分享:
分享到微信朋友圈
X
临床研究
健康年轻人急性酒精暴露后的杏仁核-全脑静息态fMRI研究
许诗丽 喻婷婷 宋之琰 陈军

Cite this article as: Xu SL, Yu TT, Song ZY, et al. Resting-state fMRI study of amygdala-whole brain functional connectivity after acute alcohol exposure in healthy young adults. Chin J Magn Reson Imaging, 2020, 11(5): 336-342.本文引用格式:许诗丽,喻婷婷,宋之琰,等.健康年轻人急性酒精暴露后的杏仁核-全脑静息态fMRI研究.磁共振成像, 2020, 11(5): 336-342. DOI:10.12015/issn.1674-8034.2020.05.004.


[摘要] 目的 探讨健康年轻人急性酒精暴露后基于静息态fMRI的双侧杏仁核-全脑功能连接(functional connectivity,FC)变化。材料与方法 招募28名健康年轻志愿者,均完成简易智力状态检查量表(mini-mental state examination,MMSE)评分;采集饮酒前静息态数据,饮酒0.5 h后抽取静脉血测量血液酒精浓度(blood alcohol concentration,BAC)并再次采集静息态数据。采用DPARSF软件进行静息态数据的预处理后,以双侧杏仁核为种子点,与全脑其他所有体素的时间序列做相关分析。(1)采用配对样本t检验比较饮酒前后杏仁核-全脑FC差异;(2)根据BAC将饮酒后的被试分为高、低两组,采用独立样本t检验比较两组间的FC差异。结果 经头动检测,一共23名(男12名,女11名)健康志愿者纳入研究。与饮酒前相比,左侧杏仁核-全脑FC增强的脑区:双侧枕叶、左颞中回、左顶下回及左小脑半球,FC减弱的脑区:右额上回眶部、右颞中回、右侧海马及海马旁回;右侧杏仁核-全脑FC增强的脑区:左中央前回、右枕叶楔回,FC减弱的脑区:左侧小脑、左侧海马及海马旁回、右侧基底节、左颞叶梭回。饮酒后高、低BAC组相比,高BAC组右侧杏仁核-全脑FC减低脑区:左岛叶、左颞上回、左枕叶、右额中回,差异具有统计学意义(Puncorr <0.001,连续体素>10);高、低BAC组左侧杏仁核-全脑FC差异无统计学意义。结论 急性酒精暴露会致杏仁核-多脑区FC变化,为部分临床表现提供了影像学证据;右侧杏仁核可能更容易受到酒精的影响。
[Abstract] Objective: To investigate the changes of functional connectivity (FC) between amygdala and whole brain regions after acute alcohol exposure in healthy young adults.Materials and Methods: Twenty-eight healthy young volunteers were recruited to evaluate the cognitive function with the Mini-mental State Examination (MMSE), MMSE score≥24. fMRI data were collected before and 0.5 h after drinking, and blood alcohol concentration (BAC) was measured at 0.5h after drinking. DPARSF software was used to preprocess the resting state data, and the bilateral amygdala was used as the seed point to correlate with the time series of all other voxels in the whole brain. (1) The paired sample t test was used to compare the difference between amygdala-whole brain FC before and after drinking. (2) The subjects after drinking were divided into high and low groups according to BAC. The independent sample t test was used to compare the FC difference between the two groups.Results: A total of twenty-three healthy volunteers (12 males and 11 females) were enrolled after screening. As compared with that before drinking, left amygdala-whole brain FC enhanced areas include bilateral occipital lobe, left middle temporal gyrus, left inferior parietal gyrus and left cerebellum, FC decreased in right superior frontal gyrus, right middle temporal gyrus, right hippocampus and parahippocampal gyrus (Puncorr<0.001, voxels> 10). Right amygdala-whole brain FC enhanced areas include left anterior central gyrus, right cuneus, FC decreased in left cerebellum, left hippocampus and parahippocampal gyrus, right basal ganglia, left temporal fusiform gyrus (Puncorr<0.001, voxels>10). As compared with the low BAC group, FC of right amygdala-whole brain decreased in left insular lobe, left superior temporal gyrus, left occipital lobe, right middle frontal gyrus in the high BAC group (Puncorr<0.001, voxels> 10). There was no significant difference region in FC of left amygdala-whole brain between high and low BAC groups.Conclusions: Acute alcohol exposure can cause FC changes between amygdala and multiple brain regions, which provides imaging evidence for some clinical manifestations after acute alcohol consumption; the right amygdala may be more susceptible to alcohol.
[关键词] 饮酒;杏仁核;脑;磁共振成像
[Keywords] alcohol drinking;amygdale;brain;magnetic resonance imaging

