分享:
分享到微信朋友圈
X
综述
多模态磁共振功能成像评估胰腺纤维化程度研究进展
刘畅 石喻

Cite this article as: Liu C, Shi Y. Research progress of evaluating pancreatic fibrosis degree by multimodal magnetic resonance functional imaging[J]. Chin J Magn Reson Imaging, 2021, 12(6): 114-117.本文引用格式:刘畅, 石喻. 多模态磁共振功能成像评估胰腺纤维化程度研究进展[J]. 磁共振成像, 2021, 12(6): 114-117. DOI:10.12015/issn.1674-8034.2021.06.024.


[摘要] 胰腺纤维化(pancreatic fibrosis,PF)是多种原因导致胰腺损伤修复的重要组织学改变,PF与慢性胰腺炎(chronic pancreatitis,CP)、胰腺肿瘤等胰腺疾病的发病机制、治疗反应和疾病进展密切相关。早期诊断PF,并及早进行临床干预,对减缓病情、改善患者预后具有重要意义。近年来,以影像学检查为首的无创性检查方法在PF诊断方面发展迅速,其中以磁共振弹性成像、体素内不相干运动扩散加权成像、T1 mapping技术为著,笔者针对PF的多模态磁共振弹性功能成像评估价值作一综述。
[Abstract] Pancreatic fibrosis is an important histological change in the repair of pancreatic injury caused by various reasons. Pancreatic fibrosis is closely related to the pathogenesis, therapeutic response and disease progression of pancreatic diseases such as chronic pancreatitis and pancreatic tumor. Early diagnosis of pancreatic fibrosis and early clinical intervention are of great significance for slowing down the disease and improving the prognosis of patients. In recent years, non-invasive examination methods, led by imaging examination, have developed rapidly in the diagnosis of pancreatic fibrosis, with magnetic resonance elastography as the focus. This article reviews the evaluation value of magnetic resonance elastography for pancreatic fibrosis.
[关键词] 胰腺纤维化;磁共振弹性成像;体素内不相干运动;扩散加权成像;磁共振纵向弛豫时间T1技术;磁化转移成像
[Keywords] pancreatic fibrosis;magnetic resonance elastography;intravoxel incoherent motion;diffusion weighted imaging;T1 mapping;magnetization transfer imaging

刘畅    石喻 *  

中国医科大学附属盛京医院放射科,沈阳 110004

石喻,E-mail:shiy@sj-hospital.org

全体作者均声明无利益冲突。


基金项目: 国家自然科学基金面上项目 81771802,81771893,82071885
收稿日期:2021-02-02
接受日期:2021-03-18
DOI: 10.12015/issn.1674-8034.2021.06.024
本文引用格式:刘畅, 石喻. 多模态磁共振功能成像评估胰腺纤维化程度研究进展[J]. 磁共振成像, 2021, 12(6): 114-117. DOI:10.12015/issn.1674-8034.2021.06.024.

       胰腺纤维化(pancreatic fibrosis,PF)是多种胰腺疾病造成的持续性、永久性的组织学改变,对慢性胰腺炎(chronic pancreatitis,CP)和胰腺癌的发病机制、治疗反应和疾病进展起到至关重要的作用[1, 2]。病理组织学检查可以准确鉴别PF的分期,但由于其属于侵入性检查,目前没有广泛应用于临床。胰腺功能学检查同样属于侵入性检查,并且成本高、阳性率低,很少被临床采用。通过非侵入性影像学检查可以客观定量评估PF程度,具有很高的临床应用性。影像学检查作为一种非侵入性诊断方法可以帮助评估胰腺组织的纤维化程度,并确认临床上可疑的胰腺形态学改变[3]。其中磁共振功能成像因其可重复性高、无创性、简单快速等特点在诊断PF方面具有很好的发展前景。本文旨在探讨多模态磁共振功能成像在PF中的评价作用。

