分享:
分享到微信朋友圈
X
综述
磁共振血管成像评估颈动脉狭窄的研究进展
张浩南 宋清伟 张钦和 张楠 宋宇

Cite this article as: Zhang HN, Song QW, Zhang QH, et al. Research advances of magnetic resonance angiography in evaluating carotid arterystenosis[J]. Chin J Magn Reson Imaging, 2021, 12(3): 92-94.本文引用格式:张浩南, 宋清伟, 张钦和, 等. 磁共振血管成像评估颈动脉狭窄的研究进展[J]. 磁共振成像, 2021, 12(3): 92-94. DOI:10.12015/issn.1674-8034.2021.03.022.


[摘要] 颈动脉狭窄是导致缺血性脑卒中的重要原因,早发现和早治疗可显著降低其致死率和致残率。磁共振血管成像以无创、无辐射、软组织分辨率高等特点而在颈动脉狭窄评估方面具有重要意义。作者就时间飞跃法磁共振血管成像(time of flight magnetic resonance angiography,TOF-MRA)、对比增强磁共振血管成像(contrast enhanced MRA,CE-MRA)、四维相位对比磁共振血管成像(four dimensional flow magnetic resonance angiography,4D-Flow-MRA)、零回波时间动脉自旋标记血管成像(zero echo time arterial spin labeling magnetic resonance angiography,zTE-ASL-MRA)、黑血成像技术(black blood,BB)和磁共振同时非增强血管成像和斑块内出血成像(simultaneous noncontrast angiography and intraplaque hemorrhage imaging,SNAP)等磁共振血管成像技术以及磁共振快速成像技术在评估颈动脉狭窄的应用及研究进展予以综述。
[Abstract] Carotid stenosis is an important cause of ischemic stroke. Early detection and early treatment can significantly reduce the fatality and disability rates. Magnetic resonance angiography plays an irreplaceable role in the quantitative assessment of carotid artery stenosis because of its advantages such as non-invasive, non-radiation and better resolution of soft tissue. This paper reviews the latest technology applications and research advances in the quantitative assessment of carotid artery stenosis using magnetic resonance angiography such as time of flight magnetic resonance angiography (TOF-MRA), contrast enhanced MRA (CE-MRA), zero echo time arterial spin aabeling MRA (zTE-ASL-MRA), four dimensional flow MRA (4D-Flow-MRA), black blood (BB), simultaneous noncontrast angiography and intraplaque hemorrhage imaging (SNAP), and rapid magnetic resonance imaging.
[关键词] 颈动脉狭窄;磁共振成像;血管成像;压缩感知技术
[Keywords] carotid stenosis;magetic resonance imaging;angiography;compressed sensing

张浩南 1   宋清伟 1*   张钦和 1   张楠 1   宋宇 2  

1 大连医科大学附属第一医院放射科,大连 116011

2 四川大学华西第二医院放射科,成都 610041

宋清伟,E-mail:songqw1964@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


收稿日期:2020-12-18
接受日期:2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.022
本文引用格式:张浩南, 宋清伟, 张钦和, 等. 磁共振血管成像评估颈动脉狭窄的研究进展[J]. 磁共振成像, 2021, 12(3): 92-94. DOI:10.12015/issn.1674-8034.2021.03.022.

       缺血性脑卒中(ischemic stroke,IS)是指脑供血不足导致的脑组织坏死,具有高致残率、高死亡率等特点。颈动脉血管狭窄是引发IS的主要原因[1]。早发现,早治疗可显著降低缺血性脑卒中的致死率和致残率。影像学检查是临床评估颈动脉狭窄的重要方式,方法包括:颈动脉血管超声(cervical vascular ultrasound,CVUS)、CT血管成像(CT angiography,CTA)、数字减影血管造影(digital subtraction angiography,DSA)以及磁共振血管成像(magnetic resonance angiography,MRA)等。由于CVUS检查受操作者主观影响大,CTA存在对比剂过敏风险,DSA创伤较大等缺点,其临床应用受到了一定的限制。MRA以分辨率高、多平面成像、无辐射等优势在对颈动脉狭窄的评估方面起着重要作用。以往研究表明MRA诊断颈动脉狭窄具有良好的可行性和可重复性[2, 3]。MRA通过多序列的扫描,可以对动脉管腔的形态、狭窄程度、斑块的结构及成分进行准确评估。笔者拟对MRA及MR快速成像技术在颈动脉狭窄评估方面的应用及其研究进展予以综述。

