分享:
分享到微信朋友圈
X
综述
急性心肌梗死磁共振研究进展
林晨 陈梓娴 向晓睿 李瑞 张倩 南江 庄辛 薛敬梅 雷军强 郭顺林

Cite this article as: Lin C, Chen ZX, Xiang XR, et al. Research progress of cardiac magnetic resonance in acute myocardial infarction[J]. Chin J Magn Reson Imaging, 2021, 12(1): 106-108.本文引用格式:林晨, 陈梓娴, 向晓睿, 等. 急性心肌梗死磁共振研究进展[J]. 磁共振成像, 2021, 12(1): 106-108. DOI:10.12015/issn.1674-8034.2021.01.025.


[摘要] 急性心肌梗死是严重的心血管急症,患病率及死亡率均较高,虽然介入治疗可有效缓解部分患者的症状,但是患者的心肌危险区域、再灌注过程中的微循环损伤等与预后紧密相关。随着磁共振技术的快速发展,其在急性心肌梗死中的应用日益成熟,本文就心脏磁共振在急性心肌梗死中的最新研究进展做一综述。
[Abstract] Acute myocardial infarction is a serious cardiovascular emergency with high morbidity and mortality. Although interventional therapy can effectively relieve symptoms in some patients, the area at risk and microcirculation injury during reperfusion are closely related to prognosis. With the rapid development of magnetic resonance technology, its application in acute myocardial infarction is becoming more and more mature. This paper reviews the latest research progress of cardiac magnetic resonance in acute myocardial infarction.
[关键词] 急性心肌梗死;心脏磁共振;危险区域;微循环障碍;心肌内出血
[Keywords] acute myocardial infarction;cardiac magnetic resonance;area at risk;microvascular obstruction;intramyocardial hemorrhage

林晨 1, 2   陈梓娴 2   向晓睿 1, 2   李瑞 1, 2   张倩 1, 2   南江 2   庄辛 2   薛敬梅 2   雷军强 2   郭顺林 2*  

1 兰州大学第一临床医学院,兰州 730000

2 兰州大学第一医院放射科,兰州 730000

*通信作者:郭顺林,E-mail:guoshl@lzu.edu.cn

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 甘肃省青年科技基金计划 18JR3RA364 兰州大学第一医院院内基金项目 ldyyyn2015-06
收稿日期:2020-08-19
接受日期:2020-11-20
DOI: 10.12015/issn.1674-8034.2021.01.025
本文引用格式:林晨, 陈梓娴, 向晓睿, 等. 急性心肌梗死磁共振研究进展[J]. 磁共振成像, 2021, 12(1): 106-108. DOI:10.12015/issn.1674-8034.2021.01.025.

       急性心肌梗死(acute myocardial infarction,AMI)是冠状动脉急性缺血、缺氧导致的心肌坏死,如果冠状动脉持续阻塞超过40 min以上,心肌会发生不可逆的损伤[1]。随着临床医师对疾病认识的提高及介入诊疗技术的普及,通过冠状动脉介入治疗术(percutaneous coronary intervention,PCI)及时开通闭塞的冠状动脉使AMI的死亡率明显下降[2]。但是对于部分患者,即使成功实施了PCI手术,心肌依然无法得到有效灌注,患者的胸痛等症状不能完全缓解。AMI患者心肌的灌注效果与预后密切相关,PCI术后的患者任然面临着左室不良重构、死亡、心力衰竭等风险。AMI传统的诊断方法主要依靠患者的症状、心电图、心肌损伤标记物及冠脉造影指标。近年来,心脏磁共振(cardiac magnetic resonance,CMR)在AMI的诊断中发挥着重要的作用,其无创、无电离辐射,可一站式评估心脏的形态、功能、心肌组织特性等信息,更重要的是可以对患者进行危险分层及预后评估[3]。目前的研究热点主要集中在判断心肌梗死的严重程度、心脏功能及预后分层等方面,笔者就CMR在AMI患者中的最新研究进展做一综述。

