分享:
分享到微信朋友圈
X
临床研究
集成磁共振成像在轻微型肝性脑病临床应用中的初探
刘文潇 党佩 杨旭宏 王明磊 赵建国 葛鑫 吕瑞瑞 雍鹏 王晓东

Cite this article as: Liu WX, Dang P, Yang XH, et al. A preliminary study of synthetic magnetic resonance imaging in the clinical application of minimal hepatic encephalopathy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 6-10, 16.本文引用格式:刘文潇, 党佩, 杨旭宏, 等. 集成磁共振成像在轻微型肝性脑病临床应用中的初探[J]. 磁共振成像, 2022, 13(5): 6-10, 16. DOI:10.12015/issn.1674-8034.2022.05.002.


[摘要] 目的 探究集成磁共振成像(synthetic magnetic resonance imaging,SyMRI)技术对轻微型肝性脑病(minimal hepatic encephalopathy,MHE)患者脑实质内特定区域弛豫值、质子密度(proton density,PD)值定量检测的价值。材料与方法 前瞻性纳入2020年8月至2021年11月在宁夏医科大学总医院感染疾病科经临床诊断为肝硬化的住院患者并根据神经精神量表筛选出MHE患者23名为MHE组。同期招募年龄、性别及受教育程度等相匹配的健康志愿者20名为健康对照(healthy control,HC)组。所有受试者均在3.0 T MRI扫描仪上行SyMRI扫描,选取双侧尾状核、壳核、苍白球、背侧丘脑及额叶白质为感兴趣区(region of interest,ROI),并分别测量T1、T2及PD值。采用组内相关系数(intraclass correlation coefficient,ICC)评价观察者间数据测量的一致性,采用Mann-Whitney U秩和检验对MHE组及HC组T1、T2及PD值进行比较并统计其在两组间的差异及诊断效能。结果 两名医师对脑实质各ROI的T1、T2及PD值测量的一致性较好,ICC值分别为0.863、0.822、0.816。除双侧额叶白质外,MHE组较HC组部分亚区T1、T2及PD值降低,差异具有统计学意义(P<0.05)。T1值中双侧壳核、右侧苍白球在MHE组及HC组间差异具有统计学意义;T2值中右侧尾状核、双侧壳核及左侧苍白球在MHE组及HC组间差异具有统计学意义;PD值中右侧壳核在MHE组及HC组间差异具有统计学意义。与HC组相比,MHE组双侧额叶T1值及PD值升高,差异具有统计学意义(P<0.05)。右侧额叶的PD值诊断效能最高,受试者工作特征曲线下面积为0.901。结论 SyMRI对MHE患者各脑区弛豫值具有较好的定量能力,其T1、T2及PD值在检出MHE患者中有一定的潜在价值。
[Abstract] Objective To investigate the value of the synthetic magnetic resonance imaging (SyMRI) technique for the quantitative detection of relaxation values and proton density (PD) values in specific regions within the brain parenchyma of minimal hepatic encephalopathy (MHE) patients.Materials and Methods Twenty-three patients with MHE were collected from August 2020 to November 2021 from inpatients clinically diagnosed with cirrhosis at the Department of Infectious Diseases, General Hospital of Ningxia Medical University and screened according to the neuropsychiatric inventory. During the same period, 20 healthy volunteers with comparable matches for age, gender and education were collected. All subjects underwent SyMRI scans on a 3.0 T MRI scanner, and caudate nucleus, putamen, globus pallidus, thalamus and frontal white matter were selected as region of interest (ROIs), and T1, T2 and PD values were measured. The intraclass correlation coefficient (ICC) was used to evaluate the interobserver agreement of data measurements, and the Mann-Whitney U test was used to compare the T1, T2 and PD values between the MHE and healthy control (HC) groups and to count the differences between the MHE-HC groups and their diagnostic efficacy.Results There was good agreement between the two physicians on the measurement of T1, T2 and PD values for each ROI of the brain parenchyma, with ICC values of 0.863, 0.822 and 0.816, respectively. Except for the bilateral frontal white matter, the T1, T2, and PD values of some subregions in the MHE group were lower than those in the HC group, and the differences were statistically significant (P<0.05). The T1 values of bilateral putamen and right globus pallidus were statistically significant between the MHE and HC groups; the T2 values of the right caudate nucleus, bilateral putamen and left globus pallidus were statistically significant between the MHE and HC groups; the PD values of right putamen were statistically significant between the MHE and HC groups. Compared with the HC group, the T1 and PD values of bilateral frontal white matter were higher in the MHE group, and the difference was statistically significant (P<0.05). The diagnostic efficacy of PD values was highest in the right frontal white matter, and the area under the working characteristic curve of the subjects was 0.901.Conclusion SyMRI has a good quantitative ability for relaxation values in various brain regions in patients with MHE, and its T1, T2 and PD values have some potential value in detecting patients with MHE.
[关键词] 轻微型肝性脑病;集成磁共振成像;质子密度;弛豫值;诊断效能
[Keywords] minimal hepatic encephalopathy;synthetic magnetic resonance imaging;proton density;relaxometry;diagnostic efficacy

