分享:
分享到微信朋友圈
X
综述
心脏磁共振成像在高血压性心脏病左心室评价中的研究进展
杨朝霞 周宁 夏黎明

Cite this article as: Yang ZX, Zhou N, Xia LM. The research progress of cardiac magnetic resonance to assess hypertensive heart disease. Chin J Magn Reson Imaging, 2020, 11(5): 377-381.本文引用格式:杨朝霞,周宁,夏黎明.心脏磁共振成像在高血压性心脏病左心室评价中的研究进展, 2020, 11(5): 377-381. DOI:10.12015/issn.1674-8034.2020.05.014.


[摘要] 高血压性心脏病是全球范围最常见的慢性疾病之一,以左心室结构及功能变化为特征性表现,主要包括心脏舒张功能障碍,左心室肥厚及弥漫性心肌纤维化。心脏磁共振成像作为一种无创性影像学检查方法,在心血管疾病诊疗中发挥着重要作用。作者就心脏磁共振成像在评价高血压性心脏病的左心室心功能、心脏重塑、心肌纤维化、心外膜脂肪组织及预后评估的研究进展进行综述。
[Abstract] Hypertensive heart disease (HHD) is one of the most common chronic cardiovascular diseases worldwide, which is characterized by the changes in left ventricular structure and function, including development of diastolic dysfunction, left ventricular hypertrophy and diffuse myocardial fibrosis. As a non-invasive imaging technology, cardiac magnetic resonance imaging (CMR) plays an important role in the diagnosis and treatment of cardiovascular diseases. This article will review these recent research advances of CMR in the evaluation of left ventricular function, cardiac remodeling, myocardial fibrosis, epicardial fat and prognosis in HHD.
[关键词] 心脏病;高血压;肥大,左心室;磁共振成像
[Keywords] heart diseases;hypertension;hypertrophy, left ventricular;magnetic resonance imaging

杨朝霞 华中科技大学同济医学院附属同济医院放射科,武汉 430030

周宁 华中科技大学同济医学院附属同济医院心内科,武汉 430030

夏黎明* 华中科技大学同济医学院附属同济医院放射科,武汉 430030

通信作者:夏黎明,E-mail :lmxia@tjh.tjmu.edu.cn

利益冲突:无。


基金项目: 国家自然科学基金 编号:81873889
收稿日期:2019-12-10
接受日期:2020-02-12
中图分类号:R445.2; R541.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.05.014
本文引用格式:杨朝霞,周宁,夏黎明.心脏磁共振成像在高血压性心脏病左心室评价中的研究进展, 2020, 11(5): 377-381. DOI:10.12015/issn.1674-8034.2020.05.014.

       高血压(hypertension,HTN)是一种常见的心血管疾病,指以血压升高为主要临床表现伴或不伴有多种心血管危险因素的综合征。成人总发病率约30%~45%[1],HTN是多种心脑血管疾病的重要病因及风险因素,与卒中、冠状动脉疾病、心肌梗死、心力衰竭(heart failure,HF)及外周血管疾病的发病率及死亡率增加相关[2]。高血压性心脏病(hypertensive heart disease,HHD)是长期高血压所导致的左心室(left ventricular,LV)结构及功能变化的一类疾病,其特征性表现包括左心室肥厚(left ventricular hypertrophy,LVH),心脏舒张功能障碍及心肌弥漫性间质纤维化[3]

