分享:
分享到微信朋友圈
X
综述
阻塞性睡眠呼吸暂停低通气综合征患者颅脑磁共振成像研究进展
薛祺 郭兰田 章晶月

Cite this article as: Xue Q, Guo LT, Zhang JY. Research progress of brain magnetic resonance imaging in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2021, 12(11): 97-100.本文引用格式:薛祺, 郭兰田, 章晶月. 阻塞性睡眠呼吸暂停低通气综合征患者颅脑磁共振成像研究进展[J]. 磁共振成像, 2021, 12(11): 97-100. DOI:10.12015/issn.1674-8034.2021.11.024.


[摘要] 阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea hypopnea syndrome,OSAHS)作为一种常见的睡眠障碍性疾病,可能引起以中枢神经系统为主的多系统损伤,影响患者预后,主要的临床表现为碎片化睡眠和慢性间歇性缺氧。作者主要就OSAHS患者脑组织损伤的磁共振定量技术应用及研究进展进行综述,提高对该病的进一步认识,为临床诊断提供客观依据,指导临床尽早对其进行干预,减少各种并发症。
[Abstract] As a kind of common sleep disorders, obstructive sleep apnea hypopnea syndrome (OSAHS) may cause multi-system injury especially the central nervous system and seriously affect the prognosis of patients. The main clinical manifestations of OSAHS are fragmented sleep and chronic intermittent hypoxia. The application and research progress about magnetic resonance quantitative technology of brain injury in OSAHS patients were described, so as to improve the further understanding of the disease, provide objective basis for clinical diagnosis, guide clinical intervention as soon as possible, and reduce various complications.
[关键词] 阻塞性睡眠呼吸暂停低通气综合征;磁共振成像;中枢神经系统损伤;认知功能;人工智能
[Keywords] obstructive sleep apnea hypopnea syndrome;magnetic resonance imaging;central nervous system injury;cognitive function;artificial intelligence

薛祺 1, 2   郭兰田 1, 2*   章晶月 1, 2  

1 滨州医学院附属医院放射科,滨州 256603

2 滨州医学院医学影像学院,烟台 264003

郭兰田,E-mail:byfyglt@163.com

全体作者均声明无利益冲突。


收稿日期:2021-04-21
接受日期:2021-08-06
DOI: 10.12015/issn.1674-8034.2021.11.024
本文引用格式:薛祺, 郭兰田, 章晶月. 阻塞性睡眠呼吸暂停低通气综合征患者颅脑磁共振成像研究进展[J]. 磁共振成像, 2021, 12(11): 97-100. DOI:10.12015/issn.1674-8034.2021.11.024.

       阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea hypopnea syndrome,OSAHS)是患者睡眠过程中出现上呼吸道狭窄或呼吸肌无力而引起的一种睡眠性疾病,主要特征为呼吸暂停和低通气反复发作[1]。OSAHS患者出现的慢性间歇性缺氧[2]以及高碳酸血症导致动脉血压发生实质性变化,并发多种脑血管疾病[3]和记忆减退[4]。OSAHS患者存在脑神经元的损伤[5]、海马的萎缩以及髓鞘的脱失[6]。有病理研究结果显示OSAHS大鼠的海马出现神经元的数量变少、体积减小和排列紊乱等缺血缺氧相关的脑损伤[7]。磁共振常规序列在评估OSAHS患者脑组织损伤方面受到极大的限制,笔者主要就基于体素形态测量学(based on voxel morphometry,VBM)、扩散张量成像(diffusion tensor imaging,DTI)、扩散峰度成像(diffusion kurtosis imaging,DKI)、磁化转移成像(magnetic transfer imaging,MTI)、三维动脉自旋标记成像(three-dimensional arterial spin labeling,3D-ASL)、静息态-功能磁共振成像(resting state - functional magnetic resonance imaging,rs-fMRI)和磁共振波谱成像(magnetic resonance spectroscopy imaging,MRS)等多种磁共振序列在OSAHS患者脑损伤方面的研究进展进行综述,为指导临床进一步诊断和治疗提供科学的依据。

1 VBM

       VBM是一种在体素水平上分析活体组织形态的测量方法,通过局部组织的体积的变化来评价其形态的改变。VBM的主要优势在于它可以对脑组织体积与密度差异进行全面、客观的评价,而没有主观上的偏倚[8]