刘文潇 1   党佩 2   杨旭宏 1   王明磊 2   赵建国 2   葛鑫 1   吕瑞瑞 1   雍鹏 1   王晓东 2, 3*  

1 宁夏医科大学临床医学院,银川 750001

2 宁夏医科大学总医院放射科,银川 750001

3 宁夏医科大学颅脑疾病重点实验室,银川 750001

王晓东,E-mail:xdw80@yeah.net


基金项目: 宁夏回族自治区科技重点研究计划 2019BEG03037 宁夏医科大学颅脑疾病重点实验室神经科学优势学科群 LNKF202109 2022年度宁夏回族自治区自然科学基金项目 2022AAC03487
收稿日期:2022-01-13
接受日期:2022-04-14
中图分类号:R445.2  R747.9  R575.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.05.002
本文引用格式:刘文潇, 党佩, 杨旭宏, 等. 集成磁共振成像在轻微型肝性脑病临床应用中的初探[J]. 磁共振成像, 2022, 13(5): 6-10, 16. DOI:10.12015/issn.1674-8034.2022.05.002.

       轻微型肝性脑病(minimal hepatic encephalopathy,MHE)是肝性脑病(hepatic encephalopathy,HE)中最早最轻微的阶段,约占肝硬化患者的30%~84%[1],隐匿性较强。若不及时采取干预措施,随着时间及病情的发展,易进展为显性肝性脑病(overt hepatic encephalopathy,OHE),生存率也逐年降低[2],这不仅降低了患者的生活质量也增加了社会隐患,因此及早对MHE患者进行筛查诊断并及时进行干预治疗显得尤为重要。目前诊断MHE尚缺乏统一“金标准”,临床诊断MHE的方法主要包括神经精神量表及脑电图等。然而神经精神量表易受年龄、教育程度及不同文化背景的影响,在选择受试者时阻力较大[3]。脑电图的改变与病情程度存在一定相关性,但只有在严重HE患者中才能检测出典型的脑电图改变[1],敏感度较低。传统磁共振技术对HE尚无特异性诊断指标,由此目前临床迫切需要简易且客观性较好的影像学检查手段对MHE进行辅助诊断。

       近些年随着神经影像学的发展,集成磁共振成像(synthetic magnetic resonance imaging,SyMRI)技术的问世为我们对MHE患者的筛查提供了新的思路。SyMRI可在4~6 min的扫描时间里实现全脑的覆盖并获得10种对比加权图像,完成弛豫时间(T1、T2)及质子密度(proton density,PD)值的定量分析,并为组织特性的绝对定量评估提供一个绝对尺度[4, 5, 6],极大丰富了临床对疾病的诊断信息,并为疾病提供更加客观的评价。本研究是基于SyMRI技术定量MHE患者及健康志愿者各脑区间弛豫时间及PD值的差异,探讨SyMRI技术在筛查MHE方面的临床价值,为临床早期筛查诊断MHE提供新的思路。

1 材料与方法

1.1 一般资料

       本研究前瞻性纳入2020年8月至2021年11月期间宁夏医科大学总医院感染疾病科收住的肝硬化患者。纳入标准:(1)经临床实验室指标及影像学检查确诊的肝硬化患者;(2)年龄35~55岁[7, 8];(3)受教育年限≥6年。排除标准:(1)脑外伤、卒中、肿瘤的患者;(2)其他神经精神疾病或药物成瘾;(3)其他慢性代谢性疾病;(4) MRI检查禁忌证。采用神经精神量表中数字连接试验(number connection test,NCT-A)及数字符号试验(digit symbol test,DST)[1]对45名肝硬化患者进行MHE的筛查,最终有23名患者入组(MHE组)。同期向社会招募年龄、性别、受教育程度相匹配的健康志愿者20名为健康对照(healthy control,HC)组。所有受试者均行SyMRI序列扫描。本研究经宁夏医科大学总医院伦理委员会批准,批准文号:KYLL-2021-474,所有受试者均签署知情同意书。