1 CMR在AMI诊断中的应用

       CMR能无创定性和定量心肌损伤的特征,如危险区域(area at risk,AAR)、梗死面积(infraction size,IS)、微循环阻塞(microvascular obstruction,MVO)及心肌内出血(intramyocardial hemorrhage,IMH),与心电图、心肌损伤标记物和超声心动图等相比,明显提高了对患者预后价值的判断。此外,在冠脉非阻塞性心肌梗死(myocardial infarction with non-obstructed coronary arteries,MINOCA)的诊断及病变分析中CMR发挥着无可替代的作用。随着CMR新技术的发展和应用,对AMI诊断的准确性更加接近组织病理学。

1.1 危险区域及梗死面积

       冠状动脉闭塞后,其供血区域的心肌称为AAR,及时的再灌注能使部分AAR不发生梗死,AAR减去IS的部分即为可挽救心肌,可挽救心肌与AAR的比值称挽救指数,挽救指数是衡量疗效的有力指标[4]。在AMI患者中,对于AAR的判断至关重要,AAR区的心肌由于缺血而含水量增加、细胞外间隙增大,在组织学上表现为心肌水肿[5]。CMR T2加权图像检测心肌水肿较为敏感,临床最常用的序列为黑血T2-短时间反转恢复序列(T2-short time inversion recovery,T2-STIR)。Fernández- Jiménez等[6]研究发现在人类心肌中T2WI检测到的心肌水肿存在双峰现象,再灌注后的24 h之内达到第一个高峰,第4~7天呈现第二个高峰。常规的T2加权图像局限性较多,易受血池和运动伪影影响出现信号丢失,近年来出现的一些CMR新技术有望解决这一问题。Alkhalil等[7]研究发现,AMI 3h后AAR区的水肿达峰值,而T2WI易低估AAR区,T1 mapping敏感性较T2WI高,能准确定量AAR区域。CMR体素内不相干运动(intravoxel incoherent motion,IVIM)成像技术是目前可唯一检测活体组织水分子扩散和微循环灌注的方法,能定量测量心肌的IVIM相关参数扩散系数D、假扩散系数D*、灌注分数f。An等[8]研究了20例ST段抬高型心肌梗死患者(ST-segment elevation myocardial infarction,STEMI)PCI后心肌灌注状态及其动态变化并观察了IVIM及T2 mapping等相关参数,发现缺血心肌D*和f值明显低于远端心肌,并且T2值、f值在第3天大于其他时间点,证实了心肌梗死PCI术后心肌水肿和心肌灌注状态存在动态过程。

       晚期钆增强(late gadolinium enhancement,LGE)技术是诊断梗死心肌的金标准,梗死区在LGE图像上呈高信号。Stiermaier等[9]利用T2WI和LGE对比了早期(12 h内)和晚期(24~48h)再灌注患者,研究显示晚期再灌注患者的梗死面积更大,心肌挽救指数显著降低,但是晚期灌注患者任然存在一定数量的可挽救心肌。Jablonowski等[10]研究发现,LGE图像在心肌梗死早期会高估IS,这对传统的观念提出了挑战。Bulluck等[11]研究了28例再灌注AMI患者的CMR图像,结果表明,Native T1可准确评估水肿相关的AAR区,对比增强后T1可以准确评估心肌梗死区,这在一定程度上可以缩短扫描时间而无需再用T2WI和LGE来评估AAR和IS。

1.2 MVO及IMH

       微循环障碍是影响AMI患者预后的另一危险因素。在AMI患者中,微循环功能障碍主要表现为MVO以及IMH。MVO的发生与远端微血管动脉粥样硬化血栓栓塞,再灌注损伤中引起的细胞毒性因子的释放等有关[12]。IMH常伴随MVO出现,是一种更严重的微循环障碍,该类患者的心力衰竭、不良心血管事件及死亡风险明显升高。研究发现,心肌梗死面积越大,MVO出现的几率更大,IMH出现的风险更高[13]。在LGE图像中,典型的MVO表现为梗死区高信号中的低信号区。Shin等[14]发现Native T1图上诊断的MVO区与LGE高度一致。此外,PCI术后超急性期(术后3 h内)的T1值可以准确预测MVO和梗死面积,相比于PCI术后24 hT1 mapping评估的心肌损伤程度,3 h内AAR区T1值≥1400 ms的患者MVO发生率和范围更大[15]