许诗丽 武汉大学人民医院放射科,武汉 430060

喻婷婷 武汉大学人民医院放射科,武汉 430060

宋之琰 武汉大学人民医院放射科,武汉 430060

陈军* 武汉大学人民医院放射科,武汉 430060

通信作者:陈军,E-mail:whuchenjun@163.com

利益冲突:无。


收稿日期:2019-12-13
接受日期:2020-03-28
中图分类号:R445.2; R742 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.05.004
本文引用格式:许诗丽,喻婷婷,宋之琰,等.健康年轻人急性酒精暴露后的杏仁核-全脑静息态fMRI研究.磁共振成像, 2020, 11(5): 336-342. DOI:10.12015/issn.1674-8034.2020.05.004.

       近年来,人们一直在研究酒精与情绪之间的复杂关联[1,2],酒精对情绪的影响主要表现为增强积极情绪和减弱负面情绪。杏仁核涉及情绪、认知、学习和记忆,在处理情绪刺激中起关键作用,在面部表情识别过程中表现出强烈的反应[3],并与大量的皮层和皮层下结构相互作用以支持情感体验[4],杏仁核同时还在中脑腹侧被盖区-伏隔核(ventral tegmental area-nucleus accumbens,VTA-NAc)多巴胺奖赏环路中发挥重要作用。

       之前,已经有研究利用独立成分分析(independent component analysis,ICA)的方法评估了静息状态下急性酒精对包括情绪记忆网络在内的几大先验脑网络功能连接的影响[5,6,7]。笔者试图以双侧杏仁核为种子点基于静息态做全脑功能连接,研究急性饮酒后杏仁核-全脑功能连接改变,尝试为急性酒精暴露后部分临床表现提供影像学证据。

1 材料与方法

1.1 研究对象

       健康志愿者28名,年龄24~ 34岁,受教育年限>15年,所有被试均为右利手。纳入标准:(1)简易智力状态检查量表(mini-mental state examination,MMSE)评分≥24分,认知功能显示正常;(2)无酒精及其他物质依赖史,无酒精过敏史;(3)无脑器质性病变及严重躯体疾病,无颅脑损伤史、昏迷史、精神障碍史;(4)无癫痫发作或癫痫病家族史;(5)无磁共振检査禁忌证(幽闭恐惧证等);(6)颅脑常规MRI平扫无异常发现。

       本实验方案得到武汉大学人民医院医学伦理委员会的批准与监督,在实验开始前,本研究目的、实验过程、可能出现的危险和躯体不适(如噪声、幽闭感)均详实告知被试。所有被试者均自愿参加本研究,完整填写磁共振安全审查表,并签署了知情同意书。

1.2 实验方案

       所有被试者首先进行常规MRI检查,包括T1WI、T2WI、液体衰减反转恢复(fluid-attenuated inversion recovery,FLAIR)序列T2WI,由2名影像诊断医师排除器质性颅脑病变后再进行血氧水平依赖(blood oxygen level dependent,BOLD)数据采集;扫描完成后按照酒精量0.65 g/kg体重饮用白酒(黄鹤楼,8年原浆42度),半小时之内饮用完,饮酒后30 min抽取肘部静脉血5ml送检检测血液酒精浓度(blood alcohol concentration,BAC),并再次采集静息态BOLD像。扫描结束,留观被试者1 h,记录有无不适。为排除短期内饮酒对脑组织的影响,所有被试需保证实验前48 h内未摄入任何含酒精成分的物质。

