁~67岁,平均年龄为49.4岁。患者纳入标准:(1)脑肿瘤切除术后病理结果为高级别脑胶质瘤(WHO Ⅲ~Ⅳ级);(2)术后行标准同步放化疗及辅助化疗,放化疗前MRI检查未提示异常信号;(3)随访复查中出现异常强化灶或新增强化灶;(4)在每一次复查中MRI平扫及增强,IVIM,DSC-MRI检查必做,此间随访时间≥6个月。根据二次手术或随访结果将其分为肿瘤复发组(21例)及放射性脑损伤组(10例)。该研究得到山西医科大学第一医院伦理委员会的批准,所有受试者均提供了知情同意书。肿瘤复发标准为:(1)经二次手术病理证实;(2)随访期内(6个月以上)出现明显临床症状,病灶周围水肿增大,有新增异常强化。

1.2 图像采集

       使用Siemens Skyra 3.0 T MR超导型,采用头颅8通道相控阵线圈收集图像。常规扫描包括:T1WI(TR 220 ms,TE 2.5 ms);T2WI (TR 3570 ms,TE 175 ms);T2-FLAIR序列为TR 8000 ms,TE 103 ms;T1WI增强为TR 240 ms,TE 2.5 ms。

       IVIM采用SMS Diffusion平面回波序列(echo-planar imaging,EPI),加速因子为3,扫描参数:TR 4500 ms,TE 98 ms,层厚4 mm,FOV 220 cm×220 cm,矩阵128×128,NEX为3,共8个b值(0、50、100、150、200、400、600、1000 s/mm2)。

       DSC采用自旋回波-回波平面成像(spin echo-echo planar imaging,SE-EPI)序列,层面选择同增强前T1WI轴位扫描,参数为TR 1600 ms,TE 30 ms,层厚5 mm,FOV 230 mm×230 mm,矩阵128×128,翻转角90° ,NEX为1,每层采集20帧图。在肘前静脉使用高压注射器团注Gd-DTPA (0.2 mmol/kg),注射速率3 ml/s。

1.3 图像后处理及参数测量

       IVIM图的获取及测量:将所采集原始数据通过Start MITK Diffusion后处理获得真实扩散系数(D)、灌注相关扩散系数(D*)、灌注分数(f)的原始图,通过软件mircron将原始图处理为伪彩图,在未知明确结果时,由2名高年资医师以T1WI增强图为参考,感兴趣区(region of interest,ROI)设置在病灶强化最明显处,大小约25 ~40 mm2,测量相应ROI的D、D*及f值,每处进行3次测量,求平均值。

       灌注图的处理及测量:IVIM的选择标准适用于DSC的ROI选择标准,原始图像经过Perfusion软件,获得CBV灌注伪彩图,勾画相应的ROI区,测量ROI的血流动力学参数相对脑血容量(relative cerebral blood volume,rCBV),每处3次,最后求平均值。

1.4 统计学分析

       数据在SPSS 22.0上进行分析,计量资料采用(±s)表示,在校正参数定量分析中,使用组内相关系数(intraclass correlation coefficient,ICC)评估观察者之间的一致性,ICC> 0.75时表示信度良好;数据符合正态分布且方差齐性,则运用独立样本t检验分析组间各参数值的差异,P<0.05有统计学意义,并对有意义参数进行受试者工作特征(receiver operating characteristic,ROC)曲线的绘制,计算相应的敏感性、特异性;应用Pearson检验对rCBV值及D*、f值进行分析,检验是否具有相关性;使用Logistic回归综合评估DSC-MRI与IVIM联合诊断的灵敏度和特异度。

2 结果

2.1 DSC、IVIM各参数值在两组间的比较

       高级别胶质瘤复发组异常强化区的rCBV值、D*值及f值均高于放射性脑损伤组,且差异有统计学意义(P <0.05;表1);高级别胶质瘤复发组D值低于放射性脑损伤组,差异有统计学意义(P <0.05;表1)。

表1  脑胶质瘤复发组及放射性脑损伤组DSC及IVIM各参数比较(±s)
Tab. 1  Comparison of DSC and IVIM parameters in glioma recurrence group and radiation brain injury group (±s)

2.2 DSC与IVIM参数的相关性分析

       DSC的rCBV值与IVIM的D*、f值均具有正相关,r=0.542 (P<0.05),r=0.352 (P<0.05;图1)。

图1  rCBV与D*、f值在显示血流灌注情况相关性散点图
图2  rCBV值、D值、D*值及f值在鉴别胶质瘤复发及放射性脑损伤的ROC曲线
Fig. 1  Scatter plot of correlation between rCBV and D* and f values showing blood perfusion.
Fig. 2  The ROC curve of rCBV, D, D* and f in differentiating high-glioma recurrence and radiation brain injury.