1 MRA技术

1.1 时间飞跃法磁共振血管成像(time of flight magnetic resonance angiography,TOF-MRA)

       TOF-MRA基于血液的流入增强效应,无需对比剂即可完成人体内血管成像[4]。该技术最先由Hinshaw等[5]应用于磁共振成像,常用的TOF-MRA成像技术包括:二维(two dimensional,2D)和三维(three dimensional,3D) TOF-MRA。2D-TOF-MRA常采用T1加权GRE序列,对扫描区域逐层激励和采集,然后对连续多层的图像数据进行后处理,完成血管成像。其优点是扫描速度快、对流动高度敏感,但对与采集层面平行方向的血流不敏感、易受患者运动影响而产生截断伪影。3D-TOF-MRA采用层块激励采集的方法,将采集的原始数据利用最大密度投影法重建获得血管图像,具有采集范围大、信噪比高、信号丢失少、空间分辨率高等优点[6]。Zhang等[7]研究表明3D-TOF-MRA与DSA在评估管腔狭窄等级时没有明显差异,但TOF-MRA成像易受涡流的影响而导致信号丢失,从而过度评估血管狭窄的程度。Weber等[8]对比41例怀疑有颈动脉狭窄的受检者的3D-TOF-MRA和对比增强磁共振血管成像(contrast enhanced MRA,CE-MRA)的图像,研究结果表明3D-TOF-MRA和CE-MRA均是检测近端颈动脉重度狭窄(70%~99%)的可靠方法,但3D-TOF-MRA由于受伪影影响而易误将重度狭窄诊断为完全闭塞。

1.2 CE-MRA

       CE-MRA通过静脉注射顺磁性对比剂使血液T1值缩短,采用快速、高权重的T1WI序列进行成像。血液与周围组织由于T1值存在差异而形成对比,常用于颈部血管病变的诊断[9]。但Tartari等[10]研究表明CE-MRA图像空间分辨率较低,相比DSA可能会过度评估狭窄程度。陆建平等[11]通过增加对比剂的浓度、改进注射速率等方式提升图像的对比度和信噪比,突出了动脉血管的显示,提高了轻中度血管狭窄诊断的准确率。然而钆对比剂可能引发过敏反应等并发症[12],且肾功能受损的患者无法进行该项检查。

1.3 零回波时间动脉自旋标记MR血管成像(zero echo time arterial spin labeling magnetic resonance angiography,zTE-ASL-MRA)

       zTE技术是回波时间为零的MR成像技术。其射频是在梯度场的爬升之后施加的,射频结束后不再进行梯度切换,立刻读取信号。zTE-ASL-MRA技术无需注射对比剂,可以选择性地对目标血管显像。该技术依靠血液内被标记的氢质子成像,血管形态、血流方向和速度等血流状态不会影响血管的信号强度[13]。重要的是,zTE技术信号采集的TE时间为零,该技术不仅可降低磁敏感伪影,还可减少涡流效应造成的伪影及信号缺失[14]。Irie等[15]研究表明,zTE-MRA技术较TOF-MRA在评价颅内动脉瘤介入术后疗效方面更有优势。翟茂雄等[16]以CE-MRA为参考标准,对比发现zTE-MRA技术较3D-TOF-MRA可以更好地显示颈内动脉虹吸部。然而,过短TE可能会导致扫描线圈以及床垫等物体显影,影响诊断结果。且zTE成像时带宽很宽,特殊吸收率值明显升高。

1.4 四维相位对比磁共振血管成像(four dimensional flow magnetic resonance angiography,4D-Flow-MRA)