1 HHD病理生理机制

       HHD是由包括血流动力学因素、分子生物学因素、遗传因素、理化因素等在内的多种机制综合作用所致的疾病(图1)[3,4,5,6]。从血流动力学角度来说,持续性压力负荷增加的机械牵张使心肌细胞为减轻室壁应力而产生适应性肥大,导致LVH及左心室心肌质量(left ventricular mass,LVM)增加。从非血流动力学方面来讲,心肌中心肌细胞及非心肌细胞成分的变化(如凋亡,纤维化及微循环改变)可导致心肌细胞肥大及病理性心脏重塑。另外,年龄、性别[7]、肥胖[8]、种族[9]及基因[10]等因素在HHD进展中也起到重要的作用[8,11]。心脏重塑不仅发生于长期高血压及血压控制不佳患者中,也可发生于高血压早期阶段[4,12,13,14]。高血压性心脏重塑主要以间质及壁间冠状动脉和小动脉的Ⅰ型、Ⅲ型胶原过度沉积导致反应性间质纤维化为主要特征表现,早期表现为舒张功能障碍,随着胶原不断沉积,心肌细胞收缩功能受到损害,随后可能发生收缩功能恶化[3]

图1  高血压性心脏病病理生理机制及与临床表现的关系
Fig. 1  Mechanisms associated myocardial remodeling with clinical manifestations in hypertensive heart disease.

2 检查方法

       目前对于HHD常用的检查方法有心电图检查及影像学检查。心电图诊断LVH具有一定特异性,但缺乏敏感性[15]。影像学检查主要包括超声心动图及心脏磁共振(cardiac magnetic resonance,CMR)。超声心动图具有广泛的实用性,在LVH和舒张功能障碍的临床评估中发挥着重要作用,但其声窗较小,对细微变化的诊断敏感性较低,并且操作者依赖性很强。CMR是一种无创性无辐射的影像学检查方法,CMR在HHD评估中具有以下优势[16]:(1)提供可靠性和重复性更好的心脏参数测量,如心脏容积、射血分数及心肌质量等;(2)通过组织特征相关信息可更加准确地鉴别LVH病因,如高血压性心脏病,肥厚型心肌病,法布里病,运动员心脏等;(3)能更加准确地评估心肌缺血,尤其是存在小血管疾病的情况;(4)临床试验中进行治疗评估的监测。与超声心动图相比较,CMR在操作独立性、大视野、多平面成像和组织特性等方面的优势使其成为评价心脏的形态、功能及心肌活性的理想技术。

3 CMR评估HHD的研究进展

       CMR评估HHD主要包括以下几个方面:(1)评价左心室心功能,包括测量心脏结构功能参数及心肌应变成像检测局部心肌运动异常;(2)评估左心室重塑及LVH;(3)定性及定量检测心肌纤维化;(4)定量评估心包外脂肪体积;(5)判断并评估HHD预后。

3.1 左心室心功能评价

       CMR具有高空间和时间分辨率,可以精确测量心室容积、心肌质量及射血分数等指标,是评价心功能的金标准[17]。舒张功能障碍是HHD患者早期表现,并且是发展为HF风险的早期标志物[18]。已有研究表明局部心肌功能分析能更敏感地识别HHD患者的舒张功能障碍[19]。基于组织多普勒成像的速度分析能提供左心室充盈压及舒张功能的评估,但其重复性较低且不能覆盖全心室定量评估心脏运动[20]。MR组织相位图(MR tissue phase mapping,TPM)能够以高时间分辨率和全心室覆盖对心肌速度进行定量的节段性评估[21]。一项采用TPM评估HHD病人左心室分段3D速度的研究发现,舒张功能不全的患者表现为全节段(除外心尖部)纵轴速度峰值降低,LV心底旋转动力学的改变和纵轴侧方运动的不同步性增加。对纵轴功能、旋转和不同步性的联合分析,或许可以作为发现早期LV功能障碍的敏感指标[22]。质量容积比率(the ratio of mass to volume,M/V)指LVM与左心室舒张末期容积的比率,不仅可用于描述左心室形态,还可反映左心室舒张与收缩功能,可用于左心室重塑的评估[23]