       有研究发现OSAHS患者存在与体质指数[9]、蒙特利尔认知评估分数、睡眠结构和动脉血氧饱和度[10]等指标变化有关的局部脑灰质的萎缩[11, 12]。海马作为脑内参与认知活动的主要结构在OSAHS患者中存在性别的差异[13]。Musso等[14]还发现OSAHS患儿的局部脑白质也出现一定程度的萎缩。Baril等[15]研究结果显示OSAHS患者存在与慢性缺氧以及碎片化睡眠相关的脑灰质体积的异常,表明患者存在脑组织的损伤和适应性改变。Lin等[16]利用VBM算法研究OSAHS患者治疗前、后的前扣带回灰质体积变化,结果显示该区灰质萎缩情况一直存在,表明部分患者脑损伤不能逆转。VBM不仅能显示OSAHS患者早期的脑实质体积变化,还可以一定程度上反映认知功能及其他临床指标的变化,具有一定的临床诊断价值。

2 扩散成像

2.1 DTI

       DTI是一种评价大脑白质纤维束改变的新型无创成像的技术,可以显示常规磁共振序列不能发现的脑组织损伤。DTI通过检测脑组织内水分子的扩散运动显示神经纤维束形态改变,从而定量评估脑白质完整性变化情况[17]

       Lee等[18]认为OSAHS患者局部脑区的DTI相关参数改变以及伪彩图上部分纤维束形态改变,代表患者存在局部脑损伤。有研究显示OSAHS患者胼胝体前亚区出现径向扩散率、平均扩散系数的升高、各向异性分数(fractional anisotropy,FA)的减低[19]以及右额叶钩束FA值的减低[20],研究还证实了患者存在的认知功能减退与胼胝体前亚区[19]、右额叶钩束[20]结构改变有关,表明DTI相关指标改变可以提示患者的认知状况。还有研究显示患者病情的严重程度和白细胞的凋亡水平[21]、精神运动警觉任务和Epworth嗜睡量表得分[22]以及与压力反射敏感度[23]也与脑组织微结构变化相关的脑损伤过程有关。Macey等[24]发现女性OSAHS患者的白天嗜睡、焦虑和抑郁等临床症状以及脑白质微结构完整性损伤等方面较男性患者更明显。Maresky等[25]利用DTI定量评估OSAHS患者的治疗效果,局部脑区的部分指标较治疗前恢复,表明患者出现的部分脑白质损伤是可逆的,而DTI可以评估这种损伤以及疾病进展情况。DTI的脑白质纤维束评估可以比较形象地评价脑白质的变化,随着技术与参数的不断完善,DTI在临床应用与研究上有很好的发展前景。

2.2 DKI

       活体组织复杂的细微结构使得水分子在高度异构的环境中运动偏离正态分布[26],DKI作为DTI的扩展,在评估脑损伤方面比DTI更加敏感,可以通过评估这种水分子的非正态分布而反映脑实质微观结构的变化[27]。峰度各向异性对脑组织的微观结构变化非常敏感,主要衡量局部脑组织微结构各方向的总体变化[28]。活体组织内水分子扩散的平均峰值(mean kurtosis,MK)变化越显著,扩散所受的限制越大,对脑组织早期损伤情况较敏感,但不能反映损伤的方向[29]。轴向峰度(axial kurtosis,AK)和径向峰度(radial kurtosis,RK)可以分别反映轴突的轴向变化和髓鞘的径向变化。DKI也存在不足,各参数图像极易受磁场影响,但随着场强的增高,技术的完善,可以很大程度地减少这种影响。

       DKI在反映白质及灰质微结构变化方面有很大的优势,Rostampour等[30]发现OSAHS患者部分脑区参数异常提示脑组织微结构发生变化。OSAHS患者局部脑区存在AK、RK值[31]和MK值[32]增高,提示患者轴突与髓鞘微结构改变参与的急性脑组织损伤。近年来,DKI已广泛应用于脑肿瘤、脑血管疾病以及其他中枢系统疾病中,而OSAHS脑损伤相关的DKI研究相对较少。DKI对脑组织微结构改变的敏感性较高,对于常规序列难以发现的OSAHS患者脑损伤的研究价值较高。

3 MTI

       基于非共振射频脉冲,MTI可以降低正常组织的信号强度即组织抑制,提高磁共振图像对比度[33],通过测量施加脉冲前后的信号强度变化即磁化转移比,检测脉冲对磁共振成像信号的影响,评估脑实质完整性的改变[34]

