分享:
分享到微信朋友圈
X
综述
血氧水平依赖磁共振成像在慢性肾脏病的研究进展
郑爽爽 卢洁

Cite this article as: Zheng SS, Lu J. Progress of blood oxygen level dependent magnetic resonance imaging in kidney disease. Chin J Magn Reson Imaging, 2020, 11(11): 1074-1076.本文引用格式:郑爽爽,卢洁.血氧水平依赖磁共振成像在慢性肾脏病的研究进展.磁共振成像, 2020, 11(11): 1074-1076. DOI:10.12015/issn.1674-8034.2020.11.028.


[摘要] 肾脏血氧水平依赖功能磁共振成像(blood oxygen level dependent magnetic resonance imaging,BOLD MRI),是一种通过测定血液中脱氧血红蛋白含量获得组织氧含量的技术,可反映组织器官的血流动力学及病理生理变化,为临床诊断、治疗及科研提供无创、可重复性的检查方法。BOLD MRI在肾脏疾病如缺血性肾病、慢性肾病、糖尿病肾病分期及肾功能评估等方面的研究逐渐增多,作者对这方面的研究进展进行综述。
[Abstract] Blood oxygen level dependent magnetic resonance imaging (BOLD MRI) is a technique for obtaining tissue oxygen content by measuring the content of deoxyhemoglobin in the blood, which could reflect the hemodynamic and pathophysiological changes of tissues and organs and provide a non-invasive and reproducible examination method for clinical diagnosis, treatment and scientific research. Because BOLD MRI has been used in clinical studies on kidney diseases such as ischemic nephropathy, chronic kidney disease, stage of diabetic nephropathy and assessment of renal function. This article reviews the progress of clinical research in the past 5 years.
[关键词] 肾脏;血氧水平依赖;磁共振成像
[Keywords] kidney;blood oxygen level dependent;magnetic resonance imaging

郑爽爽 首都医科大学宣武医院放射科,北京 100053;首都医科大学附属复兴医院放射科,北京 100038

卢洁* 首都医科大学宣武医院放射科,北京 100053;首都医科大学宣武医院核医学科,北京 100053;磁共振成像脑信息学北京市重点实验室,北京 100053

通信作者:卢洁,E-mail:imaginglu@hotmail.com

利益冲突:无。


基金项目: 北京市医院管理局"登峰"计划专项经费资助 编号:DFL20180802
收稿日期:2020-02-19
接受日期:2020-09-18
中图分类号:R445.2; R692 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.11.028
本文引用格式:郑爽爽,卢洁.血氧水平依赖磁共振成像在慢性肾脏病的研究进展.磁共振成像, 2020, 11(11): 1074-1076. DOI:10.12015/issn.1674-8034.2020.11.028.

       肾脏是维持内环境稳定的重要器官,通过调节水、电解质的动态平衡,排泄体内代谢终末产物和多余水分来维持机体内环境稳态。常规影像学检查可获得肾脏结构信息,血氧水平依赖成像(blood oxygenation level dependent magnetic resonance imaging,BOLD MRI)是目前唯一活体无创检测肾内氧含量的成像技术,可了解组织的氧含量及代谢情况,从而反映肾脏的病理生理状态,动态评估肾脏功能和疾病进展,但影响BOLD MRI信号的因素较多(如水合状态、饮食中钠的摄入量和药物作用)[1,2]。近年来随着技术的进步和图像分析方法的发展,其在肾脏疾病的研究应用不断增加,笔者对这方面的研究进展做一综述。

1 BOLD MRI的基本原理

       美国贝尔实验室的Ogawa等[3]研究发现血液脱氧血红蛋白具有顺磁性,使血管内及其周围组织磁场发生变化,引起质子的自旋去相位,缩短横向磁化T2*,导致T2*WI上信号减低,这种变化可通过高场强梯度回波序列检测,从而获得BOLD MR图像。通过计算一系列不同回波时间T2*影像信号强度对数的斜率可获得表观自旋-自旋弛豫率(apparent relaxation rate,R2*),即R2*=1/T2*,R2*与组织内脱氧血红蛋白的含量成正比,R2*值增高,代表脱氧血红蛋白含量增加,组织因耗氧增多引起缺氧,反映组织氧分压下降[4]。因此,BOLD MRI成像可无创评价并监测肾脏的氧合变化[5,6]

       肾脏是人体的高灌注器官,其血流量占心输出量的1/4,皮、髓质的血流灌注异质性很大,约90%肾血流量供应皮质,仅10%供应髓质,故正常情况下,皮质氧分压约50 mm Hg (1 mm Hg=0.133 kPa),而髓质为10~20 mm Hg。由此可见正常生理条件下,髓质即处在相对缺氧环境[7,8]。髓质氧分压<40 mm Hg,其氧含量轻微变化即导致脱氧血红蛋白含量发生很大变化,而皮质氧分压的改变不会引起类似变化。BOLD MRI可评价肾脏的氧代谢情况,且对肾脏髓质氧分压的改变较皮质敏感,适合评价肾髓质的氧合状态。