       饮酒前后填写病例报告表,评估受试者的主观头痛,兴奋,头晕,嗜睡或神志不清等。

1.3 图像采集

       使用美国GE Discovery MR750 Plus 3.0 T超导MR扫描仪(GE Healthcare,Milwaukee,Wisconsin,USA),8通道相控阵头正交线圈;橡胶软塞固定头部以避免运动伪影。静息态fMRI图像采用梯度回波平面成像(echo planner imaging,EPI)序列,扫描参数:回波时间(time of echo,TE) 25 ms,重复时间(time of repetition,TR) 2000 ms,翻转角(flip angle,FA) 90° ,视野(field of view,FOV) 240 mm×240 mm,矩阵大小64×64,层厚3.5 mm,层间距0.6 mm,层数40层,扫描时间8 min。

1.4 MR数据预处理

       在Matlab R2013b平台上使用SPM12 (http://www. fil.ion.ucl.ac.uk/spm/)和DPARSF_4.0 Advanced Edition (http://rfmri.org/DPARSF)软件包进行数据处理和统计分析。数据预处理过程包括:(1)图像格式转换:采用DPARSF自带的工具,把原始数据DICOM格式转换成NIFTI格式;(2)剔除前10个时间点,排除受试者不适应及纵向磁化弛豫未达稳定而带来的影响,后230个时间点进入后续分析;(3)时间校正(slice timing) ;(4)头动校正(realign),将头动平移超过3.0 mm,旋转超过3.0°的被试去除;(5)空间标准化(normalize):将所有的功能图像配准到SPM12提供的EPI模板上(轴位MNI空间)对图像进行标准化;(6)采用6 mm半高全宽(FWHM)的高斯核对功能图像进行空间平滑(smooth) ;(7)去除线性漂移(Detrend);(8)低频滤波:对受试者数据进行频率为0.01 ~0.10 Hz的带通滤波;(9)去除协变量:提取头动、全脑、白质及脑脊液的平均信号作为计算功能连接的协变量进行简单线性回归,以排除这些因素对结果造成的影响。

1.5 FC分析

       使用的Talairach Daemon数据库提供的Talairach坐标,以±23,-5,-15作为双侧杏仁核中心坐标点[8],获取半径为3 mm的球体作为模板,提取该模板内的平均时间序列,与全脑其他区域进行基于体素的时间序列相关分析,获得成对区域的相关系数,得到FC统计图,并将相关系数进行Fisher Z转换,使数据符合正态分布。

1.6 统计学分析(Puncorr<0.001)

       采用SPM12软件(http://www.fil.ion.ucl.ac.uk/spm/)对转换后的饮酒前、后的Z分数统计图行配对样本t检验;根据饮酒后BAC将被试分为高、低浓度组,行独立样本t检验。采用Xjview Slice Viewer软件(http://www. alivelearn.net/xjview)查看统计结果,以单个体素Puncorr<0.001,同时体素簇>10个体素记录为统计学差异脑区。记录有统计学差异脑区的蒙特利尔神经科学研究所(Montreal neurological institute,MNI)坐标,查看其具体解剖位置,并记录t值。

2 结果

2.1 患者一般临床资料

       经头动检测,一共23名(男12名,女11名)健康志愿者纳入研究,年龄24~ 34岁,平均(26±2.6)岁,饮酒半小时后抽取静脉血所测血液酒精浓度范围22.9~ 121.8 mg/100 mL,平均(66.0±26.5) mg/100 mL。饮酒后主要表现:言语增多、头痛、头晕、恶心、抑郁、困倦疲惫感。

2.2 饮酒前后双侧杏仁核-全脑FC差异

       采用配对样本t检验对健康年轻人饮酒前后的Z分数统计图进行统计分析发现:与饮酒前相比,左侧杏仁核-全脑FC增强的脑区:右枕叶(梭回、舌回、枕中回)、左枕叶(梭回、枕中回)、左颞中回、左顶下回及左小脑半球,左侧杏仁核-全脑FC减弱的脑区:右额上回眶部、右颞中回、右侧海马及海马旁回,差异有统计学意义(Puncorr<0.001)(表1图1);右侧杏仁核-全脑FC增强的脑区:左中央前回、右枕叶楔回,右侧杏仁核-全脑FC减弱的脑区:左侧小脑、左侧海马及海马旁回、右侧基底节、左颞叶梭回,差异有统计学意义(Puncorr<0.001)(表2图2)。