       MTI对OSAHS患者脑组织微结构变化的敏感性较高,Tummala等[35]发现OSAHS患者多个脑区的磁化转移值较对照组降低,表明患者存在脑组织微结构的变化。MTI相关的OSAHS研究比较少见,有一定的临床诊断价值和前景,值得临床进一步研究。

4 3D-ASL

       OSAHS患者反复间歇性缺氧可导致局部脑血流(cerebral blood flow,CBF)发生变化,而3D-ASL作为一种无创的磁共振成像技术[36],可以利用体内磁性标记的血液作为流动示踪剂来定量评估这种脑血流变化[37]。但CBF功能图显示解剖能力较弱,必须将其与解剖图融合才能对局部脑血流灌注情况进行分析。

       研究发现OSAHS患者局部脑白质灌注减低与呼吸暂停低通气指数(apnea hypopnea index,AHI)和认知功能[38]、白细胞凋亡水平[39]以及唤醒指数[40]有关,提示局部脑血流减低可能参与患者脑损伤的作用机制。Ponsaing等[41]发现OSAHS患者局部CBF随着CO2改变而变化,而且这种变化与AHI呈反比,提示OSAHS患者大脑对CO2刺激的反应较对照组减低。3D-ASL可以很好地反映OSAHS患者的脑损伤、血氧饱和度和认知情况,评估疾病进展及预后。

5 rs-fMRI

       作为一种新型非侵入性功能磁共振成像技术,rs-fMRI通过检测静息状态下脑内血液中的氧合血红蛋白(oxyhemoglobin,HbO2)水平来检测局部神经元的自发性活动变化[42]

       研究发现OSAHS患者杏仁核亚区[43]、海马体、尾状核[44]和岛叶[45]与其他脑区之间存在默认模式网络、显著性网络和中央执行网络的异常功能连接,而AHI增加、血氧饱和度减低以及认知减退均与这种异常的功能连接有关[46, 47, 48],以上研究均表明脑内的异常功能连接参与患者中枢神经系统损伤过程。Chen等[49]发现大脑的小世界属性存在显著变化,在某一稀疏度范围内与AHI显著相关,表明OSAHS患者的脑损伤与大脑网络小世界拓扑变化有关,而rs-fMRI可以通过相应指标很好地反映这种细微的损伤。低频振荡振幅和局部一致性主要用来反映局部神经元活动特征,OSAHS患者包括双侧后扣带回及左额下回在内的部分脑区存在二者的改变,提示患者存在神经元自发性活动减少相关的脑损伤以及代偿性脑改变[50, 51],其中OSAHS患者存在的局部一致性减低提示患者神经元受到一定的损伤[52]。Thiel等[53]发现OSAHS患者经过持续正压通气后的脑血管反应较前增加,表明患者部分神经元的损伤可以逆转。rs-fMRI可以从多个角度反映OSASH患者神经元的活动情况,评价脑组织的损伤与转归,为临床应用与研究提供新的诊断思路。

6 MRS

       MRS作为一种反映代谢物变化的非侵入性的成像方法,可以利用H原子在不同化合物中不同的共振频率来分析活体组织化合物的成分与含量变化[54],从而提高诊断的特异性。MRS也存在不足,单体素时易出现基线不稳,多体素时较易受磁场不均匀性影响,但随着影像技术的不断完善,这些不足可以克服。MRS主要通过检测出N-乙酰天门冬氨酸、肌酸、胆碱和谷氨酸盐等多种代谢产物来反映局部脑组织的代谢情况[55]

       Kang等[56]发现OSAHS患者部分脑区的代谢指标出现异常,例如岛叶的代谢产物的变化,提示该区存在代谢相关的神经元损伤的情况,患者海马区代谢产物的变化与蒙特利尔认知评估得分[57]和简易智能精神状态检查量表评分[58]相关。以上研究可以证明患者出现的局部脑区代谢变化参与脑神经元损伤,而认知障碍与这种损伤有关,也说明MRS指标的变化可以提示患者认知状况,具有很好的临床诊疗价值。穆新暖等[59]发现正压通气治疗后患者额叶的代谢指标较治疗前有所增高,提示患者脑代谢相关的脑组织损伤是可以恢复的,而MRS可以敏感地反映这种变化过程。