       传统相位对比磁共振血管成像(phase contrast magnetic resonance angiography,PC-MRA)采用双极梯度场对流体进行编码,并对多个方向进行编码成像。4D-Flow-MRA作为一种新兴MRI技术,其可以同时在三个相互垂直的方向进行相位编码,一次扫描即可获得包括解剖结构、可视化以及定量血流动力学信息的图像,并获得血液流速、剪切力、压差[17]等参数。相关文献表明,4D-Flow-MRA技术在复杂的血流动力学条件下依然具有很好的可重复性,结果可靠[18]。Harloff等[19]使用4D-Flow-MRA技术研究外翻颈动脉内膜切除术对颈动脉血流动力学的影响,研究表明术后颈内动脉收缩期剪切力和振荡剪切指数显著降低。Schrauben等[20]应用4D-Flow-MRA技术对颈内动脉病变进行评估,其认为可以预测脑卒中或痴呆。然而,4D-Flow-MRA扫描时间长、图像分辨率低。其测量数据易受噪声及涡流的影响出现偏差。

1.5 黑血(black blood,BB)技术

       BB技术通过施加饱和脉冲使血液无信号,以改善血管壁的可视化,并可评估动脉硬化斑块的形态和成分[21]。斑块的纤维帽常呈T1WI、T2WI上等低信号,增强扫描时在T2WI上呈偏心性明显强化。钙化成分在T1WI、T2WI上均为低信号。而含脂肪较多的斑块在T1WI上呈高信号,抑脂后信号明显降低,T2WI上呈高信号。而内含出血的斑块,T1WI上呈明显的高信号[22]。汪振佳等[23]对比分析怀疑颈内动脉闭塞患者的BB-T1WI和DSA图像,结果表明BB技术可以很好地诊断颈动脉闭塞病变,并且能清晰地显示颈动脉急、慢性闭塞病变特征。Wu等[24]开发了一种深度形态学辅助诊断网络,用于自动分割颈动脉管壁,并能在BB-T1WI上自动诊断颈动脉粥样硬化。但BB技术扫描时间长、易受患者不自主运动及呼吸运动影响产生伪影,影响后续图像诊断。

1.6 磁共振同时非增强血管成像和斑块内出血成像(simultaneous noncontrast angiography and intraplaque hemorrhage imaging,SNAP)

       SNAP技术利用参考扫描来还原反转恢复T1加权图像的真实相位,将静态组织和颈动脉腔的极性重建为正负。这种额外的极性对比可用于颈动脉腔的成像[25]。该技术由Wang等[26]提出。SNAP技术因反转脉冲之间的间隔较长(约2 s),受湍流的影响较小,且一次扫描可以得到反转恢复的亮血图、质子密度加权的亮血图和黑血图,常用于观察血管内动脉粥样硬化形态、成分以及出血情况。多项研究表明,SNAP技术获得的非增强MRA图像与3D-TOF-MRA以及CE-MRA在评估管腔狭窄方面一致性好[27, 28]。Zhang等[29]开发了一种基于机器学习的算法来分割SNAP图像上的斑块成分,并验证了其可行性。另外,SNAP技术也可应用于斑块内出血和壁内血肿的诊断。陆艳等[30]研究表明,SNAP技术与T1WI-BB、T2WI-BB以及PDWI-VISTA相比,可以更好地识别壁内血肿。但该技术对磁共振设备软硬件的要求相对较高,限制了其临床的推广。

2 MR快速成像技术

       MRA可根据不同需求实现个体化序列扫描的选择。然而,多序列的叠加难免会延长检查时间。对于脑部供血不足的患者,配合欠佳,扫描成功率较低,在保证图像质量的前提下缩短扫描时间具有重要临床意义。

2.1 敏感性编码技术(sensitivity encoding,SENSE)

       SENSE技术最先由Pruessmann提出[31],该技术利用多通道相控阵线圈并行采集的方式,使K空间内采集位置距离增加,减少K空间的采样密度,达到缩短扫描时间的目的。通过减少相位编码的数目,SENSE技术可将采集速度提高1.5~3.0倍。Sumi等[32]将SENSE与3D-TOF-MRA、3D-PC-MRA以及3D平衡稳态自由进动序列相结合,对颈外动脉及其分支进行评估。研究结果表明,结合SENSE的3D-PC-MRA对颈外动脉及其二级分支的显示最佳。然而,SENSE技术采集过程中,会出现一些无法避免的伪影,例如幻影样伪影、混叠伪影、卷积伪影等,影响图像质量。