1 磁共振功能成像

1.1 磁共振扩散加权成像

       磁共振扩散加权成像(diffusion weighted imaging,DWI)扫描反映了由于与细胞膜、大分子的相互作用和组织环境的改变而引起的水分子在组织中迁移率的变化。它可以根据ADC对组织扩散率进行定量评估,并且可以评估胰腺组织纤维化水平,并且确认临床怀疑的胰腺形态学变化,此前Bakan等发现,ADC值的测量为PF的分期提供了有价值的信息。Zhang等[4]研究表明ADC值随着PF程度的增加而降低。Bieliuniene等[5]、Shi等[6]通过ADC定量检测早期PF,具有良好的敏感度和特异度,但是ADC的诊断效能尚不能和活检相比。

1.2 胰泌素增强MR胰胆管造影

       胰泌素增强MR胰胆管造影(secretin-enhanced magnetic resonance cholangiopancreatography,SE-MRCP)通过胰泌素刺激胰腺分泌胰液来显示主胰管及分支胰管,获得时间-胰液分泌量曲线,进而定量评估胰腺外分泌功能。Trout等[7]研究结果表明SE-MRCP测量流体体积精度高,测量体积误差小于10% (<13 mL)。此外对胰液量的测定具有高度的重复性,两者之间的偏差小于2 mL。目前Jonczyk-Potoczn等[8]使用SE-MRCP比较胰腺外分泌功能不全和胰腺外分泌功能良好的胰腺囊性纤维化患者的胰管宽度,结果并不理想。

1.3 磁共振扩散峰度成像

       磁共振扩散峰度成像(diffusional kurtosis imaging,DKI)是一种先进的磁共振扩散成像技术,用于描述大脑和其他器官的组织微结构。在包括大脑在内的许多生物组织中,由于扩散屏障(如质膜)和细胞间隔的多样性而产生的微观异质性,并不完全符合高斯分布。DKI是在扩散张量成像(diffusion tensor imaging,DTI)技术上的扩展,通过估计位移概率密度函数(displacement probability density function,dPDF)的峰度来捕捉非高斯扩散效应,从而更好地体现生物体微环境的变化[9]。Stephan等[10]的研究表明在扩展的b因子的范围内使用DKI模型可以描述肝脏分子扩散的非高斯行为,可应用于慢性肝病的诊断。Yoshimaru等[11]和Li等[12]报道DKI是一个可以预测患者肝纤维化的指标,它可以区分纤维化的不同分期,目前尚未有DKI技术对PF的相关研究报道,具有很大的研究空间。

1.4 磁化转移成像

       磁化转移成像(magnetization transfer imaging,MTI)技术主要描述自由水分子质子与和大分子蛋白结合的水分子质子之间磁化交换的物理过程,可以反映大分子蛋白含量变化。MT效应的大小取决于这些大分子(如水中生理环境中的胶原)的浓度,大分子的浓度越高,MT效应越强,通过磁化转移率(MT ratios,MTR)定量评价纤维化或区分纤维成分与其他组织成分,MT可以用于区分克罗恩病中造成肠壁狭窄的炎症和纤维化成分[13]。Li等[14]的研究首次描述了胰腺的MT成像应用于量化评估胰腺实质纤维化。Schawkat等[15]的研究表明MT可以对胰十二指肠切除术前患者的PF和胰腺脂肪瘤病进行评估,并以组织病理学为参考标准进行术后风险分层。目前针对于MT对PF的研究文献较少,有待于进一步研究。

1.5 体素内不相干运动扩散加权成像

       体素内不相干运动扩散加权成像(intravoxel incoherent motion diffusion weighted imaging,IVIM-DWI)技术通过影响水分子的扩散运动以及对非相干微循环的灌注效应来对疾病进行检出及鉴别诊断,IVIM模型目前可用于拟合腹部、心脏和大脑等多种解剖区域的数据。例如IVIM可对心肌灌注程度进行评价,但在静息条件下IVIM参数较难获得[16],IVIM模型通过控制信噪比可在脑和低灌注组织中提供更准确和可重复的IVIM参数[15]。IVIM技术可以得到3个参数:(1)纯分子扩散系数(D),反映细胞内及细胞外分子的扩散,与水扩散的慢成分有关;(2)伪扩散系数(D*),反映血管内血流速度;(3)灌注分数(f),反映血容量。其中,D*和f是与血流灌注有关的参数,可以反映微循环[17],D*及f值对PF分期的诊断价值较高[1],在胰腺癌的检出及鉴别诊断方面,IVIM同样具有重要评估价值:由Le Bihan等[18]在1986年首次提出,并在DWI基础上增加了b值的数量。Hecht等[19]研究结果表明参数D与影像纤维化呈负相关,而f与PF呈正相关,提示扩散和灌注效应均可以导致间质结缔组织增生。目前IVIM-DWI定量PF的研究有所进展,仍需进一步深入研究。