1.2 MR扫描方法

       所有受试者MRI检查均使用美国GE Architect 3.0 T MRI设备,48通道头部线圈进行扫描。受试者取仰卧位,扫描前嘱受试者尽量保持安静休息状态,以海绵固定头部以减少头动。所有受试者均行MAGIC (magnetic resonance imaging compilation)序列扫描(图1)。扫描参数:视场角240 mm×240 mm,矩阵320×256,层厚6 mm,层间距1.5 mm,回波链长度16,带宽22.73,激励次数1,层数20,时间3 min 38 s。

图1  1A~1F:男,54岁,乙型肝炎10年余,临床诊断为慢性乙肝肝硬化伴轻微型肝性脑病(minimal hepatic encephalopathy,MHE);1G~1L:健康志愿者,男,49岁;1A~1F、1G~1L分别为MHE患者、健康志愿者集成磁共振成像T1WI、T2WI、质子密度(proton density,PD)-WI、T1 mapping、T2 mapping、PD mapping像。
Fig. 1  1A-1F: The patient is male, 54 years old, hepatitis B for more than 10 years, clinically diagnosed with chronic hepatitis B cirrhosis with minimal hepatic encephalopathy (MHE); 1G-1L: The healthy volunteer, male, 49 years old; 1A-1F, 1G-1L are the MHE patients and healthy volunteer T1WI, T2WI, proton density (PD)-WI, T1 mapping, T2 mapping, PD mapping images, respectively.

1.3 图像分析

       本研究中感兴趣区(region of interest,ROI)以大脑双侧基底节区及双侧额叶白质为主要研究区域,具体分为尾状核(caudate nucleus,CA)、壳核(putamen,PUT)、苍白球(globus pallidus,GP)、背侧丘脑(thalamus,THA)及额叶白质(frontal white matter,FWM) 5对亚区[9]。将收集的全部数据使用MAGIC v100.1.1后处理软件进行ROI的勾画及测量,选取各亚区最大层面及其前后2层图像手动勾画ROI,深部核团ROI提取以核团实际形态大小进行勾画,T1、T2及PD值所选ROI为在同一个弛豫图上进行切换,以保证3个值所测区域一致,所有区域定量值为总体各亚区的平均值。勾画额叶ROI时应尽量避开脑沟及血管,ROI大小约(10±0.2) mm (图12)。所有ROI的勾画与测量由两名5年以上工作经验的神经影像诊断医师进行,采用双盲的方法对T1、T2及PD值进行测量,并对所测数据进行一致性检验。

图2  2A:图1轻微型肝性脑病患者集成磁共振成像质子密度(proton density,PD) mapping图及ROI勾画示意图;2B:左侧额叶白质ROI提取放大图及T1、T2、PD值;2C:右侧额叶白质ROI提取放大图及T1、T2、PD值;2D:右侧尾状核ROI提取放大图及T1、T2、PD值。
Fig. 2  2A: Synthetic magnetic resonance imaging (SyMRI) PD mapping image of the minimal hepatic encephalopathy (MHE) patient, with this as the base image for region of interest (ROI) extraction; 2B: Enlarged image of ROI extraction and T1, T2 and PD values of the left frontal white matter; 2C: Enlarged image of ROI extraction and T1, T2 and PD values of the right frontal white matter; 2D:Enlarged image of ROI extraction and T1, T2 and PD values of the right caudate nucleus.