2.2 压缩感知技术(compressed sensing,CS)

       2007年,Lustig等[33]首先将CS理论应用于MR成像。CS采用随机化数字稀疏采样方式,在远小于Nyquist采样频率的条件下获取信号的离散样本,然后通过非线性重建算法重建获得图像。在保证图像质量的前提下,可以明显缩短扫描时间[34]。相关研究表明,对比SENSE、CS可在保证图像质量的前提下,进一步提高成像速度[35, 36]。将MRA不同序列与CS结合,可显著提高扫描成功率。Li等[37]将CS与3D-TOF-MRA相结合,当加速因子为4时,扫描时间较常规序列缩短70%(90 s与300 s),且图像质量能够满足临床诊断。Yuan等[38]将CS应用于BB-T2WI mapping序列,结果表明结合CS的BB-T2WI mapping具有准确T2测量值和良好的可重复性。然而,随着CS加速倍数的增加,图像质量也会有所下降。目前将CS与MRA相结合的研究较少,其他序列与CS的结合,寻找适应于临床的最佳加速倍数是未来主要研究方向。

       综上所述,MRA以无创性、无电离辐射、操作简单、多序列分析、重复性较高等优点被广泛应用于评估颈动脉狭窄。其通过多序列的扫描,可以很好地描述血管壁形态、颈动脉狭窄程度以及动脉粥样硬化斑块成分。临床上可根据患者的具体病情及需求,制定对应的个体化扫描方案,提高检出率。对MRA序列进行优化,尤其是基于CS的MRA成像技术,可以大大地缩短扫描时间,提高扫描成功率,具有很好的临床价值及科研潜力。