       左心室射血分数(left ventricular ejection fraction,LVEF)被广泛应用于评价心肌整体功能,然而在检测早期局部功能损害方面缺乏准确性和敏感性。心肌应变可从纵向、径向及周向三个方向的运动速度、位移、应变及应变率评估整体及局部心肌形变,能识别早期亚临床性心肌改变[24],可作为较敏感的指标反映早期LV收缩功能障碍[25]。CMR特征追踪成像(feature tracking imaging,FTI)是近年发展起来的快速定量心肌应变的技术,基于稳态自由进动序列,能够在心动周期中追踪心内膜及心外膜固有的解剖点,通过计算解剖点之间的相对运动得出室壁应变[26]。左心室应变可作为LV功能监测的敏感标记物,并在各种心脏疾病中提供优于传统临床或超声心动图参数的长期预后评估[27]。HTN是主要不良心脏事件(major adverse cardiac events,MACE)发生的危险因素[6]。一项研究在无症状HHD患者中发现,整体纵向应变(global longitudinal strain,GLS)减低与MACE密切相关,并独立于临床指标及LVH。此外,包括GLS在内的多参数评分可更好的预测HHD患者中的MACE[28]。Wu等[29]发现与血压正常组比较,伴LVH高血压患者(HTN-LVH)左心室基底段及中间段心肌整体周向应变(global circumferential strain,GCS)和舒张早期平均周向应变率减低。同时,CMR-FTI还可定量检测左心房功能,包括左心房形变及体积参数的变化,在HTN患者发展为LVH之前检测到心房储存与传输功能障碍[30]

3.2 评估左心室重塑及LVH

       LVH是高血压最常见的后遗症,是心肌细胞重构与肥大的结果,最初表现为心肌适应性肥厚,最终可导致心脏失代偿及心力衰竭,是心血管事件及全因死亡率的危险因素,尤其是心律失常及心源性猝死的风险增加[5]。LVH可通过心室扩张、室壁增厚或二者同时存在而发生。根据左心室心肌质量指数(left ventricular mass index,LVMI),左心室舒张末期容积指数(left ventricular end-diastolic volume index,LVEDVI)及M/V,左心室肥厚及重塑可分为以下四种模式[31](表1):正常、向心性重塑、向心性肥厚、离心性肥厚。

       压力负荷为主的心脏重塑主要表现为左心室向心性肥厚,当压力超负荷持续时,舒张功能障碍进展,向心性重塑失代偿,继而出现射血分数保留的心衰(heart failure preserved ejection fraction,HFpEF)。容积负荷为主的心脏重塑主要表现为左心室离心性肥厚,当容积超负荷持续时,左心室扩张进展,离心性重塑失代偿,随后出现射血分数降低的心衰(heart failure with reduced ejection fraction,HFrEF)[32]。HHD中不同左心室表型的细胞内和细胞外水平存在结构性差异,并且与功能差异相关。高血压向心性肥厚和离心性肥厚的细胞外间质和心肌细胞成分显著扩张,与收缩期和舒张期周向应变减低显著相关,但离心性肥厚进展更迅速。高血压向心性重塑具有正常的细胞内和细胞外结构与功能,但是主动脉僵硬度增加[33]。高血压左心室肥厚及重塑模式的不同与心血管预后相关,早期识别并正确理解这些差异有助于指导未来具有针对性的药物干预。

表1  左心室肥厚重塑模式
Tab. 1  The classifications of left ventricular hypertrophy and remodeling

3.3 定性及定量检测心肌纤维化

       HHD心肌纤维化包括弥漫性分布的反应性间质纤维化和微小局灶的替代性纤维化。心内膜活检是目前诊断心肌纤维化的金标准,但由于操作难度大且具有侵入性,并不适用于临床的广泛应用[34]。CMR已经被证明是一种有效的检测心肌纤维化的成像方法[35]