       人工智能(artificial intelligence,AI)在中枢系统疾病方面的研究已有很好的进展,它可以从稳定的轻度认知障碍患者中辨别进行性轻度认知障碍。AI作为新的计算机辅助工具与磁共振技术相结合,利用其在图像诊断的优势,可以更加准确地评估患者脑组织损伤情况,减少偏倚,提高疾病诊断效率和数据的可信性,指导临床进一步干预,减少不良后果的发生。

       OSAHS患者脑组织损伤是一个长期、渐进的发展过程,早期发现并对其进行干预对患者的预后至关重要,而多模态磁成像能够全面地反映OSAHS患者早期难以发现的脑损伤。AI联合多模态成像模式在OSAHS患者中枢神经系统损伤的研究中有很好的发展前景,这种模式不断完善、发展,必将成为大势所趋。

[1]
Sharples LD, Clutterbuck-James AL, Glover MJ, et al. Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoea-hypopnoea[J]. Sleep Med Rev, 2016, 27: 108-124. DOI: 10.1016/j.smrv.2015.05.003.
[2]
Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier[J]. Sleep Med Rev, 2014, 18(1): 35-48. DOI: 10.1016/j.smrv.2012.12.003.
[3]
Koo DL, Nam H, Thomas RJ, et al. Sleep disturbances as a risk factor for stroke[J]. J Stroke, 2018, 20(1): 12-32. DOI: 10.5853/jos.2017.02887.
[4]
Dimitrova M, Genov K. Global cognitive performance and assessment of memory functions in obstructive sleep apnea[J]. Folia Med (Plovdiv), 2020, 62(3): 539-545. DOI: 10.3897/folmed.62.e49694.
[5]
Gozal D. CrossTalk proposal: the intermittent hypoxia attending severe obstructive sleep apnoea does lead to alterations in brain structure and function[J]. J Physiol, 2013, 591(2): 379-381. DOI: 10.1113/jphysiol.2012.241216.
[6]
Owen JE, BenediktsdÓttir B, Gislason T, et al. Neuropathological investigation of cell layer thickness and myelination in the hippocampus of people with obstructive sleep apnea[J]. Sleep, 2019, 42(1): 199. DOI: 10.1093/sleep/zsy199.
[7]
史艳红, 徐平, 宋凯英, 等. 阻塞性睡眠呼吸暂停综合征大鼠海马病理改变及caspase-3的表达[J]. 中国神经精神疾病杂志, 2013, 39(8): 496-499. DOI: 10.3936/j.issn.1002-0152.2013.08.011.
Shi YH, Xu P, Song KY, et.al. Pathological changes and expression of caspase-3 in hippocampus of rats with obstructive sleep apnea syndrome[J]. Chin J Nerv Ment Dis, 2013, 39(8): 496-499. DOI: 10.3969/j.issn.1002-0152.2013.08.011.
[8]
Ashburner J, Friston KJ. Voxel-based morphometry--the methods[J]. Neuroimage, 2000, 11(6Pt 1): 805-821. DOI: 10.1006/nimg.2000.0582.
[9]
Huang X, Tang S, Lyu XJ, et al. Structural and functional brain alterations in obstructive sleep apnea: a multimodal meta-analysis[J]. Sleep Med, 2019, 54: 195-204. DOI: 10.1016/j.sleep.2018.09.025.
[10]
李海军, 辛会珍, 余宏辉, 等. 基于 VBM-DARTEL 方法研究男性重度阻塞性睡眠呼吸暂停患者大脑灰质体积变化与认知功能的关系[J]. 中国医学影像学杂志, 2020, 28(12): 918-922. DOI: 10.3969/j.issn.1005-5185.2020.12.009.
Li HJ, Xin HZ, Yu HH, et.al. Correlation between gray matter volume change and cognitive function in male severe obstructive sleep apnea: a voxel-based morphology-DARTEL study[J]. Chin J Med Imaging, 2020, 28(12): 918-922. DOI: 10.3969/j.issn.1005-5185.2020.12.009.
[11]
Macey PM, Haris N, Kumar R, et al. Obstructive sleep apnea and cortical thickness in females and males[J]. PLoS One, 2018, 13(3): e0193854. DOI: 10.1371/journal.pone.0193854.
[12]
Tahmasian M, Rosenzweig I, Eickhoff SB, et al. Structural and functional neural adaptations in obstructive sleep apnea: an activation likelihood estimation meta-analysis[J]. Neurosci Biobehav Rev, 2016, 65: 142-156. DOI: 10.1016/j.neubiorev.2016.03.026.
[13]
Macey PM, Prasad JP, Ogren JA, et al. Sex-specific hippocampus volume changes in obstructive sleep apnea[J]. Neuroimage Clin, 2018, 20: 305-317. DOI: 10.1016/j.nicl.2018.07.027.
[14]