图1  健康年轻人急性饮酒后左侧杏仁核-全脑FC差异显著的脑区,其中蓝色区域为饮酒后组低于饮酒前组的脑区,红色区域为饮酒后组高于饮酒前组的脑区(Puncorr<0.001)
Fig. 1  Brain regions with significant differences in left amygdala-whole brain functional connectivity after acute drinking in healthy young people. Blue areas mean lower FC in post-alcohol group, while red areas mean higher FC in post-alcohol group (Puncorr<0.001).
图2  健康年轻人急性饮酒后右侧杏仁核-全脑FC差异显著的脑区,其中蓝色区域为饮酒后组低于饮酒前组的脑区,红色区域为饮酒后组高于饮酒前组的脑区(Puncorr<0.001)
Fig. 2  Brain regions with significant differences in right amygdala-whole brain functional connectivity after acute drinking in healthy young people. Blue areas mean lower FC in post-alcohol group, while red areas mean higher FC in post-alcohol group (Puncorr<0.001).
表1  健康年轻人急性饮酒后左侧杏仁核-全脑FC差异显著的脑区(Puncorr<0.001)
Tab. 1  Brain regions with significant differences in left amygdala-whole brain functional connectivity after acute drinking in healthy young people (Puncorr<0.001)
表2  健康年轻人急性饮酒后右侧杏仁核-全脑FC差异显著的脑区(Puncorr<0.001 )
Tab. 2  Brain regions with significant differences in right amygdala-whole brain functional connectivity after acute drinking in healthy young people (Puncorr<0.001)

2.3 饮酒后高、低BAC组双侧杏仁核-全脑FC差异

       根据被试饮酒0.5 h后所测BAC [平均为(66.0± 26.5) mg/100 mL]将被试分为高低浓度组,高BAC组(>66.0 mg/100 mL)12人,低BAC组(<66.0 mg/100 mL) 11人。采用独立样本t检验对高、低BAC组的Z分数统计图进行统计分析发现:高浓度组右侧杏仁核-全脑FC减低的脑区:左岛叶、左颞上回、左枕叶、右额中回,差异具有统计学意义(Puncorr<0.001,连续体素>10),未见连接增强的脑区(表3图3);高、低BAC组左侧杏仁核-全脑FC差异无统计学意义。

图3  高、低BAC组右侧杏仁核-全脑FC差异显著的脑区,蓝色区代表功能减低(Puncorr<0.001)
Fig. 3  Brain regions with significant differences in right amygdala-whole brain functional connectivity between high and low BAC group. Blue areas mean lower FC in high BAC group (Puncorr<0.001).
表3  高、低BAC组右侧杏仁核-全脑FC差异显著的脑区(Puncorr<0.001)
Tab. 3  Brain regions with significant differences in right amygdala-whole brain functional connectivity between high and low BAC group (Puncorr<0.001)

3 讨论

       杏仁核因其形状与杏仁相似而得名,位于颞叶前上方的深部;它是由许多核组成的核复合体,从功能上主要分为五组:基底外侧核、皮质样核、中央核、其他杏仁核和扩展的杏仁核[9]。杏仁核涉及情绪、认知、学习和记忆,与皮层和皮层下结构高度互连;输出到皮层的信息被定向到前额叶皮层和内侧颞叶,调节皮层高级认知、学习和记忆功能;输出到皮层下的信息定向到下丘脑和脑干,表现出自主神经、激素相关的行为反应[10]