       CMR的一些无需注射对比剂的新技术,为肾功能异常的AMI患者磁共振检查带来了希望。Do等[16]运用动脉自旋标记CMR技术(arterial spin labeling cardiac magnetic resonance,ASL-CMR)研究了31只猪的心肌,发现AMI后静息时局部心肌血流显著降低,ASL-CMR可以替代钆增强来评估MVO和梗死区微血管的完整性,同时也能评估可挽救心肌和远端心肌,但这种技术在人类心肌的运用需要更多验证。Garg等[17]研究了43名STEMI再灌注治疗的患者并在术后3 d和3个月内进行了CMR检查,发现在伴有MVO和IMH的患者中,CMR组织特征相关参数整体周向应变(global circumferential strain,GCS)、径向应变(global radial strain,GRS)和长轴应变(global longitudinal strain,GLS)发生显著改变,其中GLS为最强的预测因子(截断值:-13.7%,敏感度76%,特异度77.8%)。近年来CMR相关的微循环障碍研究主要集中于梗死后不同时间点各种成像技术的对比,对于IMH和MVO的直接比较相对有限,这需要进一步深入的探讨。

1.3 MINOCA的CMR评价

       在急性心肌梗死患者中,有6%~8%的患者冠脉造影并无显著阻塞的表现(冠脉狭窄<50%),这种AMI被称为冠状动脉非阻塞性心肌梗死(myocardial infarction with non-obstructed coronary arteries,MINOCA),MINOCA患者年龄偏小,女性更为多见[18]。可能的机制包括动脉粥样硬化斑块破裂、微血管疾病、冠状动脉血栓形成、Takotsubo综合征、心肌炎和冠脉夹层等[19]。在临床工作中,MINOCA因为在冠脉造影中无法找到有意义的狭窄而容易被忽视,CMR能明确心肌梗死的诊断,而且能找到MINOCA的潜在病因,被欧洲心脏病学会推荐为MINOCA的重要诊断工具[20]。在肌钙蛋白阳性的胸痛患者中,临床医生对于MINOCA的诊断率较低,CMR可以在早期对87%的病例明确诊断[21]。Tayal等[22]也证实在MINOCA中有相当数量的患者CMR表现出缺血或者水肿等异常,而这些患者的临床表现、心电图和超声心动图并无特异性。心肌炎的确诊有赖于病理活检,但其有创,CMR在这类MINOCA患者中的诊断作用可比拟病理组织检查,T1 mapping、T2 mpping等定量技术也被加以运用[23],效果好于常规T2WI、LGE等技术。Lintingre等[24]最近的一项研究显示,高分辨率LGE可以诊断普通LGE无法诊断的患者,进一步提高对MINOCA的检出率。

       由此可见,CMR常规序列结合各种新技术的研究有望使AMI的诊断更加全面。但是CMR成像时间长,需要患者进行多次屏气配合,对于AMI的患者进行CMR检查存在一定风险。虽然T1 mapping、T2 mapping等技术可实现定量评估,不易受血流速度及心脏搏动的影响,但易受设备、扫描方案,后处理技术等诸多因素限制[25],很难建立统一的标准,这些问题仍有待进一步探索。

2 CMR在AMI并发症中的应用

       AMI患者可能出现血栓、室壁瘤、心律失常、室间隔穿孔等并发症,CMR能对这些患者进行全面的评估。左心室血栓的形成会导致缺血性卒中和血栓栓塞,CMR不仅能观察到血栓的位置,还能依据组织成分的不同判断血栓的新旧程度。Phan等[26]研究发现在STEMI患者中,前壁心肌梗死、中度左室功能障碍和左室重构不良的患者中更易发生血栓,相比经胸超声心动图,CMR对血栓有更高的检出率,可作为左室血栓的首选检查方法。AMI患者室壁瘤的发生率为10%~35%,严重者会引起心脏破裂,CMR对室壁瘤的检出高达100%。在鉴别真性及假性室壁瘤方面,CMR与病理结果高度一致,真性室壁瘤和假性室壁瘤由于构成成分的差异,在CMR延迟强化中表现不同,真性动脉瘤可见延迟强化带,假性室壁瘤则没有延迟强化[27]

       但对于心脏破裂、室间隔穿孔等危及生命的急性并发症患者,CMR无法进行及时的检查,病人的选择方面,需要临床医师及影像医师综合评估患者安全性的前提下行检查[28]。这些因素使得AMI并发症的CMR检查在一定程度上受限,因此未来CMR有必要向更加安全、便捷的方向发展。