3.3.1 LGE技术

       钆延迟强化(late gadolinium enhancement,LGE)可无创检测局部替代性心肌纤维化。注射钆对比剂后10~ 15 min进行T1加权成像扫描,钆积聚于细胞外间隙,替代性纤维化区域细胞外间隙扩大,药代动力学改变导致钆积聚增多并且弥散时间延长,通过反转恢复序列抑制正常心肌的信号,最终在图像上纤维化组织呈高信号[36]。Rudolph等[37]发现HTN患者中约50%出现心肌LGE,但LGE无特定的分布模式。Moreo等[38]发现LGE检测的纤维化程度与舒张功能障碍的程度具有显著的相关性。然而,LGE成像是一种定性技术,依赖于纤维化心肌与正常心肌之间的信号强度差异,因此不能检测HHD弥漫性心肌纤维化[39]

3.3.2 T1 mapping技术

       T1 mapping技术即纵向弛豫时间定量成像技术,是基于反转或饱和脉冲激发,在纵向磁化矢量恢复的不同时间采集信号,进行运动校正配准并基于图像的信号强度后处理定量心肌的T1值,从而得到T1值的像素图,以二维彩色编码形式显示,实现无创评估心肌纤维化程度[40]。平扫T1 mapping无需注入对比剂直接扫描,对比前T1值(pre contrast T1,pre T1)反映细胞内及细胞外基质的情况,如细胞肥大及间质纤维化。增强T1 mapping注入钆对比剂后扫描,对比后T1值(post contrast T1,post T1)反映细胞外间隙变化[41]。利用pre-T1和post-T1差异及血细胞比容可计算细胞外体积分数(extracellular volume fraction,ECV),可反映细胞外间质的重塑与扩张。相较于标准T1 mapping技术,ECV不易受扫描机器或扫描技术等因素的影响,具有更高的重复性[42]。目前临床常用T1 mapping序列包括改进的Look-Locker序列(modified Look-Locker inversion recovery,MOLLI),缩短的MOLLI序列(shortened modified Look-Locker inversion recovery,ShMOLLI)及饱和恢复单次采集序列(saturation recovery single shot acquisition,SASHA),在不同临床情况下,T1值测量的准确度及精确度均较高[43]

       使用CMR计算的ECV已经被证明与组织学结缔组织分数(connective tissue fraction,CTF)具有很好的正向相关性[44]。Coelho-Filho等[45]利用l-N (G)-硝基精氨酸甲酯(L-NAME)诱导高血压小鼠模型,7周后组织学CTF (8.5%±1.6%与2.6%±0.6%比较,P<0.001]明显增加,与CMR计算的ECV (0.42±0.08与0.25±0.03比较,P<0.001)明显升高具有显著相关性。在另一项动物研究中,Coelho-Filho等[46]比较L-NAME诱导的未治疗的高血压小鼠与螺内酯治疗的高血压小鼠之间的ECV值,发现治疗组的组织学CTF (2.7%±0.8%与8.5%±1.6%比较,P<0.001)明显减低,并且与ECV值(0.25±0.03与0.43±0.09比较,P<0.001)具有较好的相关性。这表明高血压导致的心肌弥漫性纤维化及降压治疗后纤维化的减少可通过ECV无创性进行监测,可以作为测量降压和其他治疗效果的评价指标,对临床指导预后具有重要价值。ECV可代替心肌活检和组织化学分析成为新型的检测心肌纤维化影像学标志物。

       一项临床研究中,Kuruvila等[47]计算了20例HTN-LVH患者,23例HTN-nonLVH患者及22名血压正常受试者的ECV值,发现HTN-LVH组ECV值高于HTN-nonLVH组(0.29±0.03与0.27±0.02比较,P<0.05)及对照组(0.29±0.03与0.26±0.02比较,P<0.05),升高的ECV与应变成像测量的局部舒张功能减低相关。另一项研究中,Treibel等[48]也证实了HTN-LVH组ECV值升高,但HTN-nonLVH组与对照组之间的ECV无差异。Rodrigues等[33]纳入了不同左心室肥厚模式的HHD患者,发现HTN-LVH(向心性及离心性肥厚)患者的ECV显著高于HTN-nonLVH患者(包括向心性重塑),并且离心性肥厚患者的ECV值更高,收缩功能更差。一项关于心肌纤维化与心血管危险事件的研究表明HFpEF患者post T1值缩短(弥漫性纤维化标志)与增加的心血管不良事件存在明显相关性,可用于HFpEF患者的预后评估[49]。多项临床研究表明HTN-LVH受试者心肌弥漫性纤维化程度更重,并且心脏功能更差,弥漫性纤维化的存在可能是HTN-LVH患者心血管风险增加的潜在机制。ECV升高主要是通过细胞外基质沉积增加,导致左心室僵硬度升高,使舒张末期心肌纤维长度缩短,降低了心肌收缩性。