2.3 DSC、IVIM及两者联合诊断效能的分析

       DSC、IVIM及二者联合诊断结果纳入Logistic回归方程,其独立影响因素分别为rCBV值、D值、D*值及f值。以病理结果或长期随访为金标准绘制rCBV值、D值、D*值及f值的ROC曲线,AUC分别为0.823、0.709、0.814、0.780,敏感度分别为72.72%、86.4%、81.8%、95.5%,特异度分别为90.0%、50.0%、80.0%、50.0%。计算DSC联合IVIM诊断效能的ROC曲线下面积为0.891,灵敏度及特异度分别为81.8%、90.0%,明显高于DSC和IVIM单一检查(图2表2)。

表2  DSC及IVIM各参数ROC曲线分析结果
Tab. 2  ROC curve analysis results of DSC and IVIM parameters

2.4 观察者的一致性分析

       使用ICC对两观察者间的一致性进行分析,rCBV观察者间的ICC值为0.921 (95% CI,0.854~ 0.963),D值的ICC为0.915 (95% CI,0.849~ 0.992)、D*值的ICC为0.838 (95% CI,0.649~ 0.904),f值在观察者间的ICC值为0.884 (95% CI,0.813~ 0.935)。

3 讨论

       高级别脑胶质瘤的术后复发与放射性脑损伤在MRI平扫及增强扫描中表现类似,都表现为新增异常强化灶,但两者的组织病理学基础完全不同。放射性脑损伤可以分为急性脑损伤、亚急性脑损伤以及晚期脑损伤,急性脑损伤发生在放疗期间,亚急性脑损伤多发生在放疗后3个月内,晚期脑损伤则在放疗结束后数月或者数年内发生。急性及亚急性脑损伤的病理基础可能与组织细胞水肿、血管扩张,血管通透性改变和血脑屏障损害有关[6]。而晚期放射性脑损伤则引起神经组织的脱髓鞘、血管内皮细胞及周围组织的损伤及坏死、胶质细胞的增生、毛细血管的渗出及血脑屏障的破坏[7]。而肿瘤的复发与原高级别胶质瘤病理基础类似,表现为肿瘤细胞快速密集增殖,核浆比例增大,新生不成熟肿瘤血管(缺乏平滑肌层,基底膜不完整),周围正常脑组织受侵、血脑屏障被破坏[8]。由于两者间的治疗方式及预后有明显差异,鉴别胶质瘤复发及放射性脑损伤在临床诊疗中意义重大。本研究依据两者病理组织学的不同,应用DSC-MRI及IVIM两种序列对其进行鉴别诊断。

3.1 DSC-MRI参数分析

       可提供组织灌注信息的成像技术主要是磁共振灌注成像,能够反映相关组织的病理学改变,以DSC灌注成像最为常用。目前,DSC灌注成像已广泛用于胶质瘤分级、术前评估、术后鉴别胶质瘤肿瘤复发和放射性脑损伤[9,10,11]。其参数与组织的血管密度密切相关,是最广泛使用的半定量血流动力学灌注指标,并且可以通过伪彩图直观表现组织灌注情况[12]。有文献报道,rCBV是灌注成像中评估微血管密度最常用的参数[3]

       在本研究中,笔者发现肿瘤复发组的rCBV值明显高于放射性脑损伤组,其原因可能是因为复发肿瘤对血管内皮生长因子(vascular endothelial growth factor,VEGF)表达增强,进而形成大量肿瘤不成熟血管,造成局部区域内的血管密度及血流灌注量增加,rCBV值明显增高[13],辐射可使影响组织中的血流量、代谢和生长速率,放射性脑损伤则因辐射产生大量肿瘤坏死因子-α (TNF-α),致使区域内的血管内皮细胞损伤,正常血管发生纤维素样坏死,血流灌注量相应降低[14];rCBV值在肿瘤复发组与放射性脑损伤组两者间差异明显,与Boxerman等[15]研究所表明的DSC-MRI在鉴别高级别胶质瘤术后进展情况具有良好潜力的结论基本一致。

3.2 IVIM参数分析

       磁共振扩散加权成像(diffusion weighted imaging,DWI)可测量活体组织内的水分子扩散运动,进而反映组织微环境,评估、量化组织中的细胞密度[16],但传统DWI忽视了组织内的微灌注因素,故Le Bihan等[17]提出IVIM成像,可同时观察到组织内水分子扩散和组织毛细血管中血液的微灌注,得到D、D*、f等参数。目前,IVIM成像广泛用于脑胶质瘤分级及预后[18,19],但在胶质瘤术后复发及放射性脑损伤鉴别方面的研究较少。