2 BOLD MRI在慢性肾脏病的应用

2.1 糖尿病肾病

       糖尿病肾病(diabetic nephropathy,DN)是糖尿病最常见的并发症,已成为终末期肾衰竭的重要病因,其病理过程包括早期高灌注、高滤过、高氧耗,至后期血流动力学重新分配、肾小球滤过率下降等改变,均与肾脏氧分压及肾功能密切相关。Yin等[9]利用感兴趣区(regions of interest,ROI)法,即将ROI手动放置在皮质、髓质区域测量R2*值,获得皮质R2*值(CR2*)、髓质R2*值(MR2*)及髓质与皮质R2*值的比值(MCR),结果发现21例早期DN患者的MR2*值明显高于68例健康志愿者,随着病程进展CR2*值逐渐增高,早期可见髓质性缺氧,即髓质缺氧较皮质更早更明显;27例中晚期DN组较21例早期DN组患者MR2*值、MCR减低,表明BOLD MRI可用于DN的诊断与分期。CR2*值与估算的肾小球滤过率(estimated glomerular filtration rate,eGFR)呈负相关(r=-0.671,P=0.000),MR2*值与eGFR呈正相关(r=0.632,P=0.000),可用于检测糖尿病肾病进展情况[10,11]。周江燕等[12]用BOLD MRI评估23例糖尿病患者降血糖治疗前后肾组织氧合水平改变,发现糖尿病组降血糖前MR2*值高于降血糖后及对照组,但降血糖后MR2*值与对照组无明显差异,说明BOLD MRI可用于评价糖尿病患者治疗前后肾组织的氧含量变化。由此可见,BOLD MRI可以检测糖尿病患者的肾脏血氧含量及缺氧情况,早期发现功能性改变,监测肾脏损害、评估肾功能,帮助临床早期干预。

2.2 慢性肾病

       肾组织缺氧是慢性肾病(chronic kidney disease,CKD)发展和恶化的最后途径,肾功能与肾脏氧含量关系密切[13],肾脏缺氧可诱导和促进肾间质纤维化的发展,而肾间质纤维化又加重肾缺氧[14,15,16],且两者与慢性肾病肾功能损害有关,是慢性肾病进展到终末期肾病的共同机制。因此慢性肾病早期诊断对于延缓肾间质的纤维化及改善肾功能有重要意义。Milani等[17]使用12层同心对象技术(12 layers concentric objects,TLCO法)测量肾脏R2*值,运用半自动程序将肾脏分为相等厚度的12层,所有层的平均R2*值绘制成斜率(R2*斜率,R2*在TLCO12层间的变化)曲线,可敏感区分CKD组和对照组,肾脏R2*值在104例CKD患者与61例高血压或42例健康对照之间有显著差异;注射呋塞米后,CKD患者与健康或高血压患者相比,R2*降低较小,表明CKD患者肾脏对呋塞米抑制髓质内活性钠转运作用减低;CKD患者的外层(皮质成分更多)的R2*值明显更高,提示皮质氧合较低,R2*斜率与eGFR (<90 ml/min/1.73m2)呈正相关(r=0.50,P<0.001),CKD患者的R2*斜率随eGFR下降逐渐减低,提示CKD患者的肾皮质氧化减低,皮质氧合水平与CKD的严重程度有关,因此TLCO技术的斜率因子可能是皮质与髓质差异的间接指标[17,18]。Pruijm等[19]报道人类肾脏组织缺氧与肾功能下降之间的相关性,发现BOLD MRI提示皮质氧合程度越低,年度eGFR下降越快,由此推测低皮质氧合是肾功能下降的独立预测因子,且皮层氧合最低的CKD患者出现肾脏不良后果的可能性高3倍(如需要肾脏替代治疗)。另外,R2*斜率与肾组织的氧含量、不良肾脏结局有关,较平坦的斜率反映肾功能逐年下降[19]。Zhou等[20]发现60例CKD患者CR2*、MR2*值明显增高,与CKD患者存在肾性缺氧的理论一致。CR2*水平与24 h尿蛋白排泄呈正相关,提示尿蛋白排泄增加和皮质缺氧之间可能互为因果,存在恶性循环;Kaplan-Meier生存分析显示,CR2*水平低的CKD患者预后较好,提示肾脏氧合和皮质缺氧随肾功能下降而加重,皮质缺氧是CKD进展的预后指标[19]。因此,BOLD MRI可无创、无辐射监测慢性肾病患者肾脏乏氧状态,为临床早期诊断、早期干预、延缓肾病的发展提供帮助。