1.6 磁共振纵向弛豫时间T1技术

       磁共振纵向弛豫时间T1技术(T1 mapping)是一种定量成像技术,可以定量测量靶器官的T1弛豫时间,与传统的T1加权图像相比,是一种更可靠、更准确的方法。目前已成功地应用于多种心脏疾病(包括心肌纤维化和心肌沉积疾病)和肝纤维化评估[20]。T1 mapping定量技术的获取简单、快速、不需静脉注射分泌素、诊断准确性等优点对CP的诊断具有很高的价值,已有研究表明[21]磁共振弹性成像技术(magnetic resonance elastography,MRE)和T1 mapping定量技术对CP不同分期的诊断均有较好的诊断效果。胰腺硬度和T1松弛时间都是诊断轻度和任何CP的独立预测指标。在多因素分析中,MRE结果优于T1 mapping定量技术。目前T1 mapping在PF定量评估方面的文献极少,具有很大的研究空间。

1.7 磁共振弹性成像技术

       MRE是一种基于磁共振的、通过对组织中传播的剪切波进行成像来定量评估体内组织刚度(剪切模量)的技术[1,22]。目前可用于评价慢性肝炎及肝硬化,并可以对肝纤维化进行分期,通过传播横波在病变组织中传播的波长变化来对肝脏硬度进行评估,而肝脏硬度则与许多病理过程(炎症、纤维化、肿瘤和充血)有关[23, 24, 25]。目前已有使用MRE对22名健康志愿者确定胰腺硬度的前瞻性研究显示MRE具有极好的重复性[26]。MRE在PF相关研究的文献报道极少,具有很大的研究价值。

1.8 细胞外体积成像

       细胞外体积成像可以利用MRI增强前后获得的T1弛豫时间将组织分成细胞内和细胞外成分,计算组织的细胞外体积分数(extracellular volume,ECV),目前已被用于检测组织纤维化[27, 28]。ECV成像已被证明可以定量评估心肌梗死、不典型纤维化和弥漫性心肌异常[29]。最近对119例患者进行的研究表明ECV诊断CP的敏感度和特异度分别为92%和77%,ECV和T1弛豫时间构建的联合模型评估CP分级具有很好的诊断效能(AUC=0.94),此外,ECV同样可以定量评估PF,具有良好的诊断效能(AUC=0.900)[30]。ECV成像在检测PF方面的有效性有待进一步探索。

2 PF概念及病理分期

       PF是多种胰腺疾病等生物学改变所导致的胰腺组织修复性组织改变。见于CP、胰管腺癌、反复性的急性胰腺炎和2型糖尿病。其中胰腺炎和胰腺癌是全球最常见的胃肠道疾病之一[23,31]。反复发作的急性胰腺炎会导致残留腺体损害增加以及慢性炎症,最终导致星状细胞活化和PF[32]。PF的进一步进展会导致腺泡细胞破坏加重,从而使胰腺内、外分泌功能进一步减低。星状细胞(pancreatic stellate cells,PSCs)是参与PF的主要细胞类型。PSCs的活化目前已被广泛认为是PF进展的重要原因[33]。在正常胰腺组织中,呈星状或梭形并含有大量维生素A脂滴的PSCs处于静止状态,当胰腺损伤后,处于静止状态的PSCs可被氧化应激、细胞因子等刺激迅速激活,使PSCs分泌细胞外基质分子和细胞因子、Ⅰ型和Ⅲ型胶原、纤维连接蛋白(fibronectin,FN)和层粘连蛋白,导致细胞外基质(extra celluar matrix,ECM)的沉积,从而导致PF[34, 35, 36]。以前的研究[37]已经证明了PSCs和ECM之间存在相互作用。在基质硬化条件下的PSCs由于α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)和缺氧诱导因子1a (HIF-1a)表达增加,具有更明显的活化表型(肌成纤维细胞)[38]。PSCs和ECM之间的相互作用导致了PSCs激活的连续前馈循环以及依赖白细胞介素(interleukin,IL)-4和IL-13信号激活的巨噬细胞的交替激活会进一步激活基质的纤维化[39]。胰蛋白酶原过早转化为胰蛋白酶会导致胰腺酶原过早激活,最终导致胰腺实质损伤和PF[40]。PSCs表面的TLR4同样在CP的发展中起关键作用。吸烟和饮酒是常见的共存行为,协同作用可能有助于PF形成[41],其中吸烟可通过其有毒代谢物尼古丁衍生的亚硝胺酮引起腺泡细胞损伤,从而导致PF[42, 43]的发展。根据文献,目前有许多不同的方法来对PF进行病理分期。普遍认为PF分为轻度(F1期)、中度(F2期)、重度(F3期) 3期,定量分期方法:通过胰腺组织纤维化占检查面积的百分比分期,通过计算胶原比例面积(collagen proportionate area,CPA)量化PF。当胰腺组织含有超过10%的检查面积时,PF被评为最低限度纤维化,当大于25%时被评为轻度纤维化,当大于50%时被评为中度纤维化,当大于75%时被评为重度纤维化[5,44]。定性分期方法:Wellner和Kim将导管周围纤维组织增厚分为轻度纤维化(F1期),小叶间隔明显纤维化但无结构改变分为中度纤维化(F2期),小叶内纤维化并且结构破坏分为重度纤维化(F3期)[45, 46]

