分享:
分享到微信朋友圈
X
临床研究
EP-DWI与TSE-DWI两种序列诊断中耳胆脂瘤效能的比较
樊晓雪 丁长伟 刘兆玉

Cite this article as: Fan XX, Ding CW, Liu ZY. Comparison of echo-planar and turbo spin-echo diffusion-weighted imaging sequence in the diagnosis of middle ear cholesteatoma[J]. Chin J Magn Reson Imaging, 2022, 13(6): 5-9.本文引用格式:樊晓雪, 丁长伟, 刘兆玉. EP-DWI与TSE-DWI两种序列诊断中耳胆脂瘤效能的比较[J]. 磁共振成像, 2022, 13(6): 5-9. DOI:10.12015/issn.1674-8034.2022.06.002.


[摘要] 目的 比较平面回波弥散加权成像(echo planar diffusion weighted imaging,EP-DWI)与快速自旋回波弥散加权成像(turbo spin-echo diffusion weighted imaging,TSE-DWI)两种序列对中耳胆脂瘤的诊断效能。材料与方法 本研究回顾性分析临床初步怀疑中耳胆脂瘤患者病例63例。所有患者均采用Philips Ingenia 3.0 T超导型磁共振扫描仪及32通道头线圈行EP-DWI、TSE-DWI扫描,并随后进行手术治疗。以病理结果为金标准,将影像诊断与术后病理进行对比,并计算EP-DWI、TSE-DWI序列诊断疑似中耳胆脂瘤患者的曲线下面积(area under the curve,AUC)、敏感度、特异度、阳性预测值、阴性预测值。结果 63例疑似中耳胆脂瘤患者中,最终病理确诊胆脂瘤47例,非胆脂瘤16例。TSW-DWI较EP-DWI诊断中耳胆脂瘤AUC值显著增高(TSE-DWI vs. EP-DWI:0.895 vs. 0.644,P<0.05)。TSE-DWI诊断胆脂瘤的敏感度(91.49%)、特异度(87.50%)较EP-DWI (敏感度、特异度分别为78.72%、50.00%)高。结论 TSE-DWI较EP-DWI能显著提高诊断准确性,减少误诊率。TSE-DWI在中耳胆脂瘤诊断中能够提高诊断可信度,对临床诊断有较高的应用价值。
[Abstract] Objective To compare the diagnostic performance of echo planar diffusion weighted imaging (EP-DWI) and turbo spin-echo diffusion weighted imaging (TSE-DWI) for middle ear cholesteatoma.Materials and Methods This study prospectively enrolled 63 patients with preliminary clinical suspicion of middle ear cholesteatoma; all patients underwent EP-DWI and TSE-DWI scans using a Philips Ingenia 3.0 T superconducting magnetic resonance scanner and a 32-channel head coil and subsequent surgical treatment. Using pathological results as the gold standard, the imaging diagnosis and postoperative pathology were compared, and area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value of EP-DWI and TSE-DWI sequences in the diagnosis of suspected cholesteatoma were calculated.Results Among the 63 patients with suspected middle ear cholesteatoma, 47 were pathologically diagnosed as cholesteatoma and 16 were non-cholesteatoma. The accuracy of TSW-DWI in the diagnosis of middle ear cholesteatoma was significantly higher than that of EP-DWI (TSE-DWI vs. EP-DWI: 0.895 vs. 0.644, P<0.05). The sensitivity (91.49%) and specificity (87.50%) of TSE-DWI in diagnosing cholesteatoma were higher than those of the EP-DWI (sensitivity: 78.72%, specificity: 50.00%) sequence.Conclusions Compared with EP-DWI, TSE-DWI can significantly improve diagnostic accuracy and reduce the misdiagnosis rate. TSE-DWI can improve the diagnostic confidence in middle ear cholesteatoma and has a high application value for clinical diagnosis.
[关键词] 中耳;胆脂瘤;弥散加权成像;平面回波;快速自旋回波;磁共振成像;诊断
[Keywords] middle ear;cholesteatoma;diffusion-weighted imaging;echo planar;turbo spin-echo;magnetic resonance imaging;diagnosis