1
马玉荣, 韩娜, 张静. 颈动脉粥样硬化性狭窄与脑血流动力学相关性的多模态MRI研究. 磁共振成像, 2018, 9(10): 747-753. DOI: 10.12015/issn.1674-8034.2018.10.006
Ma YR, Han N, Zhang J. Multi-modality MRI study of relationship between carotid atherosclerotic stenosis and cerebral hemodynamics. Chin J Magn Reson Imaging, 2018, 9(10): 747-753. DOI: 10.12015/issn.1674-8034.2018.10.006
2
Zhang J, Ding S, Zhao H, et al. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA. Eur Radiol, 2020, 30(11): 5805-5814. DOI: 10.1007/s00330-020-06989-1
3
Qiao H, Cai Y, Huang M, et al. Quantitative assessment of carotid artery atherosclerosis by three-dimensional magnetic resonance and two-dimensional ultrasound imaging: a comparison study. Quant Imaging Med Surg, 2020, 10(5): 1021-1032. DOI: 10.21037/qims-19-818
4
Grochowski C, Krukow P, Jonak K, et al. The assessment of lenticulostriate arteries originating from middle cerebral artery using ultra high-field magnetic resonance time-of-flight angiography. J Clin Neurosci, 2019, 68: 262-265. DOI: 10.1016/j.jocn.2019.07.003
5
Hinshaw WS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature, 1977, 270(5639): 722-723. DOI: 10.1038/270722a0
6
Haifeng L, Yongsheng X, Yangqin X, et al. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis. Neuroradiology, 2017, 59(11): 1083-1092. DOI: 10.1007/s00234-017-1905-0
7
Zhang X, Cao YZ, Mu XH, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3
8
Weber J, Veith P, Jung B, et al. MR angiography at 3 tesla to assess proximal internal carotid artery stenoses: contrast-enhanced or 3D time-of-flight MR angiography?Clin Neuroradiol, 2015, 25(1): 41-48. DOI: 10.1007/s00062-013-0279-x
9
Brinjikji W, Huston JR, Rabinstein AA, et al. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg, 2016, 124(1): 27-42. DOI: 10.3171/2015.1.JNS142452
10
Tartari S, Rizzati R, Righi R, et al. High-resolution MRI of carotid plaque with a neurovascular coil and contrast-enhanced MR angiography: one-stop shopping for the comprehensive assessment of carotid atherosclerosis. AJR Am J Roentgenol, 2011, 196(5): 1164-1171. DOI: 10.2214/AJR.10.4751
11
陆建平, 刘崎, 何新红, 等. 三维对比剂增强MR血管成像对颈部动脉病变的诊断价值. 中华放射学杂志, 2004, 38(1): 76-81. DOI: 10.3760/j.issn:1005-1201.2004.01.016
Lu JP, Liu Q, He XH, et al. The diagnostic value of three-dimensional contrast-enhanced MR angiography in the arterial disease of the neck region. Chin J Radiol, 2004, 38(1): 76-81. DOI: 10.3760/j.issn:1005-1201.2004.01.016
12
Kugener G, Rajamohan A, Patel V, et al. Caught in the act: Allergic-like reaction to gadolinium-based contrast agent in POEMS syndrome. Radiol Case Rep, 2020, 15(7): 887-890. DOI: 10.1016/j.radcr.2020.04.027
13
宋焱, 黄娟, 祁鹏, 等. 零回波时间动脉自旋标记MR血管成像评估颅内动脉瘤介入治疗效果. 中华放射学杂志, 2018, 52(8): 624-629. DOI: 10.3760/cma.j.issn.1005?1201.2018.0.011
Song Y, Huang J, Qi P, et al. Investigation of zero echo time arterial spin labeling MR angiography in the follow-up of endovascular treatment of intracranial aneurysm. Chin J Radiol, 2018, 52(8): 624-629. DOI: 10.3760/cma.j.issn.1005?1201.2018.08.011
14
Song Y, Qi P, Huang J, et al. Application of zero echo time MR angiography in follow-up of intracranial aneurysm remnant and in-stent lumen after embolization: a comparison study with digital subtraction angiography. Acta Radiol, 2020, 61(4): 480-486. DOI: 10.1177/0284185119865721
15
Irie R, Suzuki M, Yamamoto M, et al. Assessing blood flow in an intracranial stent: a feasibility study of MR angiography using a silent scan after stent-assisted coil embolization for anterior circulation aneurysms. AJNR Am J Neuroradiol, 2015, 36(5): 967-970. DOI: 10.3174/ajnr.A4199
16
翟茂雄, 李武超, 唐斌, 等. 零TE技术在头颈血管的临床应用初探. 临床放射学杂志,2019,38(2): 351-354.
Zhai MX, Li WC, Tang B, et al. Preliminary clinical application of ZeroTE-MRA on Head-Neck. J Clin Radiol, 2019, 38(2): 351-354.
17
Ando T, Sekine T, Murai Y, et al. Multiparametric flow analysis using four-dimensional flow magnetic resonance imaging can detect cerebral hemodynamic impairment in patients with internal carotid artery stenosis. Neuroradiology, 2020, 62(11): 1421-1431. DOI: 10.1007/s00234-020-02464-2
18
Van Ooij P, Powell AL, Potters WV, et al. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J Magn Reson Imaging, 2016, 43(1): 236-248. DOI: 10.1002/jmri.24959
19