3.3.3 DWI与ADC技术

       弥散加权成像(diffusion weighted imaging,DWI)通过编码水分子平移运动提供关于显微组织结构信息,是目前唯一能无创检测活体心肌组织内水分子微观运动的成像方法。目前研究中DWI主要使用补偿自旋回波弥散编码序列[50]。当心肌纤维化程度≥20%,表观弥散系数值(apparent diffusion coefficient,ADC)估算对识别纤维化具有一定作用[51]。Nguyen等[52]使用DWI检测肥厚型心肌病患者中弥漫性纤维化并将其效能与T1 mapping进行比较,研究发现DWI对检测心肌纤维化十分敏感,并且能够表征肥厚型心肌病患者心肌纤维化的程度。一项使用CMR-DWI技术评估HTN患者纤维化程度与ADC值及心肌应变关系的研究发现,HTN-LVH组ADC值较HTN-nonLVH组及对照组高,并且LVMI与ADC呈正相关(r=0.450,P<0.05)。HTN患者中较高的ADC值与减低的GCS及舒张早期平均周向应变率相关[29]

3.4 定量评估心包外脂肪体积

       心外膜脂肪组织(epicardial adipose tissue,EAT)是指由心包覆盖心脏周围的棕色脂肪组织[53],心外膜脂肪体积(epciardial fat volume,EFV)增加与包括高血压在内的心血管风险因素相关[54]。许多研究表明EAT增多可能与炎症反应、心律失常、脂毒性心肌病和冠心病等密切相关[55,56,57]。近年来,使用三维心电触发和呼吸导航门控磁化准备的mDixon序列(modified Dixon sequence)的CMR技术可准确定量EFV[58]。一项基于3D-Dixon技术的CMR研究发现HTN男性患者的EFV显著高于非HTN对照组,并且在HTN亚组中,伴心梗的HTN男性患者的EFV显著高于不伴心梗的HTN男性患者,这表明脂肪组织可能具有促进炎症反应与代谢活跃的作用。CMR非侵入性测量EFV,可能在心血管危险分层及疾病治疗管理中发挥重要作用[59]。另一项纳入LVEF正常的HTN患者的研究发现HTN患者T1值更高,GLS及CCS更低并且EFV更高,这表明HTN患者心肌纤维化程度更重,心肌收缩功能下降,心外膜脂肪组织更多,并且脂肪组织在心肌纤维化及收缩功能的进展中起到一定作用[60]。Austys等[61]的研究发现原发性HTN患者的EAT沉积量明显高于血压正常对照组,EAT的测定可能有助于早期识别HTN患者并对HTN严重程度进行预测。将来仍需要进行更大规模的纵向队列研究,以进一步确证心外膜脂肪作为具有预后重要性的影像标志物的作用。