樊晓雪    丁长伟    刘兆玉 *  

中国医科大学附属盛京医院放射科,沈阳 110000

刘兆玉,E-mail:liuzy@sj-hospital.org

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 辽宁省自然科学基金 20170541045
收稿日期:2022-03-28
接受日期:2022-05-27
中图分类号:R445.2  R764.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.06.002
本文引用格式:樊晓雪, 丁长伟, 刘兆玉. EP-DWI与TSE-DWI两种序列诊断中耳胆脂瘤效能的比较[J]. 磁共振成像, 2022, 13(6): 5-9. DOI:10.12015/issn.1674-8034.2022.06.002.

       中耳胆脂瘤是富含角蛋白的复层鳞状上皮包围的假肿瘤样病变[1],发病率为0.01%[2]。尽管胆脂瘤是一种良性病变,但其可能侵蚀邻近骨质,导致传导性听力障碍、面瘫、迷路瘘、脑脓肿等[3, 4, 5]。因此胆脂瘤的早期诊断对提高患者的生活质量具有重要意义。除耳镜检查外,弥散加权成像(diffusion weighted imaging,DWI)已被用于区分胆脂瘤与其他中耳炎性病变常用检查方式[6, 7, 8]

       平面回波(echo planar,EP) DWI序列是最常用的DWI检查技术,优点为扫描时间短,仅约1 min,但其在颞骨区域容易受到空气骨骼交界处的影响而产生易感性伪影[9, 10]。而快速自旋回波(turbo spin-echo,TSE) DWI序列是一种非平面回波技术,其优点为空间分辨率高,颞骨伪影少,但扫描时间长[11, 12, 13],约6~8 min。因此,本研究旨在评估EP-DWI与TSE-DWI两种序列对中耳胆脂瘤诊断的图像质量及诊断效能。

1 材料与方法

1.1 研究对象

       回顾性分析2019年5月至2020年5月在我院接受手术治疗63例疑似中耳胆脂瘤患者的病历资料。本研究纳入标准为:(1)临床初步怀疑中耳胆脂瘤患者;(2)未接受任何耳部手术治疗;(3)术前均行EP-DWI、TSE-DWI检查;(4)随后接受手术治疗并完成病理检查。排除标准:EP-DWI、TSE-DWI图像质量不佳不足以诊断(包括各种伪影干扰导致的MRI图像显示不清)。本研究获得中国医科大学附属盛京医院伦理委员会批准(批准文号:No.2020PS136J),免除受试者知情同意。

1.2 扫描方法及技术参数

       本研究使用Philips Ingenia 3.0 T超导型磁共振扫描仪(Ingenia,Philips Electronics Inc.,Netherlands)及32通道头颈部相控阵列线圈(Invivo Corporation,USA)收集信号,包括横断位T1加权快速自旋回波、横断位T2加权快速自旋回波和脂肪抑制、EP-DWI及TSE-DWI序列。扫描范围自岩骨上缘至乳突下缘,采用两个b值(b=0、1000 s/mm2)获取EP-DWI及TSE-DWI序列。所有序列全部采集时间约为14 min。耳部MRI的扫描参数见表1

表1  MRI扫描参数总结
Tab. 1  MRI scanning parameters

1.3 图像分析和诊断方法

       由于胆脂瘤含高角蛋白,在DWI序列上(b=1000 s/mm2)中耳区域呈明显高信号改变[14, 15, 16]。所有图像由两名经验丰富的头颈部放射学专家分别进行评估(1名主治医师,工作经验8年;1名主任医师,工作经验25年),两名放射科专家对患者临床资料及病理诊断均不知情。当评估结果出现差异时,两位专家相互协商后统一意见做出最终决定,给出存在或不存在中耳胆脂瘤的诊断,并根据术后病理结果计算EP-DWI序列、TSE-DWI序列对中耳胆脂瘤患者诊断的曲线下面积(area under the curve,AUC)、敏感度、特异度、阳性预测值、阴性预测值。