3 小结与展望

       本文回顾了近10年间磁共振功能成像在评估PF分期的研究文献。近年来DWI-MRI技术因其无创性、便于操作等优点成为对PF诊断的主要方法之一,但是有一定的限制条件,评估准确性不高。IVIM-DWI、T1 mapping定量技术低重复性、无创性、安全性等优点使其在PF的研究上有一定的诊断价值。既往研究表明其在诊断CP分级方面具有很好的临床价值,MRE相较于其他影像学检查目前研究甚少,具有广阔的研究前景。新兴的磁共振功能成像(如IVIM-DWI、MT、细胞外体积成像等)技术已有区分鉴别PF分期的相关研究,但大多数仅对正常胰腺与中/重度PF进行鉴别,缺乏对轻/中度与重度PF、轻度与中重度PF进行鉴别,无法更加准确敏感地对早期或轻度胰腺疾病进行诊断。此外,IVIM-DWI、MT、细胞外体积成像等磁共振功能成像技术仅就某一单独影像学参数与PF间的相关性进行研究,或者通过单独参数定量评估PF分期,缺乏多参数、多中心的统一定量研究以及一个多参数胰腺组织纤维化的评分系统。Tirkes等[47]提出将磁共振成像作为非侵入性方法评估PF的综合研究设计,从而可以用于临床实践和临床试验,以评估可能减缓或逆转CP进展的药物的疗效。但目前并没有多模态磁共振功能成像评估PF的相关文献。多模态磁共振功能成像研究可能会确定改变慢性自然病史的治疗方法,并预测CP进展和早期胰腺癌。临床应灵活应用各项检查技术来对患者进行合理的诊断和治疗,获得良好的预后结果并对患者进行早期干预治疗。