       在本研究中,我们发现复发组的D值低于放射性脑损伤组,这可能与病理有关,肿瘤复发时,肿瘤密度增加,细胞间隙减小,从而致使水分子弥散受限,这与Detsky等[20]研究发现肿瘤复发组的D值高于放射性脑损伤组一致,表明了D值在鉴别肿瘤复发与放射性脑损伤中的重要价值。而复发组的D*值及f值均高于放射性脑损伤组,此项结果与Kim等[21]应用IVIM的测量D*值及f值在胶质瘤复发组较高的结果一致,可能的原因是肿瘤复发时不成熟血管增多、因平滑肌层欠连续,通透性明显增加,而放射性脑损伤使血管内皮细胞发生炎性改变,严重时发生纤维素样坏死,导致血管闭塞,亦可导致组织纤维化、硬化等,故而灌注量低于肿瘤复发组。

图3  男,27岁,胶质母细胞瘤(WHO Ⅳ级),术后5个月复查,图A~ F为T2WI、T1WI+C、CBV、D、D*、f相应图,后经病理证实为肿瘤复发,图G为二次手术病理切片图(HE ×100),证实为胶质母细胞瘤复发(WHO Ⅳ级)
图4  男,60岁,间变型星型细胞瘤(WHO Ⅲ级),术后8个月复查,图A~ F为T2WI、T1WI+C、CBV、D、D*、f相应图,后经随访证实为放射性脑损伤
Fig. 3  A 27-year-old male, with glioblastoma (WHO grade Ⅳ), reexamined 5 months after operation. Figures A—F are T2WI, T1WI+C, CBV, D, D*, and f. Confirmed tumor recurrence. Figure G is the pathological section of the second operation (HE ×100).
Fig. 4  A 60-year-old male, with anaplastic astrocytoma (WHO class Ⅲ), reexamined 8 months after operation. Figures A—F are T2WI, T1WI+C, CBV, D, D*, and f. Follow-up confirmed radiation brain damage.

3.3 两者的相关性及联合意义

       在本研究中,我们将IVIM的D*值及f值与DSC的rCBV值进行相关分析。Wirestam等[22]研究结果显示,DSC的CBV与IVIM的D*、f值之间具有一致性,本组结果与其类似。将两者联合诊断,DSC-MRI与IVIM均可用于肿瘤复发及放射性脑损伤的鉴别诊断,两者的参数虽均可测量灌注值,但其灌注参数代表了不同方面,DSC的CBV主要反映的是微血管衰减,IVIM的f值主要反映了血液微循环相关的微平移运动。Jain等[23]研究表明CBV与微血管衰减呈显著正相关,而灌注分数f与微血管细胞增殖呈显著正相关,这表明上述灌注参数代表了肿瘤血管的不同方面。IVIM还可测量组织内水分子的真实扩散,反映组织细胞密度等情况,将两者联合诊断,对病灶的分析更为全面;其次,在临床工作中,经过手术切除及辅助放化疗后,术区周围脑组织生理情况复杂,不仅有原肿瘤细胞的浸润,还包括手术所致的组织细胞及血管内皮细胞的损伤、炎性细胞的浸润、胶质细胞增生等[24],仅靠单一的MRI序列无法准确评估术后进展情况。Ozsunar等[25]使用动脉自旋标记(arterial spin labeling,ASL)成像对胶质瘤复发及放射性脑损伤进行鉴别,其灵敏度仅为81%,Zhang等[26]对18篇文章,445例胶质瘤术后患者进行Meta分析,证明单独使用MRS测量的代谢物比值(如Cho/Cr和Cho/NAA等)可以对胶质瘤复发及放射性损伤进行鉴别诊断,但建议与其他磁共振技术联合以提高诊断的准确性。本研究将DSC-MRI与IVIM进行联合,可从血流灌注及微观组织结构两个方面对感兴趣区进行更加全面分析。本研究发现复发组的rCBV值、D*值及f值均明显高于放射性脑损伤组,复发组D值较放射性脑损伤组更低,其研究符合其病理生理变化,且将两者联合诊断性能更为全面、有效。

       本研究亦存在以下不足:(1)收集的总样本量小,两组患者比例略不适;(2)勾画感兴趣区时存在一定的主观性;(3)病例为回顾性的随访病例,部分缺少病理证实;(4) DSC-MRI对出血、钙化敏感,术后出血、手术夹对其有一定影响;接下来我们将继续收集病例进一步完善评价DSC-MRI和IVIM各参数对胶质瘤复发与放射性脑损伤的诊断效能,并进一步分析两者之间的相关性。

       综上所述,DSC-MRI与IVIM-DWI能够无创地对高级别胶质瘤术后异常强化灶进行鉴别诊断,有助于指导临床的诊治方案及相应评估,两者之间有一定的相关性,且联合诊断效能更高。