3.5 判断并评估HHD预后

       HHD患者LVH出现或LVM增加是由于心室容积增加、心肌纤维化等综合因素引起的。反应性间质纤维化及LVM在特定性治疗后可逆,可作为疾病严重程度的监测指标[62]。Brilla等[63]研究赖诺普利与氢氯噻嗪在高血压治疗中的疗效,并对基线与药物治疗6个月后心内膜心肌活检的心肌纤维化量进行比较,发现赖诺普利治疗后胶原体积分数明显减小,并且与左心室舒张功能改善相关。Díez等[64]评估氯沙坦治疗HHD疗效的研究发现,严重心肌纤维化患者在氯沙坦治疗12个月后,心肌活检纤维化量减少并且左心室僵硬度得到改善。临床大量研究表明HHD心肌细胞外基质的异常扩张可逆,一旦发展为症状性HF通常是不可逆的,因此一些新兴药物的治疗靶点主要集中在减轻间质纤维化和心肌细胞外基质扩张方面,实现对心肌细胞外基质/纤维化的定量、定性评估成为临床十分关注并且急需解决的问题。

4 总结

       随着CMR各种新兴序列及技术的持续发展,CMR能够定性并定量评估多种心血管疾病。CMR不仅能够精确评价心脏结构及功能,还能无创表征心肌组织学特性,在HHD的早期诊断、治疗评价及预后随访中发挥着重要作用,对HHD诊疗具有重要临床价值和远期应用前景。未来仍需要进行大规模的研究,以进一步阐述HHD不同表现类型的病理生理机制,并评估靶向抗高血压药物是否能恢复局部心肌功能及改善整体心血管预后。