Musso MF, Lindsey HM, Wilde EA, et al. Volumetric brain magnetic resonance imaging analysis in children with obstructive sleep apnea[J]. Int J Pediatr Otorhinolaryngol, 2020, 138: 110369. DOI: 10.1016/j.ijporl.2020.110369.
[15]
Baril AA, Gagnon K, Brayet P, et al. Gray matter hypertrophy and thickening with obstructive sleep apnea in middle-aged and older adults[J]. Am J Respir Crit Care Med, 2017, 195(11): 1509-1518. DOI: 10.1164/rccm.201606-1271OC.
[16]
Lin WC, Huang CC, Chen HL, et al. Longitudinal brain structural alterations and systemic inflammation in obstructive sleep apnea before and after surgical treatment[J]. J Transl Med, 2016, 14(1): 139. DOI: 10.1186/s12967-016-0887-8.
[17]
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994, 66(1): 259-267. DOI: 10.1016/s0006-3495(94)80775-1.
[18]
Lee MH, Yun CH, Min A, et al. Altered structural brain network resulting from white matter injury in obstructive sleep apnea[J]. Sleep, 2019, 42(9): DOI:10.1093/sleep/zsz120.
[19]
Zhang B, Zhu DM, Zhao W, et al. Selective microstructural integrity impairments of the anterior corpus callosum are associated with cognitive deficits in obstructive sleep apnea[J]. Brain Behav, 2019, 9(12): e01482. DOI: 10.1002/brb3.1482.
[20]
Koo DL, Kim HR, Kim H, et al. White matter tract-specific alterations in male patients with untreated obstructive sleep apnea are associated with worse cognitive function[J]. Sleep, 2020, 43(3): zsz247. DOI: 10.1093/sleep/zsz247.
[21]
Chen HL, Lu CH, Lin HC, et al. White matter damage and systemic inflammation in obstructive sleep apnea[J]. Sleep, 2015, 38(3): 361-370. DOI: 10.5665/sleep.4490.
[22]
Xiong Y, Zhou XJ, Nisi RA, et al. Brain white matter changes in CPAP-treated obstructive sleep apnea patients with residual sleepiness[J]. J Magn Reson Imaging, 2017, 45(5): 1371-1378. DOI: 10.1002/jmri.25463.
[23]
Chen HL, Huang CC, Lin HC, et al. White matter alteration and autonomic impairment in obstructive sleep apnea[J]. J Clin Sleep Med, 2020, 16(2): 293-302. DOI: 10.5664/jcsm.8186.
[24]
Macey PM, Kumar R, Yan-Go FL, et al. Sex differences in white matter alterations accompanying obstructive sleep apnea[J]. Sleep, 2012, 35(12): 1603-1613. DOI: 10.5665/sleep.2228.
[25]
Maresky HS, Shpirer I, Klar MM, et al. Continuous positive airway pressure alters brain microstructure and perfusion patterns in patients with obstructive sleep apnea[J]. Sleep Med, 2019, 57: 61-69. DOI: 10.1016/j.sleep.2018.12.027.
[26]
Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain[J]. AJR Am J Roentgenol, 2014, 202(1): W26-33. DOI: 10.2214/AJR.13.11365.
[27]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[28]
Vyas S, Singh P, Khandelwal N, et al. Evaluation of cerebral microstructural changes in adult patients with obstructive sleep apnea by MR diffusion kurtosis imaging using a whole-brain atlas[J]. Indian J Radiol Imaging, 2019, 29(4): 356-363. DOI: 10.4103/ijri.IJRI_326_19.
[29]
Hui ES, Cheung MM, Qi L, et al. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis[J]. Neuroimage, 2008, 42(1): 122-134. DOI: 10.1016/j.neuroimage.2008.04.237.
[30]
Rostampour M, Noori K, Heidari M, et al. White matter alterations in patients with obstructive sleep apnea: a systematic review of diffusion MRI studies[J]. Sleep Med, 2020, 75: 236-245. DOI: 10.1016/j.sleep.2020.06.024.
[31]