1.4 统计学方法

       采用SPSS 23.0及MedCalc软件对数据进行统计分析。使用组内相关系数(intraclass correlation coefficient,ICC)方法检测数据一致性,ICC值大于0.75说明一致性高,0.4~0.75之间为一致性较好,小于0.4为一致性差。经过Shapiro-Wilktest正态性检验,该检验计量数据不符合正态分布,故使用M (Q1,Q3)表示。使用Mann-Whitney U检验比较MHE组及HC组各亚区T1值、T2值及PD值之间的差异。绘制受试者工作特征(receiver operating characteristic,ROC)曲线,计算有意义脑区的SyMRI参数在鉴别MHE组与HC组间的曲线下面积(area under the curve,AUC)、特异度及敏感度,并确定阈值。P<0.05表示差异具有统计学意义。

2 结果

2.1 一致性检验

       2名观察者测量T1、T2及PD值的一致性均较好,ICC分别为0.863 (95% CI:0.837~0.885)、0.822 (95% CI:0.788~0.851)、0.816 (95% CI:0.781~0.846)。

2.2 MHE组及HC组间T1、T2及PD值比较

       MHE组及HC组在T1、T2及PD值之间的统计结果见表1。与HC组相比,MHE组双侧壳核及右侧苍白球的T1值减低,右侧尾状核、双侧壳核及左侧苍白球的T2值减低,右侧壳核的PD值减低,且差异具有统计学意义(P<0.05)。双侧额叶的T1、T2值及PD值升高,其中T1及PD值差异具有统计学意义(P<0.05)。

表1  MHE组及HC组各脑实质亚区T1值、T2值及PD值的比较[M (Q1,Q3)]
Tab. 1  Comparison of T1 values, T2 values and PD values in each parenchymal subregion of the brain in the MHE and HC groups [M (Q1, Q3)]

2.3 T1、T2及PD值对鉴别MHE组与HC组的诊断效能

       构建ROC曲线并计算AUC,利用AUC分析差异具有统计学意义的脑区在鉴别MHE组与HC组的诊断效能。各脑区T1值、T2值及PD值鉴别MHE组与HC组的诊断效能见表2。其中右侧额叶PD值的诊断效能最高,AUC为0.901,敏感度为62.5%,特异度为100.0%。使用DeLong检验对T1、T2及PD值各指标内的AUC下面积之差进行统计分析,结果显示差异无统计学意义(P>0.05) (图3)。

图3  各差异脑区T1、T2及质子密度(proton density,PD)值的受试者工作特征曲线。
Fig. 3  Receiver operating characteristic (ROC) curves of subjects with T1, T2 and proton density (PD) values for each differential brain region.
表2  T1、T2及PD值对MHE组与HC组鉴别诊断效能
Tab. 2  T1, T2 and PD values for differential diagnostic efficacy of MHE-HC

3 讨论

       HE是肝硬化患者死亡的独立危险因素[10],如果在MHE阶段进行适当的治疗,则病情被认为是可逆的[11],因此及早诊断和预测该疾病对临床治疗决策的调整具有重要意义。本研究首次利用SyMRI技术证实MHE患者与健康志愿者间弛豫值及PD值存在一定差异。研究发现MHE组双侧壳核、右侧苍白球的T1值,右侧尾状核、双侧壳核及左侧苍白球的T2值及右侧壳核的PD值较HC组明显降低;双侧额叶的T1值及PD值较HC组明显升高。其中右侧额叶的PD值最具诊断效能。由此,我们认为SyMRI技术的T1值、T2值及PD值对MHE患者与健康志愿者脑区间的差异较为敏感,可显示MHE患者与健康志愿者间脑区的细微差异,具有筛查鉴别MHE的潜力,并以期为MHE的早期诊疗提供影像学依据。

3.1 MHE组与HC组间部分脑区T1值、T2值及PD值的差异

       本研究利用SyMRI技术对脑实质内特定脑区进行定量测量发现,除背侧丘脑及额叶白质外,MHE组较HC组的弛豫时间及质子密度均呈下降趋势,推测这可能与细胞外间隙含水量降低有关。目前HE的发病机制尚不明确,仍以氨中毒学说为主[12],肝病患者肝脏解毒功能下降,血液及脑脊液中氨的含量增加对星形胶质细胞造成毒害作用[13],引起细胞毒性水肿[14],细胞膜APT依赖性钠-钾泵异常,钠离子潴留于细胞内,造成细胞肿胀,细胞外间隙狭窄。还有学者认为HE患者在发病期间呈现出脑氧化代谢及脑血流量的降低,糖酵解增加,引起乳酸含量增加[15],局部组织缺氧,造成局部细胞毒性水肿。值得注意的是,虽然目前有不同的假说在解释HE的机制,但这些假说最终结果均为引起细胞水肿及细胞外液的减少。由此,我们推测这也可能是MHE患者深部核团的T1、T2及PD值较HC患者减低的原因。另有学者认为[16, 17]HE的发生与脑实质内金属离子的异常沉积有关,由于顺磁性物质铁引起磁场不均匀性相关的渐进式相位不一致,使接近顺磁性铁的水分子经历局部磁场梯度,产生铁的顺磁性效应[18]导致T1值、T2值减低,但这一假设仍需要进一步的研究。