       杏仁核是处理情绪刺激的关键脑区,与大量的皮质和皮质下结构相互作用以支持情感体验[4],杏仁核-前额叶皮层(prefrontal cortex,PFC)回路因其在情绪控制中的作用而被广泛研究[4,11,12],尤其是对恐惧反应的调节[12]。酒精可增强伏隔核和杏仁核中γ-氨基丁酸(GABA)中间神经元的活性,并削弱PFC在情绪和认知过程中的功能[13]。压力是喝酒的常见诱因,它通过杏仁核-下丘脑回路触发促肾上腺皮质激素释放因子的释放,导致焦虑增加,可以通过饮酒来缓解焦虑感[14],与健康对照相比,酒精依赖患者在社会压力任务期间显示杏仁核-PFC功能连接减低[15]。社交饮酒者在面对冒险运动时杏仁核活动减少[16],导致冒险运动反应。另外,以杏仁核为种子点的静息态功能连接(resting-state functional connectivity,rsFC)研究发现:与服用安慰剂的人相比,急性酒精会使重度社交饮酒者在看到生气的面孔时右杏仁核-PFC的连通性降低[17];在男性青少年和年轻人中,杏仁核-前额叶包括眶额连接与饮酒的严重程度呈负相关[18];这些研究均表明,酒精会破坏静息状态的杏仁核-PFC皮层连接,从而缓解焦虑情绪,增加冲动和冒险行为。本研究显示左侧杏仁核-右侧眶额叶FC减低,与之前的研究一致。杏仁核-前额叶回路的破坏可能是促进酒精消费和成瘾的潜在机制。大量研究表明,海马及其相关结构与认知密切相关,包括学习和记忆。杏仁核-海马高度互连对于增强情绪唤起性事件的陈述性(显性)记忆至关重要,情绪刺激记忆的形成涉及基底外侧杏仁核与内嗅皮层及海马前部的相互作用[19]。Hoffmann等[20]研究发现急性乙醇暴露会损害空间工作记忆,即在特定时间段内有用的空间记忆,具有短暂性和可加工性。在本研究中双侧杏仁核-海马、海马旁回FC均减低,合理解释急性酒精暴露后短时记忆下降或缺失的临床表现。

       酒精还会影响小脑,随着饮酒量的增加,小脑的协调功能会逐渐被减弱,带来眩晕、恶心、呕吐等感觉。然而,目前的研究结果还证实:小脑不单只是参与运动中对精细动作的调整和协调运动的姿势等相关,其还涉及对认知控制及学习记忆过程的调节[21,22],杏仁核介导的情绪记忆系统在联想学习过程中会促进小脑介导的运动记忆系统[23]。然而,本研究中,酒精暴露后左、右侧杏仁核-小脑FC表现出矛盾的结果,其机制尚待进一步研究。

       急性饮酒以剂量依赖的方式影响认知、注意、运动和知觉功能。束宏敏[7]的研究结果表明,急性低剂量饮酒对于感觉运动网络、语言网络、听觉网络及初级视觉网络的功能连接作用是正性的,而中度急性酒精中毒可增加视觉排斥力[24]。本研究中,急性酒精摄入后双侧杏仁核-枕叶视皮层区FC增强,与以上的研究结果一致,但是根据BAC分组后发现高BAC组右侧杏仁核与枕叶之间的FC较低BAC组减低,杏仁核与视觉网络之间的相互作用机制尚不清楚。相对于低BAC组,高BAC组右杏仁核-右侧前额叶FC减低,提示其FC与饮酒严重程度呈负相关,也与之前的研究[18]一致。另外,在比较高、低BAC组时,仅发现了右侧杏仁核-全脑FC的差异脑区,呈现出潜在的偏侧效应;Gilman等[25]发现急性饮酒者在观看生气的面孔时右杏仁核激活减少,Gorka等[17]发现重度饮酒者在看生气的面孔时显示出右侧杏仁核-PFC连通性下降;研究结果的一致提示右侧杏仁核可能对酒精更敏感。

       综上所述,急性酒精暴露会致杏仁核-多脑区功能变化,为部分临床表现提供了影像学证据;右侧杏仁核可能对酒精更敏感。本研究尚存在一些不足之处,由于酒精的药代动力学会随情境因素(例如饮酒速度、情绪或个体代谢差异)而变化,因此可能会对脑功能产生影响;未进行饮酒后认知功能评价,无法与BAC和脑FC做相关分析;另外本研究样本量较小,并且没有进一步探讨性别差异。