1.4 统计分析

       所有统计分析应用SPSS 22.0 (SPSS Inc.,Chicago,IL,USA)和MedCalc (version 15.2.2, Ostend, Belgium)统计软件进行,计量资料以均数±标准差的形式表示,计量参数采用独立样本t检验,P<0.05表示差异有统计学意义。

2 结果

2.1 基本资料

       63名临床疑似胆脂瘤患者全部接受手术治疗及病理检查。根据术后病理结果将入组患者分成胆脂瘤组(n=47)及非胆脂瘤组(n=16)。胆脂瘤病灶范围为3~35 mm。本研究患者一般资料见表2

表2  患者一般资料(n=63)
Tab. 2  General information of patients (n=63)

2.2 EP-DWI诊断效能

       胆脂瘤在EP-DWI序列在b=1000 s/mm2的图像上显示明显高信号,病灶形态不规则,存在较大变形,边界欠清晰(图1A1C);非胆脂瘤病灶呈低信号影,边缘模糊(图2A~2C)。EP-DWI序列诊断胆脂瘤最小直径为3 mm。

       EP-DWI序列检测中耳胆脂瘤AUC为0.644 (95% CI:0.513~0.760),敏感度为78.72%,特异度为50.00% (表3)。假阳性8例(图3),其中神经鞘瘤1例,纤维组织2例,炎症伴肉芽组织3例,炎症出血伴钙化1例,胆固醇结晶1例;假阴性10例,均匀鳞状上皮组织周围有大量炎症细胞(图4),详见表4

图1  男,35岁,病理诊断为中耳胆脂瘤。1A:T1WI呈低信号,边界欠清;1B:T2WI呈不均匀高信号,边界清晰;1C:EP-DWI显示右侧中耳乳突区域较邻近脑实质信号明显增高,边界不规则,存在变形;1D:TSE-DWI呈明显高信号,病灶规则,边缘清晰。
图2  女,35岁,病理诊断为鼓室息肉伴肉芽组织形成。2A:T1WI呈低信号影;2B:T2WI呈不均匀高信号,边界不清;2C:EP-DWI呈低信号,边缘模糊;2D:TSE-DWI呈低信号,边缘欠清。EP:平面回波;TSE:快速自旋回波;DWI:弥散加权成像。
Fig. 1  Male, 35-year-old, pathologically diagnosed middle ear cholesteatoma. 1A: T1WI showed low signal, with poorly defined boundary; 1B: T2WI showed nonuniform high signal, with clear boundary; 1C: EP-DWI showed high levels of signal with an unclear boundary; 1D: TSE-DWI image with a significantly high signaland, a clear boundary was shown.
Fig. 2  Female, 35-year-old, pathologically diagnosed tympanic polyp with granulation tissue formation. 2A: Low levels of signal were shown in this T1WI image; 2B: T2WI showed a nonuniform high signal with unclear border; 2C: EP-DWI showed a low signal with blurred margin; 2D: TSE-DWI showed a low signal with unclear margin. EP: echo plane; TSE: turbo spin-echo; DWI: diffusion weighted imaging.
图3  女,48岁,EP-DWI诊断假阳性病例。T1WI呈等低信号(3A),T2WI高信号,边界不规则(3B),EP-DWI图像于左中耳区域呈高信号改变,与颞叶分界不清(3C),病理证实为纤维组织及粉染无结构物(3D)。
图4  男,69岁,EP-DWI诊断假阴性病例,病理证实为胆脂瘤。T1WI呈低信号(4A),T2WI呈不均匀高信号(4B),EP-DWI呈等低信号,边界模糊(4C),术后病理(4D)为组织内少许鳞状上皮及钙化,间质大量慢性炎细胞浸润。EP:平面回波;DWI:弥散加权成像。
Fig. 3  Female, 48-year-old, EP-DWI diagnostic false positive cases. Iso-low signal on T1WI (3A), high signal on T2WI with irregular border (3B), high signal levels on EP-DWI image in the left middle ear region with indistinct demarcation from the temporal lobe (3C), pathology confirmed as fibrous tissue and pink stained structureless material (3D).
Fig. 4  A 69-year-old male patient with EP-DWI diagnostic false negative cases, pathology confirmed as cholesteatoma. T1WI with low signal (4A), T2WI with nonuniform high signal (4B), EP-DWI with iso-low signal and blurred border (4C), and pathological results containing inflammatory cells around small squamous epithelial tissue are shown (4D). EP: echo plane; DWI: diffusion weighted imaging.
表3  EP-DWI与TSE-DWI图像检测胆脂瘤的诊断效能比较
Tab. 3  Comparison of diagnostic performance of EP-DWI and TSE-DWI images in detecting cholesteatoma
表4  EP-DWI图像对疑似胆脂瘤患者影像诊断结果与病理结果比较
Tab. 4  Comparison of imaging diagnosis and pathological results of EP-DWI images in patients with suspected cholesteatoma