Harloff A, Berg S, Barker AJ, et al. Wall shear stress distribution at the carotid bifurcation: influence of eversion carotid endarterectomy. Eur Radiol, 2013, 23(12): 3361-3369. DOI: 10.1007/s00330-013-2953-4
20
Schrauben E, Wahlin A, Ambarki K, et al. Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J Magn Reson Imaging, 2015, 42(5): 1458-1464. DOI: 10.1002/jmri.24900
21
Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study. MAGMA, 2018, 31(1): 183-190. DOI: 10.1007/s10334-017-0640-1
22
马玉荣, 张涛, 张静. 高分辨率MRI评价颈动脉斑块稳定性的优势及临床应用价值. 磁共振成像, 2016, 7(8): 630-634. DOI: 10.12015/issn.1674-8034.2016.08.015
Ma YR, Zhang T, Zhang J. The advantages and clinical value of high resolution MRI in evaluating the stability of carotid plaque. Chin J Magn Reson Imaging, 2016, 7(8): 630-634. DOI: 10.12015/issn.1674-8034.2016.08.015
23
汪振佳, 于薇, 樊昭阳, 等. 颅颈联合黑血管壁成像技术对颈动脉闭塞病变的诊断价值与DSA的对照研究. 医学影像学杂志, 2019, 29(11): 1817-1822
Wang ZJ, Yu W, Fan ZY, et al. Diagnostic value of joint head and neck vessel wall imaging technique for internal carotid artery occlusion diseases: comparison with DSA. J Med Imaging, 2019, 29(11): 1817-1822
24
Wu J, Xin J, Yang X, et al. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Med Phys, 2019, 46(12): 5544-5561. DOI: 10.1002/mp.13739
25
Liu H, Sun J, Hippe DS, et al. Improved carotid lumen delineation onnon-contrast MR angiography using SNAP (simultaneous non-contrast angiography and intraplaque hemorrhage) imaging. Magn Reson Imaging, 2019, 62: 87-93. DOI: 10.1016/j.mri.2019.06.012
26
Wang J, Bornert P, Zhao H, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magn Reson Med, 2013, 69(2): 337-345. DOI: 10.1002/mrm.24254
27
Li D, Zhao H, Chen X, et al. Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraPlaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study. Eur Radiol, 2018, 28(4): 1681-1686. DOI: 10.1007/s00330-017-5096-1
28
Shu H, Sun J, Hatsukami TS, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging: comparison with contrast-enhanced MR angiography for measuring carotid stenosis. J Magn Reson Imaging, 2017, 46(4): 1045-1052. DOI: 10.1002/jmri.25653
29
Zhang, Q, Qiao H, Dou J, et al. Plaque components segmentation in carotid artery on simultaneous noncontrast angiography and intraplaque hemorrhage imaging using machine learning. Magn Reson Imaging, 2019, 60(7): 93-100. DOI: 10.1016/j.mri.2019.04.001
30
陆艳, 黄仁军, 李勇刚. 颅颈部高分辨率MRA: 常规黑血序列与SNAP序列的比较. 放射学实践, 2019, 34(8): 863-868. DOI: 10.13609/j.cnki.1000-0313.2019.08.007
Lu Y, Huang RJ, Li YG. Comparison of simultaneous non-contrast angiography and intraplaque hemorrhage imaging with conventional black blood technique in the high resolution craniocervical artery imaging. Radiol Pract, 2019, 34(8): 863-868. DOI: 10.13609/j.cnki.1000-0313.2019.08.007
31
Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 1999, 42(5): 952- 962.
32
Sumi T, Sumi M, Van Cauteren M. Parallel imaging technique for the external carotidartery and its branches: comparison of balanced turbo field echo, phase contrast, and time-of-flight sequences. J Magn Reson Imaging, 2007, 25(5): 1028-1034. DOI: 10.1002/jmri.20889
33
Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391
34
Bratke G, Rau R, Weiss K, et al. Accelerated MRI of the lumbar spine using compressed sensing: quality and efficiency. J Magn Reson Imaging, 2019, 49(7): e164-e175. DOI: 10.1002/jmri.26526
35
Suzuki T, Aonuma T, Oyama K, et al. High-resolution three-dimensional T1-weighted hepatobiliary MR cholangiography using Gd-EOB-DTPA for assessment of biliary tree anatomy: Parallel imaging versus compressed sensing. Eur J Radiol, 2021, 136(1): 109515. DOI: 10.1016/j.ejrad.2020.109515
36
Ikeda H, Ohno Y, Murayama K, et al. Compressed sensing and parallel imaging accelerated T2 FSE sequence for head and neck MR imaging: comparison of its utility in routine clinical practice. Eur J Radiol, 2020, 135(12): 109501. DOI: 10.1016/j.ejrad.2020.109501
37
Li B, Li H, Dong L, et al. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence. Magn Reson Imaging, 2017, 43(11): 129-135. DOI: 10.1016/j.mri.2017.07.017
38
Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood T2 mapping with compressed sensing and data-driven parallel imaging in the carotid artery. Magn Reson Imaging, 2017, 37(4): 62-69 . DOI: 10.1016/j.mri.2016.11.014

上一篇 PET-MR成像在帕金森病中的应用进展
下一篇 心脏磁共振在扩张型心肌病危险分层及预后评估中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2