Tummala S, Roy B, Vig R, et al. Non-gaussian diffusion imaging shows brain myelin and axonal changes in obstructive sleep apnea[J]. J Comput Assist Tomogr, 2017, 41(2): 181-189. DOI: 10.1097/RCT.0000000000000537.
[32]
Tummala S, Palomares J, Kang DW, et al. Global and regional brain non-gaussian diffusion changes in newly diagnosed patients with obstructive sleep apnea[J]. Sleep, 2016, 39(1): 51-57. DOI: 10.5665/sleep.5316.
[33]
Wolff SD, Balaban RS. Magnetization transfer imaging: practical aspects and clinical applications[J]. Radiology, 1994, 192(3): 593-599. DOI: 10.1148/radiology.192.3.8058919.
[34]
Grossman RI, Gomori JM, Ramer KN, et al. Magnetization transfer: theory and clinical applications in neuroradiology[J]. Radiographics, 1994, 14(2): 279-290. DOI: 10.1148/radiographics.14.2.8190954.
[35]
Tummala S, Roy B, Park B, et al. Associations between brain white matter integrity and disease severity in obstructive sleep apnea[J]. J Neurosci Res, 2016, 94(10): 915-923. DOI: 10.1002/jnr.23788.
[36]
Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging[J]. Neurotherapeutics, 2007, 4(3): 346-359. DOI: 10.1016/j.nurt.2007.04.005.
[37]
Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain[J]. J Magn Reson Imaging, 2015, 41(5): 1165-1180. DOI: 10.1002/jmri.24751.
[38]
毛新峰, 赵育英, 姚丽娣, 等. 三维动脉自旋标记在重度 OSAS 患者脑白质灌注异常及认知功能障碍的研究[J]. 中华全科医学, 2019, 17(6): 1004-1007. DOI: 10.16766/j.cnki.issn.1674-4152.000848.
Mao XF, Zhao YY, Yao LD, et.al. Study of three dimensiona arterial spin labeling in white matter perfusion change and cognitive impairment of patients with severe OSAS[J]. Chin Gen Pract, 2019, 17(6): 1004-1007. DOI: 10.16766/j.cnki.issn.1674-4152.000848.
[39]
Chen HL, Lin HC, Lu CH, et al. Systemic inflammation and alterations to cerebral blood flow in obstructive sleep apnea[J]. J Sleep Res, 2017, 26(6): 789-798. DOI: 10.1111/jsr.12553.
[40]
Nie S, Peng DC, Gong HH, et al. Resting cerebral blood flow alteration in severe obstructive sleep apnoea: an arterial spin labelling perfusion fMRI study[J]. Sleep Breath, 2017, 21(2): 487-495. DOI: 10.1007/s11325-017-1474-9.
[41]
Ponsaing LB, Lindberg U, Rostrup E, et al. Impaired cerebrovascular reactivity in obstructive sleep apnea: a case-control study[J]. Sleep Med, 2018, 43: 7-13. DOI: 10.1016/j.sleep.2017.10.010.
[42]
Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[43]
Yu HH, Chen LT, Li HJ, et al. Abnormal resting-state functional connectivity of amygdala subregions in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2019, 15: 977-987. DOI: 10.2147/ndt.s191441.
[44]
Song XP, Roy B, Kang DW, et al. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea[J]. Brain Behav, 2018, 8(6): e00994. DOI: 10.1002/brb3.994.
[45]
Park B, Palomares JA, Woo MA, et al. Aberrant insular functional network integrity in patients with obstructive sleep apnea[J]. Sleep, 2016, 39(5): 989-1000. DOI: 10.5665/sleep.5738.
[46]
Chen LT, Fan XL, Li HJ, et al. Aberrant brain functional connectome in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2018, 14: 1059-1070. DOI: 10.2147/ndt.s161085.
[47]
Chen LT, Fan XL, Li HJ, et al. Topological reorganization of the default mode network in severe male obstructive sleep apnea[J]. Front Neurol, 2018, 9: 363. DOI: 10.3389/fneur.2018.00363.
[48]