1
刘艳清, 刘莹, 史凯宁, 等. 体素内不相干运动扩散加权成像评价PF的初步研究[J]. 中国临床医学影像杂志, 2017, 28(10): 736-741. DOI: 10.3969/j.issn.1008-1062.2017.10.011.
Liu YQ, Liu Y, Shi KN, et al. Intravoxel incoherent motion diffusion weighted imaging for the evaluation of pancreatic fibrosis: a preliminary study[J]. J Chin Clin Med Imaging, 2017, 28(10): 736-741. DOI: 10.3969/j.issn.1008-1062.2017.10.011.
2
Shi Y, Liu Y, Gao F, et al. Pancreatic stiffness quantified with MR elastography: Relationship to postoperative pancreatic fistula after pancreaticoenteric anastomosis[J]. Radiology, 2018, 288(2): 476-484. DOI: 10.1148/radiol.2018170450.
3
中国医师协会胰腺病专业委员会CP专委会. CP诊治指南(2018,广州)[J]. 中华胰腺病杂志, 2018, 18(5): 289-296. DOI: 10.3760/cma.j.issn.1674-1935.2018.05.001.
Chronic Pancreatitis Committee of Pancreatic Diseases Professional Committee of Chinese Medical Doctor Association. Guidelines for diagnosis and treatment of chronic pancreatitis (2018, Guangzhou)[J]. Chin J Pancreatol, 2018, 18(5): 289-296. DOI: 10.3760/cma.j.issn.1674-1935.2018.05.001.
4
Zhang T, Lu Y, Yang B, et al. Diffusion metrics for staging pancreatic fibrosis and correlating with epithelial-mesenchymal transition markers in a chronic pancreatitis rat model at 11.7 T MRI[J]. J Magn Reson Imaging, 2020, 52(1): 197-206. DOI: 10.1002/jmri.26995.
5
Bieliuniene E, Frøkjær JB, Pockevicius A, et al. Magnetic resonance imaging as a valid noninvasive tool for the assessment of pancreatic fibrosis[J]. Pancreas, 2019, 48(1): 85-93. DOI: 10.1097/MPA.0000000000001206.
6
石喻, 郭启勇, 廖伟, 等. MR扩散加权成像评价慢性病毒性肝炎肝纤维化的临床研究[J].中华放射学杂志, 2010, 44(1): 65-69. DOI: 10.3760/cma.j.issn.1005-1201.2010.01.017.
Shi Y, Guo QY, Liao W, et al. MR diffusion weighted imaging for quantification of liver fibrosis in patients with chronic viral hepatitis[J]. Chin J Radiol, 2010, 44(1): 65-69. DOI: 10.3760/cma.j.issn.1005-1201.2010.01.017.
7
Trout AT, Wallihan DB, Serai S, et al. Secretin-enhanced magnetic resonance cholangiopancreatography for assessing pancreatic secretory function in children[J]. J Pediatr, 2017, 188(7): 186-191. DOI: 10.1016/j.jpeds.2017.06.031.
8
Jonczyk-Potoczna K, Nowak JK, Madry E, et al. Secretin-enhanced magnetic resonance cholangio-pancreatography in pancreatic insufficient and pancreatic sufficient cystic fibrosis patients[J]. J Gastrointestin Liver Dis, 2016, 25(1): 57-62. DOI: 10.15403/jgld.2014.1121.251.chp.
9
Shaw CB, Jensen JH. Recent computational advances in denoising for magnetic resonance diffusional kurtosis imaging (DKI)[J]. J Indian Inst Sci, 2017, 97(3): 377-390. DOI: 10.1007/s41745-017-0036-2.
10
Anderson SW, Barry B, Soto J, et al. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling[J]. J Magn Reson Imaging, 2014, 39(4): 827-834. DOI: 10.1002/jmri.24234.
11
Yoshimaru D, Miyati T, Suzuki Y, et al. Diffusion kurtosis imaging with the breath-hold technique for staging hepatic fibrosis: A preliminary study[J]. Magn Reson Imaging, 2018, 47(4): 33-38. DOI: 10.1016/j.mri.2017.11.001.
12
Yang L, Rao S, Wang W, et al. Staging liver fibrosis with DWI: is there an added value for diffusion kurtosis imaging?[J]. Eur Radiol, 2018, 28(7): 3041-3049. DOI: 10.1007/s00330-017-5245-6.
13
Fang ZN, Li XH, Lin JJ, et al. Magnetisation transfer imaging adds information to conventional MRIs to differentiate inflammatory from fibrotic components of small intestinal strictures in Crohn's disease[J]. Eur Radiol, 2020, 30(4): 1938-1947. DOI: 10.1007/s00330-019-06594-x.
14
Li W, Zhang Z, Nicolai J, et al. Magnetization transfer MRI in pancreatic cancer xenograft models[J]. Magn Reson Med, 2012, 68(4): 1291-1297. DOI: 10.1002/mrm.24127.