2.3 缺血性肾病

       各种原因导致的肾动脉动脉狭窄均会引起肾脏血流量减少、供氧减低,继而引起肾脏氧含量减低等一系列临床病理生理改变。Textor等[21]报道25例动脉粥样硬化性肾动脉狭窄患者,高度狭窄或功能缺失的肾脏CR2*值在注射速尿后变化较小或无明显变化。Hermann等[22]发现10例动脉粥样硬化性肾动脉狭窄患者,狭窄侧肾脏的缺氧率高于32例原发性高血压患者,肾支架置入术后缺氧程度有所减轻。Manohar等[23]发现1例69岁左肾动脉完全性闭塞患者,左肾CR2*与整个肾脏R2*升高,表明左肾缺氧;注射速尿后无明显变化,经血运重建后均下降,此后注射速尿R2*有明显下降,提示肾功能明显改善。Hall等[24]对38例高血压疑似肾动脉狭窄患者,经慢性β-阻断剂治疗后行BOLD MRI检测,发现β-阻断剂改善了肾皮质、髓质氧合,而钙通道阻断剂或利尿药对皮髓质氧合无明显影响。现有研究显示,BOLD MRI可以检测肾动脉狭窄患者肾脏皮髓质氧含量以提示治疗后肾功能改变情况。

2.4 狼疮性肾炎

       60%~70%的狼疮性肾炎(lupus nephritis,LN)患者可发现肾脏间质浸润、肾小管坏死和间质纤维化。间质病变通常与肾小球功能相关联,且在LN的进展和预后中发挥关键作用。LN患者肾脏病变的评估主要取决于肾脏活检,但LN的病理模式可能发生改变,通常须重复进行肾脏活检。尽管肾脏活检可直接提供病理信息,但对于随访治疗效果并不理想,而BOLD MRI是无创评估肾小管间质性缺氧状态的有效手段。Li等[25]对65名LN患者和16名健康志愿者行BOLD MRI检查,结果表明LN患者MR2*值和蛋白尿、肾小管间质病变程度之间呈负相关;完全缓解患者的肾脏R2*值明显高于治疗前。Shi等[26]对23例LN患者和18例健康志愿者进行BOLD MRI检查,LN患者肾脏病理类型包括Ⅲ级5例(其中Ⅲ+Ⅴ级3例),Ⅳ级8例(其中Ⅳ+Ⅴ级4例),Ⅳ级5例,发现LN患者平均肾R2*值高于健康志愿者;Ⅴ级患者R2*值高于Ⅳ级和Ⅲ级患者;多元对应分析显示较高的R2*值与V级患者的病理特征有关,此研究提示了LN肾组织缺氧程度较正常人严重,增殖性和非增殖性LN患者肾脏氧合机制可能存在差异,且R2*值可能与多种临床和病理指标相关。因而,BOLD MRI成像可用于无创监测疾病活动并评估狼疮性肾炎的治疗效果。

3 展望

       随着磁共振成像设备软硬件的不断升级,BOLD MRI成像技术不仅可无创、动态、重复检测肾内氧含量,而且能获得肾内氧代谢及功能状态的相关信息,为肾脏疾病临床早期诊断、治疗及预后评估提供重要依据。