       本研究发现与脑实质深部核团不同的是,MHE组双侧额叶白质的T1值、T2值及PD值较HC组均升高,其中T1值及PD值差异具有统计学意义(P<0.05),推测这是由于细胞外液增加所致,这一假说也在Chen等[19]、Cudalbu等[20]相关学者的部分研究中得到支持。Qi等[11]、Kale等[21]通过扩散峰度成像(diffusion kurtosis imaging,DKI)发现由慢性肝病所致的HE患者各向异性分数值变化不显著,平均扩散系数值增加,这表明HE患者白质内存在可逆的间质性脑水肿,而细胞外液增加的机制被推测可能与细胞渗透调节过程中大分子的胞外迁移有关。孔祥等[22]、郑薇等[23]学者也报道过MHE患者可能存在白质内细胞外液增多,并推测是脱髓鞘及轴突丢失造成的脑组织间质性水肿。虽然也有部分学者[24]支持脑白质水肿可能是细胞内水肿所致,但这一现象可能与病情的急性程度密切相关。在本研究中我们主要以肝硬化相关的MHE患者为研究对象,属于慢性肝功能不全性疾病。另外,SyMRI技术是对组织特性的绝对定量评估,能够更加客观地展现组织内水分的变化,其中T1值与组织含水量、髓鞘丢失相关,主要受间质含水量的影响[25],PD值主要反映大脑结构损伤,并提供组织含水量的信息[26],由此也合理地解释了本试验中MHE患者双侧额叶白质内弛豫时间及PD值的改变。因此,对于双侧额叶白质的T1、PD值升高,本研究更倾向于血管源性水肿所致的间质水肿。

3.2 T1、T2及PD值在各脑区的诊断效能

       本研究发现不同定量值对MHE组与HC组的鉴别表现出不同的预测效能,AUC在0.706~0.901之间。右侧尾状核及双侧额叶的鉴别诊断效能较高(AUC>0.8),T1值各脑区中左侧额叶AUC最高(0.875),T2值右侧尾状核AUC最高(0.842),PD值右侧额叶AUC最高(0.901),其中右侧额叶PD值在AUC方面优于其他参数。有报道指出[27]额叶水分子的扩散对MHE及非HE分类的敏感度为70%~90%,特异度为85%~90%,在一定程度上额叶白质的测量对MHE的检测是具有有效性的,而PD值对组织内游离水量变化[28]的信息较T1、T2值更加敏感,这也可以间接解释额叶白质PD值作为鉴别MHE患者诊断效能较高的原因。

3.3 本研究的局限性

       首先,本研究仅限于MHE患者与健康志愿者间,没有进行HE各阶段的分级比较分析,之后的研究应扩大病程范围,全面了解疾病特点;其次,样本量较少,对测量结果可能存在一定局限性,后期研究应纳入更多样本量;最后,当前研究是对局部ROI的选择,后期应展开对全脑的整体分析,以明确MHE患者全脑的差异,提供更加充足的证据。

       综上,基于SyMRI技术可以发现MHE患者与健康志愿者间弛豫值及质子密度具有差异性并可对MHE的发生进行预测,为MHE的出现作出预警,从而及早进行干预治疗,改善患者预后。