2.3 TSE-DWI诊断效能

       胆脂瘤在TSE序列在b=1000 s/mm2的图像上亦呈明显高信号,病灶形态规则,无明显变形,边界清晰(图1A1B1D);非胆脂瘤呈低信号,病灶边缘欠清晰(图2A2B2D)。TSE-DWI诊断胆脂瘤最小直径为3 mm。

       TSE-DWI序列检测中耳胆脂瘤AUC为0.895 (95% CI:0.792~0.958),敏感度为91.49%,特异度为87.50% (表3)。其中假阳性2例为胆固醇结晶及炎性出血(图5),假阴性4例均为鳞状上皮组织周围有大量炎症细胞的包裹(图6),详见表5

图5  女,21岁,TSE-DWI诊断假阳性病例。5A:T1WI呈高信号;5B:T2WI呈不均匀高信号;5C:TSE-DWI呈圆形明显高信号,边界清晰;5D:病理证实为出血炎症伴钙化。
图6  男,58岁,TSE-DWI诊断假阴性病例,病理证实为胆脂瘤。T1WI呈低信号改变(6A);T2WI呈不均匀稍高信号(6B);TSE-DWI呈低信号影(6C);手术病理证实为角化物及小块鳞状上皮(6D)。TSE:快速自旋回波;DWI:弥散加权成像。
Fig. 5  Female, 21-year-old, TSE-DWI diagnostic false positive cases. 5A: High signal on T1WI; 5B: Nonuniform high signal on T2WI; 5C: A circular significantly high signal with clear boundaries on TSE-DWI; 5D: Pathologically confirmed hemorrhagic inflammation with calcification.
Fig. 6  Male, 58-year-old, TSE-DWI diagnostic false negative cases, pathologically confirmed cholesteatoma. Low signal change on T1WI (6A); nonuniform slightly high signal on T2WI (6B); low signal shadow on TSE-DWI (6C); surgical pathology confirmed keratosis and small squamous epithelium (6D). TSE: turbo spin-echo; DWI: diffusion weighted imaging.
表5  TSE-DWI图像对疑似胆脂瘤患者影像诊断结果与病理结果比较
Tab. 5  Comparison of imaging diagnosis and pathological results of TSE-DWI images in patients with suspected cholesteatoma

3 讨论

       本研究通过对疑似胆脂瘤患者行术前EP-DWI与TSE-DWI序列扫描,发现胆脂瘤病灶在TSE-DWI图像中显示清晰,图像变形少,能够提升临床诊断可信度。TSE-DWI较EP-DWI能够提高诊断准确率,减少误诊率,对临床诊断胆脂瘤具有较高的诊断价值。