15
Schawkat K, Eshmuminov D, Lenggenhager D, et al. Preoperative evaluation of pancreatic fibrosis and lipomatosis: Correlation of magnetic resonance findings with histology using magnetization transfer imaging and multigradient echo magnetic resonance imaging[J]. Invest Radiol, 2018, 53(12): 720-727. DOI: 10.1097/RLI.0000000000000496.
16
Spinner GR, Stoeck CT, Mathez L, et al. On probing intravoxel incoherent motion in the heart-spin-echo versus stimulated-echo DWI[J]. Magn Reson Med, 2019, 82(3): 1150-1163. DOI: 10.1002/mrm.27777.
17
Shin HJ, Yoon H, Kim MJ, et al. Liver intravoxel incoherent motion diffusion-weighted imaging for the assessment of hepatic steatosis and fibrosis in children[J]. World J Gastroenterol, 2018, 24(27): 3013-3020. DOI: 10.3748/wjg.v24.i27.3013.
18
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
19
Hecht EM, Liu MZ, Prince MR, et al. Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma?[J]. J Magn Reson Imaging, 2017, 46(2): 393-402. DOI: 10.1002/jmri.25581.
20
Kim KA, Park MS, Kim IS, et al. Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 tesla MRI before and after oxygen inhalation[J]. J Magn Reson Imaging, 2012, 36(2): 405-410. DOI: 10.1002/jmri.23620.
21
Wang M, Gao F, Wang X, et al. Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis[J]. J Magn Reson Imaging, 2018, 48(3): 837-845. DOI: 10.1002/jmri.26008.
22
Shi Y, Gao F, Li Y, et al. Differentiation of benign and malignant solid pancreatic masses using magnetic resonance elastography with spin-echo echo planar imaging and three-dimensional inversion reconstruction: a prospective study[J]. Eur Radiol, 2018, 28(3): 936-945. DOI: 10.1007/s00330-017-5062-y.
23
Ji R, Li J, Yin Z, et al. Pancreatic stiffness response to an oral glucose load in obese adults measured by magnetic resonance elastography[J]. Magn Reson Imaging, 2018, 51(9): 113-119. DOI: 10.1016/j.mri.2018.04.019.
24
刘莹, 石喻, 于兵, 等. 比较MR弹性成像及动态增强成像评价肝硬化食管胃底静脉曲张 [J]. 中国医学影像技术, 2018, 34(1): 77-81. DOI: 10.13929/j.1003-3289.201703148.
Liu Y, Shi Y, Yu B, et al. Comparison of MR elastography and dynamic contrast-enhanced imaging in evaluation on gastroesophageal varices with liver cirrhosis[J]. Chin J Med Imaging Technol, 2018, 34(1): 77-81. DOI: 10.13929/j.1003-3289.201703148.
25
Gharib AM, Han MAT, Meissner EG, et al. Magnetic resonance elastography shear wave velocity correlates with liver fibrosis and hepatic venous pressure gradient in adults with advanced liver disease[J]. Biomed Res Int, 2017, 2017: 2067479. DOI: 10.1155/2017/2067479.
26
Kolipaka A, Schroeder S, Mo X, et al. Magnetic resonance elastography of the pancreas: Measurement reproducibility and relationship with age[J]. Magn Reson Imaging, 2017, 42(10): 1-7. DOI: 10.1016/j.mri.2017.04.015.
27
Everett RJ, Treibel TA, Fukui M, et al. Extracellular myocardial volume in patients with aortic stenosis[J]. J Am Coll Cardiol, 2020, 75(3): 304-316. DOI: 10.1016/j.jacc.2019.11.032.
28
Yang S, Chen H, Tan K, et al. Secreted frizzled-related protein 2 and extracellular volume fraction in patients with heart failure[J]. Oxid Med Cell Longev, 2020, 2020: 2563508. DOI: 10.1155/2020/2563508.
29
Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology[J]. Eur Heart J, 2012, 33(10): 1268-1278. DOI: 10.1093/eurheartj/ehr481.
30
Tirkes T, Lin C, Cui E, et al. Quantitative MR evaluation of chronic pancreatitis: Extracellular volume fraction and MR relaxometry[J]. AJR Am J Roentgenol, 2018, 210(3): 533-542. DOI: 10.2214/AJR.17.18606.
31