3 CMR在AMI预后的应用

       AMI患者的预后受多种因素的影响,Nguyen等[29]发现在STEMI患者中左室重构强烈提示不良预后,出现左室重构的概率随IS的增大而增加,在随访中IS预测不良重构的敏感度为78%,特异度为82%。Hamirani等[30]认为MVO与射血分数降低、左室容积和梗死面积增加以及更大的主要不良心血管事件(major adverse cardiovascular events,MACE)风险有关,IMH与左室重构和MACE也紧密相关。Pontone等[31]研究了209名STEMI患者的超声及CMR相关参数,发现相比于超声单一的左室射血分数评价,包括心肌挽救指数、MVO、IMH在内的CMR参数能够提供更丰富的预后信息。在一项对77例成功再灌注并射血分数保留的(左室射血分数,left ventricular ejection fraction,LVEF>50%) STEMI患者长期危险分层的预后影响的观察中,研究者发现与传统的梗死后危险分层指标(射血分数和梗死面积)相比,在5年随访中,晚期MVO严重程度是更强的MACE预测因子。并且,晚期MVO范围>0.385 g提供了相关的预后观察,从而改善了保留射血分数的STEMI患者的长期危险分层[32]。由于AMI患者心肌局部血流动力学特征的显著变化,心肌组织特征相关参数可以在再灌注早期判断左室心功能,预后价值高于左室射血分数和梗死面积。GLS、GRS、GCS均可预测STEMI患者发生MACE的风险,而GLS是最强的预测因子[33]

       目前对于AMI患者左室重构的定义并无统一标准,CMR相关的大多数研究中左室重构标准是基于超声心动图,这可能影响研究的准确性[34]。Reindl等[35]认为在接受PCI的STEMI患者中,CMR对左室重构的定义应为左室舒张末期容积百分比(%ΔLVEDV,截止值为10%)。而Rodriguez-Palomares等[36]认为,左室重构不仅要考虑LVEDV的变化,还要考虑左室射血分数的变化,以增加其预后意义。

4 小结与展望

       综上所述,CMR在临床实践中具有重大的潜能,相比于冠脉造影、超声心动图等技术,CMR能为急性心肌梗死患者准确诊断及再灌注评价提供可靠的信息,为患者危险分层的个性化评估及未来心血管事件的预测指明方向。随着CMR技术的发展,对于部分传统观念提出了挑战,如何更加快速、安全、精准地为临床提供更多的信息,将是未来需要进一步探索的方向。