[1]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 2016, 131(6): 803-820.
[2]
Chinese central nervous system glioma diagnosis and treatment guidelines Writing Group. Guidelines for the diagnosis and treatment of central nervous system gliomas in China (2015). Natl Med J China, 2016(7): 485-509.
中国中枢神经系统胶质瘤诊断和治疗指南编写组.中国中枢神经系统胶质瘤诊断与治疗指南(2015).中华医学杂志, 2016, 96(7): 485-509.
[3]
Muto M, Frauenfelder G, Senese R, et al. Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2. Radiol Med, 2018, 123(7): 545-552.
[4]
Ji B, Wang S, Liu Z, et al. Revealing hemodynamic heterogeneity of gliomas based on signal profile features of dynamic susceptibility contrast-enhanced MRI. Neuroimage Clin, 2019, 23: 101864.
[5]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[6]
Delgado-LoPez PD, Rinones-Mena E, Corrales-Garcia EM. Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin Translat Oncol, 2018, 20(8): 939-953.
[7]
Kumar AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology, 2000, 217(2): 377-384.
[8]
Hu LS, Baxter L C, Smith KA, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol, 2009, 30(3): 552-558.
[9]
Latysheva A, Emblem K E, Brandal P, et al. Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach. Neuroradiology, 2019, 61(5): 545-555.
[10]
Romano A, Pasquini L, Di Napoli A, et al. Prediction of survival in patients affected by glioblastoma: histogram analysis of perfusion MRI. J Neurooncol, 2018, 139(2): 455-460.
[11]
Xu Q, Liu Q, Ge H, et al. Tumor recurrence versus treatment effects in glioma: A comparative study of three dimensional pseudo-continuous arterial spin labeling and dynamic susceptibility contrast imaging. Medicine (Baltimore), 2017, 96(50): e9332.
[12]
Saini J, Gupta RK, Kumar M, et al. Comparative evaluation of cerebral gliomas using rCBV measurements during sequential acquisition of T1- perfusion and T2*-perfusion MRI. PLoS One, 2019, 14(4): e0215400.
[13]
Liu J, Li C, Chen Y, et al. Diagnostic performance of multiparametric MRI in the evaluation of treatment response in glioma patients at 3 T. J Magn Reson Imaging, 2019, 51(4): 1154-1161.
[14]
Galante JR, Rodriguez F, Grossman SA, et al. Late post-treatment radiographic changes 3 years following chemoradiation for glioma: the importance of histopathology. CNS Oncol, 2017, 6(3): 195-201.
[15]
Boxerman JL, Ellingson BM, Jeyapalan S, et al. Longitudinal DSC-MRI for Distinguishing Tumor Recurrence From Pseudoprogression in Patients With a High-grade Glioma. Am J Clin Oncol, 2017, 40(3): 228-234.
[16]
Galban CJ, Hoff BA, Chenevert TL, et al. Diffusion MRI in early cancer therapeutic response assessment. NMR in biomedicine, 2017, 30(3): DOI: .
[17]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, 168(2): 497-505.
[18]
Hino T, Togao O, Hiwatashi A, et al. Clinical efficacy of simplified intravoxel incoherent motion imaging using three b-values for differentiating high- and low-grade gliomas. PLoS One, 2018, 13(12): e0209796.
[19]
Togao O, Hiwatashi A, Yamashita K, et al. Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro Oncol, 2016, 18(1): 132-141.
[20]
Detsky JS, Keith J, Conklin J, et al. Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology. J Neurooncol, 2017, 134(2): 433-441.
[21]
Kim HS, Suh CH, Kim N, et al. Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol, 2014, 35(3): 490-497.
[22]
Wirestam R, Borg M, Brockstedt S, et al. Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol, 2001, 42(2): 123-128.
[23]
Jain R, Narang J, Schultz L, et al. Permeability estimates in histopathology-proved treatment-induced necrosis using perfusion CT: can these add to other perfusion parameters in differentiating from recurrent/progressive tumors? AJNR Am J Neuroradiol, 2011, 32(4): 658-663.
[24]
Ren LF, Zhang H, Wang Xc, et al. Preliminary study of magnetic resonance dynamic contrast enhancement combined with diffusion weighted imaging to identify high grade glioma recurrence and treatment-related changes. Chin J Magn Reson Imag, 2019, 10(09): 655-660.
任龙飞,张辉,王效春,等.磁共振动态对比增强联合扩散加权成像鉴别脑高级别胶质瘤复发和治疗后反应的初步研究.磁共振成像, 2019, 10(09): 655-660.
[25]
Ozsunar Y, Mullins ME, Kwong K, et al. Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Acad Radiol, 2010, 17(3): 282-290.
[26]
Zhang H, Ma L, Wang Q, et al. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol, 2014, 83(12): 2181-2189.

上一篇 MRA、3D-ASL及IVIM技术在短暂性脑缺血发作中的应用价值研究
下一篇 mTI-ASL技术在鉴别脑胶质瘤术后复发与放射性损伤中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2