Chang YT, Chen YC, Chen YL, et al. Functional connectivity in default mode network correlates with severity of hypoxemia in obstructive sleep apnea[J]. Brain Behav, 2020, 10(12): e01889. DOI: 10.1002/brb3.1889.
[49]
Chen LT, Fan XL, Li HJ, et al. Disrupted small-world brain functional network topology in male patients with severe obstructive sleep apnea revealed by resting-state fMRI[J]. Neuropsychiatr Dis Treat, 2017, 13: 1471-1482. DOI: 10.2147/ndt.s135426.
[50]
Li HJ, Dai XJ, Gong HH, et al. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI[J]. Neuropsychiatr Dis Treat, 2015, 11: 207-214. DOI: 10.2147/ndt.s73730.
[51]
秦粽园, 鲍海华, 康东杰, 等. 阻塞性睡眠呼吸暂停低通气综合征的脑ReHo和ALFF研究[J]. 磁共振成像, 2018, 9(09): 648-654. DOI: 10.12015/issn.1674-8034.2018.09.002.
Qin ZY, Bao HH, Kang DJ, et al. ReHo and ALFF studies in the brain of patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2018, 9(09): 648-654. DOI: 10.12015/issn.1674-8034.2018.09.002.
[52]
Zhou L, Shan XX, Peng YT, et al. Reduced regional homogeneity and neurocognitive impairment in patients with moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2020, 75: 418-427. DOI: 10.1016/j.sleep.2020.09.009.
[53]
Thiel S, Lettau F, Rejmer P, et al. Effects of short-term continuous positive airway pressure withdrawal on cerebral vascular reactivity measured by blood oxygen level-dependent magnetic resonance imaging in obstructive sleep apnoea: a randomised controlled trial[J]. Eur Respir J, 2019, 53(2): 1801854. DOI: 10.1183/13993003.01854-2018.
[54]
Tran T, Ross B, Lin A. Magnetic resonance spectroscopy in neurological diagnosis[J]. Neurol Clin, 2009, 27(1): 21-60, xiii. DOI: 10.1016/j.ncl.2008.09.007.
[55]
McLean MA, Cross JJ. Magnetic resonance spectroscopy: principles and applications in neurosurgery[J]. Br J Neurosurg, 2009, 23(1): 5-13. DOI: 10.1080/02688690802491673.
[56]
Kang J, Tian ZS, Li MX. Changes in insular cortex metabolites in patients with obstructive sleep apnea syndrome[J]. Neuroreport, 2018, 29(12): 981-986. DOI: 10.1097/WNR.0000000000001065.
[57]
黄志强, 尤红, 谢宇平, 等. 成人OSAHS患者认知功能障碍影响因素及海马区磁共振波谱成像临床价值研究[J]. 中风与神经疾病杂志, 2017, 34(10): 876-879. DOI: 10.19845/j.cnki.zfysjjbzz.2017.10.003.
Huang ZQ, You H, Xie YP, et al. Influence of cognitive dysfunction in adult patients with obstructive sleep apnea-hypopneasyndrome and clinical value study of magnetic resonance spectroscopy of hippocampus region[J]. J Apoplexy Nerv Dis, 2017, 34(10): 876-879. DOI: 10.19845/j.cnki.zfysjjbzz.2017.10.003.
[58]
张文文, 赵莲萍, 谢宇平, 等. 阻塞型睡眠呼吸暂停低通气综合征患者海马MRS参数与认知功能的相关性[J]. 中国医学影像技术, 2019, 35(8): 1175-1179. DOI: 10.13929/j.1003-3289.201811134.
Zhang WW, Zhao LP, Xie YP, et al. Correlation of hippocampal MRS metabolites and cognitive function in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Med Imaging Technol, 2019, 35(8): 1175-1179. DOI: 10.13929/j.1003-3289.201811134.
[59]
穆新暖, 王滨, 刘泉源, 等. 初步探索用多体素质子磁共振波谱揭示CPAP治疗中重度OSAHS男性患者的疗效[J]. 磁共振成像, 2016, 7(02): 102-106. DOI: 10.3969/issn.1674-8034.2016.02.004.
Mu XN, Wang B, Liu QY, et al. Preliminary using multivoxel 1H-MRS to reveals the effect of CPAP treatment in moderate and severe OSAHS patients[J]. Chin J Magn Reson Imaging, 2016, 7(02): 102-106. DOI: 10.3969/issn.1674-8034.2016.02.004.

上一篇 遗忘型轻度认知障碍的磁共振成像研究进展
下一篇 产后抑郁症患者脑磁共振成像研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2