3.1 TSE-DWI评估胆脂瘤病变

       本研究得出TSE-DWI较EP-DWI敏感度、特异度较高,这与之前文献报道结果一致[17],本研究这项结果得到支持,这可能是由于TSE-DWI序列是非平面回波(non-EP)快速自旋回波的DWI序列[18],与EP-DWI序列相比,TSE-DWI序列通过重新聚焦射频脉冲获得回波,对磁化伪影不敏感,能够减少图像失真[19, 20]。对于诊断胆脂瘤病变,TSE-DWI序列提供更好的可靠性,减少图像几何变形[21]

3.2 EP-DWI评估胆脂瘤病变

       本研究采用1.5 mm层厚采集EP-DWI图像,使其与TSE-DWI图像层厚一致,但EP-DWI图像在颞叶或后颅窝区域容易产生几何失真等易感性伪影,图像质量不能令人满意[10,19]。在EP-DWI序列上呈明显高信号的胆脂瘤不易与颞骨伪影区分开来,因此,EP-DWI序列对胆脂瘤的诊断准确性不足[22]

3.3 假阴性及假阳性病例分析

       胆脂瘤病灶与非胆脂瘤病灶在DWI上呈现明显的信号差异主要是由于非胆脂瘤病灶为炎性肉芽组织或纤维化病变,弥散不受限,而胆脂瘤病灶在DWI序列弥散受限[23,24]。本研究应用3.0 T磁共振采集图像,虽然信噪比高,有利于胆脂瘤病变的显示,但仍存在假阴性及假阳性病例。本研究假阴性结果为鳞状上皮组织周围有大量炎性细胞的包裹,可能由于大量低信号的炎性细胞包裹着小块呈高信号的胆脂瘤上皮,使病灶整体信号减低。本研究中TSE-DWI图像及EP-DWI图像检测假阳性病例均包含胆固醇结晶及炎性出血。已有研究证实,若中耳乳突区域DWI呈高信号,而该位置T1加权序列亦呈高信号,则为胆固醇肉芽肿病变[25]。因此,在未来的研究中,研究人员在诊断胆脂瘤时,应结合常规序列T1WI序列,排除高信号病变。而Muhonen等[26]研究显示non-EP DWI在软骨、软骨移植物可导致DWI序列弥散受限,可能出现假阳性结果,主要是由于Muhonen等研究纳入患者为胆脂瘤术后疑似复发患者,而本研究纳入患者均为初次手术患者,无移植物导致的假阳性病例。

3.4 局限性

       本研究存在以下几点局限性:(1)本研究发现年龄对胆脂瘤与非胆脂瘤病灶差异无统计学意义,可能与研究样本不均衡、非胆脂瘤病例较胆脂瘤病例少有关;(2)本研究样本量相对较少,缺乏小尺寸病灶(直径<3 mm),仍待扩大样本量进一步研究;(3) T1WI序列在排除胆固醇肉芽肿方面具有很大优势[25],在未来的研究中需进一步添加T1WI序列协同诊断。