[1]
中华医学会肝病学分会. 肝硬化肝性脑病诊疗指南[J]. 中国肝脏病杂志(电子版), 2018, 10(4): 17-32. DOI: 10.3969/j.issn.1674-7380.2018.04.004.
Chinese Medical Association, Branch Hepatology. Guidelines on the management of hepatic encephalopathy in cirrhosis[J]. Chin J Liver Dis (electronic version), 2018, 10(4): 17-32. DOI: 10.3969/j.issn.1674-7380.2018.04.004.
[2]
Elsaid MI, Rustgi VK. Epidemiology of hepatic encephalopathy[J]. Clin Liver Dis, 2020, 24(2): 157-174. DOI: 10.1016/j.cld.2020.01.001.
[3]
何浪, 赵路清, 邵宏元, 等. 脑白质疏松症患者早期认知功能损害与弥散张量成像的相关性研究[J]. 中华神经医学杂志, 2017, 16(12): 1235-1241. DOI: 10.3760/cma.j.issn.1671-8925.2017.12.010.
He L, Zhao LQ, Shao HY, et al. Study on the relationship between early cognitive impairment and diffusion tensor imaging in patients with white matter osteoporosis[J]. Chin J Neuromedicine, 2017, 16(12): 1235-1241. DOI: 10.3760/cma.j.issn.1671-8925.2017.12.010.
[4]
Hagiwara A, Warntjes M, Hori M, et al. SyMRI of the brain[J]. Investig Radiol, 2017, 52(10): 647-657. DOI: 10.1097/rli.0000000000000365.
[5]
刘一帆, 邓爱林, 薛莹, 等. SyMRI技术在颅脑疾病诊断中的应用进展[J]. 中国医疗设备, 2021, 36(10): 10-14. DOI: 10.3969/j.issn.1674-1633.2021.10.002.
Liu YF, Deng AL, Xue Y, et al. Application progress of SyMRI in diagnosis of craniocerebral diseases[J]. China Med Devices, 2021, 36(10): 10-14. DOI: 10.3969/j.issn.1674-1633.2021.10.002.
[6]
李春媚, 陈敏. 积极推进合成MRI的临床应用 提升MRI诊断效能[J]. 中华放射学杂志, 2021, 55(6): 577-579. DOI: 10.3760/cma.j.cn112149-20210415-00370.
Li CM, Chen M. Promoting actively the clinical application of synthetic MRI, improving the diagnostic efficiency of MRI[J]. Chin J Radiol, 2021, 55(6): 577-579. DOI: 10.3760/cma.j.cn112149-20210415-00370.
[7]
Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain[J]. J Neurochem, 1958, 3(1): 41-51. DOI: 10.1111/j.1471-4159.1958.tb12607.x.
[8]
王迪, 李春媚, 俞璐, 等. 合成MRI技术对成人大脑白质脑老化的初步研究[J]. 中华放射学杂志, 2021, 55(6): 591-596. DOI: 10.3760/cma.j.cn112149-20200727-00962.
Wang D, Li CM, Yu L, et al. Investigation of age-related white matter changes in adults brain using synthetic MRI: a preliminary study[J]. Chin J Radiol, 2021, 55(6): 591-596. DOI: 10.3760/cma.j.cn112149-20200727-00962.
[9]
Liu JY, Ding J, Lin D, et al. T2* MRI of minimal hepatic encephalopathy and cognitive correlates in vivo[J]. J Magn Reson Imaging, 2013, 37(1): 179-186. DOI: 10.1002/jmri.23811.
[10]
Bajaj JS, O'Leary JG, Tandon P, et al. Hepatic encephalopathy is associated with mortality in patients with cirrhosis independent of other extrahepatic organ failures[J]. Clin Gastroenterol Hepatol, 2017, 15(4): 565-574.e4. DOI: 10.1016/j.cgh.2016.09.157.
[11]
Qi RF, Xu Q, Zhang LJ, et al. Structural and functional abnormalities of default mode network in minimal hepatic encephalopathy: a study combining DTI and fMRI[J]. PLoS One, 2012, 7(7): e41376. DOI: 10.1371/journal.pone.0041376.
[12]
徐小元, 丁惠国, 李文刚, 等. 肝硬化肝性脑病诊疗指南[J]. 临床肝胆病杂志, 2018, 34(10): 2076-2089.
Xu XY, Ding HG, Li WG, et al. Guidelines on the management of hepatic encephalopathy in cirrhosis[J]. J Clin Hepatol, 2018, 34(10): 2076-2089.
[13]
Lu KH, Zimmermann M, Görg B, et al. Hepatic encephalopathy is linked to alterations of autophagic flux in astrocytes[J]. EBioMedicine, 2019, 48: 539-553. DOI: 10.1016/j.ebiom.2019.09.058.
[14]