1
胡盛寿, 高润霖, 刘力生, 等. «中国心血管病报告2018»概要. 中国循环杂志, 2019, 34(3): 209-220. DOI: 10.3969/j.issn.1000-3614.2019.03.001
Hu SS, Gao RL, Liu LS, et al. Summary of the 2018 Report on Cardiovascular Diseases in China. Chin Circulat J, 2019, 34(3): 209- 220. DOI: 10.3969/j.issn.1000-3614.2019.03.001
2
Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European society of cardiology. Eur Heart J, 2018, 39(2): 119-177. DOI: 10.1093/eurheartj/ehx393
3
Zhou D, Xu J, Zhao S, et al. CMR publications from China of the last more than 30 years. Int J Cardiovasc Imaging, 2020, 36(9): 1737-1747. DOI: 10.1007/s10554-020-01873-x
4
Kendziora B, Stier H, Schlattmann P, et al. MRI for measuring therapy efficiency after revascularisation in ST-segment elevation myocardial infarction: a systematic review and meta-regression analysis. BMJ Open, 2020, 10(9): e034359. DOI: 10.1136/bmjopen-2019-034359
5
Kendziora B, Dewey M. Prognostic value of the myocardial salvage index measured by T2-weighted and T1-weighted late gadolinium enhancement magnetic resonance imaging after ST-segment elevation myocardial infarction: a systematic review and meta-regression analysis. PLoS One, 2020, 15(2): e0228736. DOI: 10.1371/journal.pone.0228736
6
Fernández-Jiménez R, Barreiro-Pérez M, Martin-García A, et al. Dynamic edematous response of the human heart to myocardial infarction: implications for assessing myocardial area at risk and salvage. Circulation, 2017, 136(14): 1288-1300. DOI: 10.1161/CIRCULA TIONAHA.116.025582
7
Alkhalil M, Borlotti A, De Maria GL, et al. Dynamic changes in injured myocardium, very early after acute myocardial infarction, quantified using T1 mapping cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2018, 20(1): 82. DOI: 10.1186/s12968-018-0506-3
8
An DA, Chen BH, Rui Wu, et al. Diagnostic performance of intravoxel incoherent motion diffusion-weighted imaging in the assessment of the dynamic status of myocardial perfusion. J Magn Reson Imaging, 2018, 48(6): 1602-1609. DOI: 10.1002/jmri.26179
9
Stiermaier T, Eitel I, de Waha S, et al. Myocardial salvage after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction presenting early versus late after symptom onset. Int J Cardiovasc Imaging, 2017, 33(10): 1571-1579. DOI: 10.1007/s10554-017-1143-x
10
Jablonowski R, Engblom H, Kanski M, et al. Contrast-enhanced CMR overestimates early myocardial infarct size: mechanistic insights using ECV measurements on day 1 and day 7. JACC Cardiovasc Imaging, 2015, 8(12): 1379-1389. DOI: 10.1016/j.jcmg.2015.08.015
11
Bulluck H, Hammond-Haley M, Fontana M, et al. Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping. J Cardiovasc Magn Reson, 2017, 19(1): 57. DOI: 10.1186/s12968-017-0370-6
12
Sezer M, van Royen N, Umman B, et al. Coronary microvascular injury in reperfused acute myocardial infarction: a view from an integrative perspective. J Am Heart Assoc, 2018, 7(21): e009949. DOI: 10.1161/JAHA.118.009949
13
顾伟峰, 卜军. ST段抬高型心肌梗死患者再灌注治疗后心肌微循环损伤的心脏磁共振分析. 老年医学与保健, 2019, 25(2): 139-142, 147.
Gu WF, Pu J. Cardiac magnetic resonance analysis of post- reperfusion myocardial microcirculation injury in cases with ST segment elevation myocardial infarction. Geriatr Health Care, 2019, 25(2): 139-142, 147.
14
Shin JM, Choi EY, Park CH, et al. Quantitative T1 mapping for detecting microvascular obstruction in reperfused acute myocardial infarction: comparison with late gadolinium enhancement imaging. Korean J Radiol, 2020, 21(8): 978-986. DOI: 10.3348/kjr.2019.0736
15
Alkhalil M, Borlotti A, De Maria GL, et al. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction. J Cardiovasc Magn Reson, 2020, 22(1): 3. DOI: 10.1186/s12968-019-0593-9
16
Do HP, Ramanan V, Qi X, et al. Non-contrast assessment of microvascular integrity using arterial spin labeled cardiovascular magnetic resonance in a porcine model of acute myocardial infarction. J Cardiovasc Magn Reson, 2018, 20(1): 45. DOI: 10.1186/s12968-018-0468-5
17
Garg P, Kidambi A, Swoboda PP, et al. The role of left ventricular deformation in the assessment of microvascular obstruction and intramyocardial haemorrhage. Int J Cardiovasc Imaging, 2017, 33(3): 361-370. DOI: 10.1007/s10554-016-1006-x
18