Deng Y, Zhao B, Yang M, et al. Association between the incidence of pancreatic fistula after pancreaticoduodenectomy and the degree of pancreatic fibrosis[J]. J Gastrointest Surg, 2018, 22(3): 438-443. DOI: 10.1007/s11605-017-3660-3662.
32
Ammann RW, Muellhaupt B. Progression of alcoholic acute to chronic pancreatitis[J]. Gut, 1994, 35(4): 552-556. DOI: 10.1136/gut.35.4.552.
33
Marzoq AJ, Mustafa SA, Heidrich L, et al. Impact of the secretome of activated pancreatic stellate cells on growth and differentiation of pancreatic tumour cells[J]. Sci Rep, 2019, 9(1): 7-30. DOI: 10.1038/s41598-019-41740-x.
34
Sherman MH. Stellate cells in tissue repair, inflammation, and cancer[J]. Annu Rev Cell Dev Biol, 2018, 34(1): 333-355. DOI: 10.1146/annurev-cellbio-100617-062855.
35
Tanaka HY, Kitahara K, Sasaki N, et al. Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness[J]. Biomaterials, 2019, 192(2): 355-367. DOI: 10.1016/j.biomaterials.2018.11.023.
36
Endo S, Nakata K, Ohuchida K, et al. Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice[J]. Gastroenterology, 2017, 152(6): 1492-1506. DOI: 10.1053/j.gastro.2017.01.010.
37
Pang TCY, Wilson JS, Apte MV. Pancreatic stellate cells: what's new?[J]. Curr Opin Gastroenterol, 2017, 33(5): 366-373. DOI: 10.1097/MOG.0000000000000378.
38
Liu HY, Greene T, Lin TY, et al. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells[J]. Acta Biomater, 2017, 48: 258-269. DOI: 10.1016/j.actbio.2016.10.027.
39
Xue J, Sharma V, Hsieh MH, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis[J]. Nat Commun, 2015, 6(1): 274-277. DOI: 10.1038/ncomms8158.
40
Lew D, Afghani E, Pandol S. Chronic pancreatitis: Current status and challenges for prevention and treatment[J]. Dig Dis Sci, 2017, 62(7): 1702-1712. DOI: 10.1007/s10620-017-4602-2.
41
Singh VK, Yadav D, Garg PK. Diagnosis and management of chronic pancreatitis: A review[J]. JAMA, 2019, 322(24): 2422-2434. DOI: 10.1001/jama.2019.19411.
42
Di Leo M, Leandro G, Singh SK, et al. Low alcohol and cigarette use is associated to the risk of developing chronic pancreatitis[J]. Pancreas, 2017, 46(2): 225-229. DOI: 10.1097/MPA.0000000000000737.
43
Alahmari AA, Sreekumar B, Patel V, et al. Cigarette toxin 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces experimental pancreatitis through α7 nicotinic acetylcholine receptors (nAChRs) in mice[J]. PLoS One, 2018, 13(6): e0197362. DOI: 10.1371/journal.pone.0197362.
44
Zhang X, Xin J, Shi Y, et al. Assessing activation of hepatic stellate cells by (99m)Tc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study[J]. Nucl Med Biol, 2015, 42(3): 250-255. DOI: 10.1016/j.nucmedbio.2014.11.007.
45
Wellner UF, Kayser G, Lapshyn H, et al. A simple scoring system based on clinical factors related to pancreatic texture predicts postoperative pancreatic fistula preoperatively[J]. HPB(Oxford), 2010, 12(10): 696-702. DOI: 10.1111/j.1477-2574.2010.00239.x.
46
Kim Z, Kim MJ, Kim JH, et al. Prediction of post-operative pancreatic fistula in pancreaticoduodenectomy patients using pre-operative MRI: a pilot study[J]. HPB (Oxford), 2009, 11(3): 215-221. DOI: 10.1111/j.1477-2574.2009.00011.x.
47
Tirkes T, Yadav D, Conwell DL, et al. Magnetic resonance imaging as a non-invasive method for the assessment of pancreatic fibrosis (MINIMAP): a comprehensive study design from the consortium for the study of chronic pancreatitis, diabetes, and pancreatic cancer[J]. Abdom Radiol (NY), 2019, 44(8): 2809-2821. DOI: 10.1007/s00261-019-02049-5.

上一篇 磁共振表观扩散系数在乳腺癌诊疗中应用价值的研究进展
下一篇 多参数和双参数磁共振评估前列腺癌的现状及展望
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2