[1]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. J Hypertens, 2018, 36(10): 1953-2041.
[2]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation, 2016, 133(4): e38.
[3]
Díez J, González A, López, Querejeta R, et al. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nature Clin Pract Cardiovascul Med, 2005, 2(4): 209-216.
[4]
Díez J, Frohlich ED. A translational approach to hypertensive heart disease. Hypertension, 2010, 55(1): 1-8.
[5]
Shenasa, M, Shenasa, H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol, 2017, 237: 60-63.
[6]
Drazner MH. The progression of hypertensive heart disease. Circulation, 2011, 123(3): 327-334.
[7]
Gerdts E, Okin PM, Cramariuc D, et al. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan intervention for endpoint reduction in hypertension study. Hypertension, 2008, 51(4): 1109-1114.
[8]
Lund BP, Gohlke-Barwolf C, Cramariuc D, et al. Effect of obesity on left ventricular mass and systolic function in patients with asymptomatic aortic stenosis (a simvastatin ezetimibe in aortic stenosis [SEAS] substudy). Am J Cardiol, 2010, 105(10): 1456-1460.
[9]
Drazner MH, Dries DL, Peshock RM, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas heart study. Hypertension, 2005, 46(1): 124-129.
[10]
Slivnick J, Lampert BC. Hypertension and heart failure. Heart Fail Clin, 2019, 15(4): 531-541.
[11]
Cramariuc D, Gerdts E. Epidemiology of left ventricular hypertrophy in hypertension: implications for the clinic. Expert Rev Cardiovasc Ther, 2016, 14(8): 915-926.
[12]
Ahmed SH, Clark LL, Pennington WR, et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation, 2006, 113(17): 2089-2096.
[13]
Kelm M, Strauer BE. Coronary flow reserve measurements in hypertension. Med Clin North Am, 2004, 88(1): 99-113.
[14]
Qin W, Rudolph AE, Bond BR, et al. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res, 2003, 93(1): 69-76.
[15]
Jain A, Tandri H, Dalal D, et al. Diagnostic and prognostic utility of electrocardiography for left ventricular hypertrophy defined by magnetic resonance imaging in relationship to ethnicity: the multi-ethnic study of atherosclerosis (MESA). Am Heart J, 2010, 159(4): 652-658.
[16]
Mavrogeni S, Katsi V, Vartela V, et al. The emerging role of Cardiovascular Magnetic Resonance in the evaluation of hypertensive heart disease. BMC Cardiovasc Disord, 2017, 17(1): 132.
[17]
Sandner TA, Houck P, Runge VM, et al. Accuracy of accelerated cine MR imaging at 3 Tesla in longitudinal follow-up of cardiac function. Eur Radiol, 2008, 18(10): 2095-2101.
[18]
Pavlopoulos H, Grapsa J, Stefanadi E, et al. The evolution of diastolic dysfunction in the hypertensive disease. Eur J Echocardiogr, 2008, 9(6): 772-778.
[19]
Pavlopoulos H, Nihoyannopoulos P. Regional left ventricular distribution of abnormal segmental relaxation evaluated by strain echocardiography and the incremental value over annular diastolic velocities in hypertensive patients with normal global diastolic function. Eur J Echocardiogr, 2009, 10(5): 654-662.
[20]
Abraham TP, Dimaano VL, Liang HY. Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation, 2007, 116(22): 2597-2609.
[21]
Foll D, Jung B, Staehle F, et al. Visualization of multidirectional regional left ventricular dynamics by high-temporal-resolution tissue phase mapping. J Magn Reson Imaging, 2009, 29(5): 1043-1052.
[22]
Foll D, Jung B, Germann E, et al. Hypertensive heart disease: MR tissue phase mapping reveals altered left ventricular rotation and regional myocardial long-axis velocities. Eur Radiol, 2013, 23(2): 339-347.
[23]
Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J Am Coll Cardiol, 2011, 58(17): 1733-1740.
[24]
Amzulescu MS, Langet H, Pasquet A, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging, 2019, 20(6): 605-619.
[25]
Morris DA, Otani K, Bekfani T, et al. Multidirectional global left ventricular systolic function in normal subjects and patients with hypertension: multicenter evaluation. J Am Soc Echocardiogr, 2014, 27(5): 493-500.
[26]
Schuster A, Hor KN, Kowallick JT, et al. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications. Circ Cardiovasc Imaging, 2016, 9(4): e004077.
[27]
Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart, 2014, 100(21): 1673-1680.
[28]
Saito M, Khan F, Stoklosa T, et al. Prognostic implications of LV strain risk score in asymptomatic patients with hypertensive heart disease. JACC Cardiovasc Imaging, 2016, 9(8): 911-921.
[29]
Wu LM, Wu R, Ou YR, et al. Fibrosis quantification in hypertensive heart disease with LVH and Non-LVH: findings from T1 mapping and contrast-free cardiac diffusion-weighted imaging. Sci Rep, 2017, 7(1): 559.
[30]
Li L, Chen X, Yin G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients. Eur Radiol, 2020, 30(2):702-711.
[31]
Dweck MR, Joshi S, Murigu T, et al. Left ventricular remodeling and hypertrophy in patients with aortic stenosis: insights from cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2012, 14: 50.