Bergami M, Scarpone M, Cenko E, et al. Gender differences in non-obstructive coronary artery disease. Curr Pharm Des, 2020. DOI: . DOI: 10.2174/1381612826666201012163845
19
Crea F, Montone RA, Niccoli G. Myocardial infarction with non-obstructive coronary arteries: dealing with pears and apples. Eur Heart J, 2020, 41(7): 879-881. DOI: 10.1093/eurheartj/ehz561
20
Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Kardiol Pol, 2018, 76(10): 1383-1415. DOI: 10.5603/KP.2018.0203
21
Pathik B, Raman B, Mohd AN, et al. Troponin-positive chest pain with unobstructed coronary arteries: incremental diagnostic value of cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging, 2016, 17(10): 1146-1152. DOI: 10.1093/ehjci/jev289
22
Tayal B, Freeman P, Ericsson F, et al. Characterisation of patients with and without cardiac magnetic resonance imaging abnormalities presenting with myocardial infarction with non-obstructive coronary arteries (MINOCA). Acta Cardiol, 2020: 1-9. DOI: 10.1080/00015385.2020.1785134
23
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072
24
Lintingre PF, Nivet H, Clément-Guinaudeau S, et al. High-resolution late gadolinium enhancement magnetic resonance for the diagnosis of myocardial infarction with nonobstructed coronary arteries. JACC Cardiovasc Imaging, 2020, 13(5): 1135-1148. DOI: 10.1016/j.jcmg.2019.11.020
25
Mayr A, Reiter G, Beitzke D. Cardiac magnetic resonance imaging: trends and developments. Radiologe, 2020. DOI: . DOI: 10.1007/s00117-020-00766-3
26
Phan J, Nguyen T, French J, et al. Incidence and predictors of left ventricular thrombus formation following acute ST-segment elevation myocardial infarction: a serial cardiac MRI study. Int J Cardiol Heart Vasc, 2019, 24: 100395. DOI: 10.1016/j.ijcha.2019.100395
27
张辉锋, 宋溢娟, 曲红培, 等. 超声与MRI在诊断心肌梗死后左心室室壁瘤中的应用. 中国CT和MRI杂志, 2018, 16(11): 69-71, 78. DOI: 10.3969/j.issn.1672-5131.2018.11.021
Zhang HF, Song YJ, Qu PH, et al. Application of ultrasound and MRI in Diagnosis of Left Ventricular Aneurysm after Myocardial InfarctionI. Chin J CT MRI, 2018, 16(11): 69-71, 78. DOI: 10.3969/j.issn.1672-5131.2018.11.021
28
Gong W, Shi H, Yan M, et al. Clinical manifestation, timing course, precipitating factors, and protective factors of ventricular free wall rupture following ST-segment elevation myocardial infarction. Int Heart J, 2020, 61(4): 651-657. DOI: 10.1536/ihj.19-541
29
Nguyen TL, Phan J, Hogan J, et al. Adverse diastolic remodeling after reperfused ST-elevation myocardial infarction: an important prognostic indicator. Am Heart J, 2016, 180: 117-127. DOI: 10.1016/j.ahj.2016.05.020
30
Hamirani YS, Wong A, Kramer CM, et al. Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging, 2014, 7(9): 940-952. DOI: 10.1016/j.jcmg.2014.06.012
31
Pontone G, Guaricci AI, Andreini D, et al. Prognostic stratification of patients with ST-segment-elevation myocardial infarction (PROSP ECT): a cardiac magnetic resonance study. Circ Cardiovasc Imaging, 2017, 10(11): e006428. DOI: 10.1161/CIRCIMAGING.117.006428
32
Galea N, Dacquino GM, Ammendola RM, et al. Microvascular obstruction extent predicts major adverse cardiovascular events in patients with acute myocardial infarction and preserved ejection fraction. Eur Radiol, 2019,29(5): 2369-2377. DOI: 10.1007/s00330-018-5895-z
33
Reindl M, Tiller C, Holzknecht M, et al. Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial infarction. Circ Cardiovasc Imaging, 2019, 12(11): e009404. DOI: 10.1161/CIRCIMAGING.119.009404
34
Brooks GC, Lee BK, Rao R, et al. Predicting persistent left ventricular dysfunction following myocardial infarction: the PREDICTS study. J Am Coll Cardiol, 2016, 67(10): 1186-1196. DOI: 10.1016/j.jacc.2015.12.042
35
Reindl M, Reinstadler SJ, Tiller C, et al. Prognosis-based definition of left ventricular remodeling after ST-elevation myocardial infarction. Eur Radiol, 2019, 29(5): 2330-2339. DOI: 10.1007/s00330-018-5875-3
36
Rodriguez-Palomares JF, Gavara J, Ferreira-González I, et al. Prognostic value of initial left ventricular remodeling in patients with reperfused STEMI. JACC Cardiovasc Imaging, 2019, 12(12): 2445-2456. DOI: 10.1016/j.jcmg.2019.02.025

上一篇 DCE-MRI 半定量及定量分析在鉴别颈部淋巴结良恶性中的研究现状
下一篇 乳腺癌MRI 影像组学的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2