[1]
Dvorak RD, Sargent EM, Kilwein TM, et al. Alcohol use and alcohol-related consequences: associations with emotion regulation difficulties. Am J Drug Alcohol Abuse, 2014, 40(2): 125-130.
[2]
Cooper ML, Krull JL, Agocha VB, et al. Motivational pathways to alcohol use and abuse among black and white adolescents. J Abnorm Psychol, 2008, 117(3): 485-501.
[3]
Ohman A. The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology, 2005, 30(10): 953-958.
[4]
Kim MJ, Loucks RA, Palmer AL, et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res, 2011, 223(2): 403-410.
[5]
Cooper S, Robison AJ, Mazei-Robison MS. Reward Circuitry in Addiction. Neurotherapeutics, 2017, 14(3): 687-697.
[6]
Khalili-Mahani N, Zoethout RMW, Beckmann CF, et al. Effects of morphine and alcohol on functional brain connectivity during "resting state" : a placebo-controlled crossover study in healthy young men. Human Brain Mapping, 2012, 33(5): 1003-1018.
[7]
Shu HMAcute Effects of Low Alcohol Consumption on the Human Brain: A Resting-State fMRI Study. Anhui Medical University.2016.
束宏敏.低量饮酒对脑功能急性作用的静息态fMRI研究.安徽医科大学, 2016.
[8]
Gu H, Salmeron BJ, Ross TJ, et al. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage, 2010, 53(2): 593-601.
[9]
Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry, 2007, 49(2): 132-139.
[10]
Yuasa S. Somatotopy in the emotional expression by the amygdala. Brain Nerve, 2009, 61(12): 1395-1404.
[11]
Oscar-Berman M, Marinkovic K. Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev, 2007, 17(3): 239-257.
[12]
Hariri AR, Bookheimer SY, Mazziotta JC. Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport, 2000, 11(1): 43-48.
[13]
George O, Sanders C, Freiling J, et al. Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking. Proc Natl Acad Sci U S A, 2012, 109(44): 18156-18161.
[14]
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry, 2016, 3(8): 760-773.
[15]
Wade NE, Padula CB, Anthenelli R M, et al. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: a pilot study. Neurobiol Stress, 2017, 7: 74-79.
[16]
Yan P, Li CS. Decreased amygdala activation during risk taking in non-dependent habitual alcohol users: a preliminary fMRI study of the stop signal task. Am J Drug Alcohol Abuse, 2009, 35(5): 284-289.
[17]
Gorka SM, Fitzgerald DA, King AC, et al. Alcohol attenuates amygdala-frontal connectivity during processing social signals in heavy social drinkers: a preliminary pharmaco-fMRI study. Psychopharmacology (Berl), 2013, 229(1): 141-154.
[18]
Peters S, Jolles DJ, Duijvenvoorde AC, et al. The link between testosterone and amygdala-orbitofrontal cortex connectivity in adolescent alcohol use. Psychoneuroendocrinology, 2015, 53: 117-126.
[19]
Dolcos F, Labar KS, Cabeza R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 2004, 42(5): 855-863.
[20]
Hoffmann SE, Matthews DB. Ethanol-induced impairments in spatial working memory are not due to deficits in learning. Alcohol Clin Exp Res, 2001, 25(6): 856-861.
[21]
Konarski JZ, Mcintyre RS, Grupp LA, et al. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci, 2005, 30(3): 178-186.
[22]
Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum, 2005, 4(4): 290-294.
[23]
Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res, 2001, 897(1-2): 150-156.
[24]
Wang Z, Wang H, Tzvetanov T, et al. Moderate acute alcohol intoxication increases visual motion repulsion. Sci Rep, 2018, 8(1): 1607.
[25]
Gilman JM, Ramchandani VA, Davis MB, et al. Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J Neurosci, 2008, 28(18): 4583-4591.

上一篇 mTI-ASL技术在鉴别脑胶质瘤术后复发与放射性损伤中的应用价值
下一篇 颈动脉蹼的高分辨率磁共振血管壁成像的影像分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2