[32]
Messerli FH, Rimoldi SF, Bangalore S. The Transition from hypertension to heart failure: contemporary update. JACC Heart Fail, 2017, 5(8): 543-551.
[33]
Rodrigues JC, Amadu AM, Dastidar AG, et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart, 2016, 102(20): 1671-1679.
[34]
From AM, Maleszewski JJ, Rihal CS. Current status of endomyocardial biopsy. Mayo Clin Proc, 2011, 86(11): 1095-1102.
[35]
Raman V. The hypertensive heart. An integrated understanding informed by imaging. J Am Coll Cardiol, 2010, 55(2): 91-96.
[36]
Nordin S, Dancy L, Moon JC, et al. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Int J Cardiovasc Imaging, 2018, 34(4): 577-585.
[37]
Rudolph A, Bohl S, Boye P, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol, 2009, 53(3): 284-291.
[38]
Moreo A, Ambrosio G, De Chiara B, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging, 2009, 2(6): 437-443.
[39]
Janardhanan R, Kramer CM. Imaging in hypertensive heart disease. Expert Rev Cardiovasc Ther, 2011, 9(2): 199-209.
[40]
Radenkovic D, Weingartner S, Ricketts L, et al. T1 mapping in cardiac MRI. Heart Fail Rev, 2017, 22(4): 415-430.
[41]
Coelho-Filho OR, Mongeon FP, Mitchell R, et al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging, 2013, 6(1): 134-141.
[42]
Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a society for cardiovascular magnetic resonance (SCMR) and CMR working group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson, 2013, 15(1): 92.
[43]
Taylor AJ, Salerno M, Dharmakumar R, et al. T1 Mapping: Basic Techniques and Clinical Applications. JACC Cardiovasc Imaging, 2016, 9(1): 67-81.
[44]
Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging, 2013, 6(3): 373-383.
[45]
Coelho-Filho OR, Shah RV, Mitchell R, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation, 2013, 128(11): 1225-1233.
[46]
Coelho-Filho OR, Shah RV, Neilan TG, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc, 2014, 3(3): e000790.
[47]
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging, 2015, 8(2): 172-180.
[48]
Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits? J Cardiovasc Magn Reson, 2015, 17(1): 74.
[49]
Mascherbauer J, Marzluf BA, Tufaro C, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging, 2013, 6(6): 1056-1065.
[50]
Nguyen C, Fan Z, Sharif B, et al. In vivo three-dimensional high resolution cardiac diffusion-weighted MRI_ a motion compensated diffusion prepared balanced steady-state free precession approach. Magn Reson Med, 2014, 72(5): 1257-1267.
[51]
Pop M, Ghuger NR, Ramanan V, et al. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol, 2013, 58(15): 5009-5028.
[52]
Nguyen C, Lu M, Fan Z, et al. Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2015, 17: 107.
[53]
Sengul C, Ozveren O. Epicardial adipose tissue: a review of physiology, pathophysiology, and clinical applications. Anadolu Kardiyol Derg, 2013, 13(3): 261-265.
[54]
Sironi AM, Pingitore A, Ghione S, et al. Early hypertension is associated with reduced regional cardiac function, insulin resistance, epicardial, and visceral fat.. Hypertension, 2008, 51(2): 282-288.
[55]
Dey D, Nakazato R, Li D, et al. Epicardial and thoracic fat - Noninvasive measurement and clinical implications. Cardiovasc Diagn Ther, 2012, 2(2): 85-93.
[56]
Dicker D, Atar E, Kornowski R, et al. Increased epicardial adipose tissue thickness as a predictor for hypertension: a cross-sectional observational study. J Clin Hypertens, 2013, 15(12): 893-898.
[57]
Doesch C, Haghi D, Suselbeck T, et al. Impact of functional, morphological and clinical parameters on epicardial adipose tissue in patients with coronary artery disease. Circ J, 2012, 76(10): 2426-2434.
[58]
Homsi R, Meier SM, Gieseke J, et al. 3D-Dixon MRI based volumetry of peri- and epicardial fat. Int J Cardiovasc Imaging, 2016, 32(2): 291-299.
[59]
Homsi R, Sprinkart AM, Gieseke J, et al. 3D-Dixon cardiac magnetic resonance detects an increased epicardial fat volume in hypertensive men with myocardial infarction. Eur J Radiol, 2016, 85(5): 936-942.
[60]
Homsi R, Kuetting D, Steinfeld N, et al. Interrelations of epicardial fat volume, left ventricular T1-relaxation times and myocardial strain in hypertensive patients: a cardiac magnetic resonance study. J Thorac Imaging, 2017, 32(3): 169-175.
[61]
Austys D, Dobrovolskij A, Jablonskiene V, et al. Epicardial adipose tissue accumulation and essential hypertension in non-obese adults. Medicina (Kaunas), 2019, 55(8): 458.
[62]
López B, Querejeta R, González A, et al. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J Am Coll Cardiol, 2004, 43(11): 2028-2035.
[63]
Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation, 2000, 102(12): 1388-1393.
[64]
Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation, 2002, 105(21): 2512-2517.

上一篇 前庭阵发症的MRI研究进展
下一篇 磁共振血氧水平依赖成像在糖尿病肾病的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2