[1]
Pruijm M, Milani B, Burnier M. Blood oxygenation level-dependent MRI to assess renal oxygenation in renal diseases: progresses and challenges. Front Physiol, 2017, 7: 667. DOI: 10.3389/fphys.2016.00667
[2]
Huang HB. Progress of blood oxygen level-dependent (BOLD) MRI in the kidney. Chin J Magn Reson Imaging, 2017, 8 (8): 636-640. DOI: 10.12015/issn.1674-8034.2017.08.015
黄海波.肾脏血氧水平依赖性成像研究进展.磁共振成像, 2017, 8(8): 636-640. DOI: 10.12015/issn.1674-8034.2017.08.015
[3]
Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868
[4]
Prasad PV, Epstein FH. Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int, 1999, 55(1): 294-298. DOI: 10.1046/j.1523-1755.1999.00237.x
[5]
Djamali A, Sadowski EA, Samaniego-Picota M, et al. Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level dependent magnetic resonanc imaging. Transplantation, 2006, 82(5): 621-628. DOI: 10.1097/01.tp.0000234815.23630.4a
[6]
Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation, 1996, 94(12): 3271-3275. DOI: 10.1161/01.cir.94.12.3271
[7]
Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract, 2006, 103(2): c58-c65. DOI: 10.1159/000090610
[8]
Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiolegy of renal disease. Am J Physiol Renal Physiol, 2006, 290(5): F958-974. DOI: 10.1152/ajprenal.00114.2005
[9]
Yin W, Liu F, Li X, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol, 2012, 81(7): 1426-1431. DOI: 10.1016/j.ejrad.2011.03.045
[10]
Wang Q, Guo C, Zhang L, et al. BOLD MRI to evaluate early development of renal injury in a rat model of diabetes. J Int Med Res, 2018, 46(4): 1391-1403. DOI: 10.1177/0300060517743826
[11]
Jiang ZX, Wang Y, Ding JL, et al. Assessment of renal injury in diabetic nephropathy using blood oxygenation level-dependent MRI. Chin J Magn Reson Imaging, 2015, 6 (7): 524-528. DOI: 10.3969/j.issn.1674-8034.2015.07.009
蒋振兴,王毓,丁玖乐,等.血氧水平依赖MRI评估糖尿病肾病肾功能损伤的研究.磁共振成像, 2015, 6(7): 524-528. DOI: 10.3969/j.issn.1674-8034.2015.07.009
[12]
Zhou JY, He YM, Shang RR, et al. BOLD-MRI in evaluation on oxygenation status of renal tissue before and after hypoglycemic treatment of patients with type 2diabetes mellitus. Chin J Med Imaging Technol, 2019, 35 (2): 231-235. DOI: 10.13929/j.1003-3289.201807107
周江燕,何悦明,尚润润,等. BOLD-MRI评价2型糖尿病患者降血糖治疗前后肾组织氧合状况.中国医学影像技术, 2019, 35(2): 231-235. DOI: 10.13929/j.1003-3289.201807107
[13]
Epstein FH. Oxygen and renal metabolism. Kidney Int, 1997, 51(2): 381-385. DOI: 10.1042/BSR20160186
[14]
Palm F, Nordquist L. Renal tubulointerstitial hypoxia: cause and consequence of kidney dysfunction. Clin Exp Pharmacol Physiol, 2011, 38(7): 474-480. DOI: 10.1111/j.1440-1681.2011.05532.x
[15]
Haase VH. Hypoxia-inducible factor signaling in the development of kidney fibrosis. Fibrogenesis Tissue Repair, 2012, 5(s1): s16. DOI: 10.1186/1755-1536-5-S1-S16
[16]
Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int, 2008, 74(7): 867-872. DOI: 10.1038/ki.2008.350
[17]
Milani B, Ansaloni A, Sousa-Guimaraes S, et al. Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol Dial Transplant, 2017, 32(12): 2097-2105. DOI: 10.1093/ndt/gfw362
[18]
Li LP, Milani B, Pruijm M, et al. Renal BOLD MRI in patients with chronic kidney disease: comparison of the semi-automated twelve layer concentric objects (TLCO) and manual ROI methods. MAGMA, 2020, 33(1): 113-120. DOI: 10.1007/s10334-019-00808-5
[19]
Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int, 2018, 93(4): 932-940. DOI: 10.1016/j.kint.2017.10.020
[20]
Zhou H, Yang M, Jiang Z, et al. Renal hypoxia: an important prognostic marker in patients with chronic kidney disease. Am J Nephrol, 2018, 48(1): 46-55. DOI: 10.1159/000491551
[21]
Textor SC, Glockner JF, Lerman LO, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol, 2008, 19(4): 780-788. DOI: 10.1681/ASN.2007040420
[22]
Herrmann SM, Saad A, Eirin A, et al. Differences in GFR and tissue oxygenation, and interactions between stenotic and contralateral kidneys in unilateral atherosclerotic renovascular disease. Clin J Am Soc Nephrol, 2016, 11(3): 458-469. DOI: 10.2215/CJN.03620415
[23]
Manohar S, Hamadah A, Herrmann SM, et al. Total renal artery occlusion: recovery of function after revascularization. Am J Kidney Dis, 2018, 71(5): 748-753. DOI: 10.1053/j.ajkd.2017.11.014
[24]
Hall ME, Rocco MV, Morgan TM, et al. Beta-blocker use is associated with higher renal tissue oxygenation in hypertensive patients suspected of renal artery stenosis. Cardiorenal Med, 2016, 6(4): 261-268. DOI: 10.1159/000445302
[25]
Li X, Xu X, Zhang Q, et al. Diffusion weighted imaging and blood oxygen level-dependent MR imaging of kidneys in patients with lupus nephritis. J Transl Med, 2014. 12(1): 295. DOI: 10.1186/s12967-014-0295-x
[26]
Shi H, Yan T, Li D, et al. Detection of renal hypoxia in lupus nephritis using blood oxygen level-dependent MR imaging: a multiple correspondence analysis. Kidney Blood Press Res, 2017, 42 (1): 123-135. DOI: 10.1159/000472720

上一篇 磁共振成像在盆底功能障碍性疾病中的研究进展
下一篇 良恶性椎体压缩骨折的MRI鉴别诊断研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2