Butterworth RF. Neurotransmitter dysfunction in hepatic encephalopathy: new approaches and new findings[J]. Metab Brain Dis, 2001, 16(1/2): 55-65. DOI: 10.1023/a:1011614528751.
[15]
Dam G, Keiding S, Munk OL, et al. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake[J]. Hepatology, 2013, 57(1): 258-265. DOI: 10.1002/hep.25995.
[16]
Tarnacka B, Jopowicz A, Maślińska M. Copper, iron, and manganese toxicity in neuropsychiatric conditions[J]. Int J Mol Sci, 2021, 22(15): 7820. DOI: 10.3390/ijms22157820.
[17]
Stüber C, Morawski M, Schäfer A, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast[J]. Neuroimage, 2014, 93(Pt 1): 95-106. DOI: 10.1016/j.neuroimage.2014.02.026.
[18]
Lou BH, Jiang YW, Li CM, et al. Quantitative analysis of synthetic magnetic resonance imaging in Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 638731. DOI: 10.3389/fnagi.2021.638731.
[19]
Chen HJ, Chen R, Yang M, et al. Identification of minimal hepatic encephalopathy in patients with cirrhosis based on white matter imaging and Bayesian data mining[J]. AJNR Am J Neuroradiol, 2015, 36(3): 481-487. DOI: 10.3174/ajnr.A4146.
[20]
Cudalbu C, Taylor-Robinson SD. Brain edema in chronic hepatic encephalopathy[J]. J Clin Exp Hepatol, 2019, 9(3): 362-382. DOI: 10.1016/j.jceh.2019.02.003.
[21]
Kale RA, Gupta RK, Saraswat VA, et al. Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy[J]. Hepatology, 2006, 43(4): 698-706. DOI: 10.1002/hep.21114.
[22]
孔祥, 戚荣丰, 梁雪, 等. 肝硬化患者基于体素的全脑扩散张量成像研究[J]. 放射学实践, 2014, 29(1): 16-20. DOI: 10.13609/j.cnki.1000-0313.2014.01.006.
Kong X, Qi RF, Liang X, et al. Study of voxel-based whole brain diffusion tensor imaging in cirrhotic patients[J]. Radiol Pract, 2014, 29(1): 16-20. DOI: 10.13609/j.cnki.1000-0313.2014.01.006.
[23]
郑薇, 冯智超, 朱文卫, 等. 乙肝后肝硬化患者局灶性脑白质高信号与轻微型肝性脑病相关性的MRI研究[J]. 磁共振成像, 2018, 9(1): 21-26. DOI: 10.12015/issn.1674-8034.2018.01.005.
Zheng W, Feng ZC, Zhu WW, et al. Relationship between focal white matter hyperintensity and minimal hepatic encephalopathy in patients with hepatitis B virus-related cirrhosis[J]. Chin J Magn Reson Imaging, 2018, 9(1): 21-26. DOI: 10.12015/issn.1674-8034.2018.01.005.
[24]
Winterdahl M, Abbas Z, Noer O, et al. Cerebral water content mapping in cirrhosis patients with and without manifest HE[J]. Metab Brain Dis, 2019, 34(4): 1071-1076. DOI: 10.1007/s11011-019-00427-y.
[25]
谢佳培, 张卫东, 朱婧怡, 等. 磁共振T1、T2值在脑胶质瘤分级及细胞增殖活性预测中的临床价值[J]. 磁共振成像, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
Xie JP, Zhang WD, Zhu JY, et al. The clinical value of T1 and T2 values in predicting brain glioma grading and cell proliferation activity[J]. Chin J Magn Reson Imaging, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
[26]
Gracien RM, Reitz SC, Hof SM, et al. Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex[J]. Eur Radiol, 2016, 26(8): 2578-2586. DOI: 10.1007/s00330-015-4072-x.
[27]
Sugimoto R, Iwasa M, Maeda M, et al. Value of the apparent diffusion coefficient for quantification of low-grade hepatic encephalopathy[J]. Am J Gastroenterol, 2008, 103(6): 1413-1420. DOI: 10.1111/j.1572-0241.2008.01788.x.
[28]
Lorio S, Tierney TM, McDowell A, et al. Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA) data[J]. Neuroimage, 2019, 186: 464-475. DOI: 10.1016/j.neuroimage.2018.11.023.

上一篇 基于图论的轻度认知障碍患者功能脑网络研究
下一篇 TWIST技术在评估急性缺血性卒中侧支循环中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2