       综上所述,与EP-DWI序列比,TSE-DWI序列有助于区分胆脂瘤及非胆脂瘤病变,提高诊断的准确性,对临床诊断有较高的应用价值。

[1]
Russo C, Elefante A, Di Lullo AM, et al. ADC Benchmark Range for Correct Diagnosis of Primary and Recurrent Middle Ear Cholesteatoma[J]. Biomed Res Int, 2018, 2018: 7945482. DOI: 10.1155/2018/7945482.
[2]
Jennings BA, Prinsley P, Philpott C, et al. The genetics of cholesteatoma. A systematic review using narrative synthesis[J]. Clin Otolaryngol, 2018, 43(1): 55-67. DOI: 10.1111/coa.12900.
[3]
Djalilian H, Borrelli M, Desales A. Cholesteatoma Causing a Horizontal Semicircular Canal Fistula[J]. Ear Nose Throat J, 2021, 100 (6_suppl): 888S-891S. DOI: 10.1177/01455613211040580.
[4]
Li XY, Liu Y, Zhao DH, et al. The aetiology of ossicular chain defects in congenital cholesteatoma[J]. J Laryngol Otol, 2022, 136(5): 391-395. DOI: 10.1017/S0022215121002334.
[5]
Racca JM, Lee J, Sikorski F, et al. Cholesteatoma Is Associated With Pediatric Progressive Sensorineural Hearing Loss[J]. Ear Hear, 2021. DOI: 10.1097/AUD.0000000000001176.
[6]
Cavaliere M, Di Lullo AM, Cantone E, et al. Cholesteatoma vs granulation tissue: a differential diagnosis by DWI-MRI apparent diffusion coefficient[J]. Eur Arch Otorhinolaryngol, 2018, 275(9): 2237-2243. DOI: 10.1007/s00405-018-5082-5.
[7]
Khant ZA, Azuma M, Kadota Y, et al. Three-dimensional reversed fast imaging with steady-state precession diffusion-weighted imaging for the detection of middle ear cholesteatoma[J]. Clin Radiol, 2019, 74(11): 898.e7-898.e13. DOI: 10.1016/j.crad.2019.07.013.
[8]
Benson JC, Carlson ML, Lane JI. Non-EPI versus Multishot EPI DWI in Cholesteatoma Detection: Correlation with Operative Findings[J]. AJNR Am J Neuroradiol, 2021, 42(3): 573-577. DOI: 10.3174/ajnr.A6911.
[9]
Aikele P, Kittner T, Offergeld C, et al. Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery[J]. AJR Am J Roentgenol, 2003, 181(1): 261-265. DOI: 10.2214/ajr.181.1.1810261.
[10]
邹静, 陈录广, 陈玉坤, 等. 3T高清RS-EPI DWI与SS-EPI DWI序列诊断中耳胆脂瘤的效果比较[J]. 中华耳科学杂志, 2020, 18(1): 80-87. DOI: 10.3969/j.issn.1672-2922.2020.01.014.
Zou J, Chen GL, Chen YK, et al. RS-EPI DWI and SS-EPI DWI Sequences Imaging for Diagnosis of Cholesteatoma[J]. Chin J Otol, 2020, 18(1): 80-87. DOI: 10.3969/j.issn.1672-2922.2020.01.014.
[11]
De Foer B, Vercruysse JP, Pilet B, et al. Single-Shot, Turbo Spin-Echo, Diffusion-Weighted Imaging versus Spin-Echo-Planar, Diffusion Weighted Imaging in the Detection of Acquired Middle Ear Cholesteatoma[J]. AJNR Am J Neuroradiol, 2006, 27(7): 1480-1482.
[12]
Ozgen B, Bulut E, Dolgun A, et al. Accuracy of turbo spin-echo diffusion-weighted imaging signal intensity measurements for the diagnosis of cholesteatoma[J]. Diagn Interv Radiol, 2017, 23(4): 300-306. DOI: 10.5152/dir.2017.16024.
[13]
Wiesmueller M, Wuest W, May MS, et al. Comparison of Readout-Segmented Echo-Planar Imaging and Single-Shot TSE DWI for Cholesteatoma Diagnostics[J]. AJNR Am J Neuroradiol, 2021, 42(7): 1305-1312. DOI: 10.3174/ajnr.A7112.
[14]
Barbara M, Covelli E, Monini S, et al. Early non-EPI DW-MRI after cholesteatoma surgery[J]. Ear Nose Throat J, 2021. DOI: 10.1177/01455613211042946.
[15]
Fischer N, Plaikner M, Schartinger VH, et al. MRI of middle ear cholesteatoma: The importance of observer reliance from diffusion sequences[J]. J Neuroimaging, 2022, 32(1): 120-126. DOI: 10.1111/jon.12919.
[16]
Fischer N, Schartinger VH, Dejaco D, et al. Readout-Segmented Echo-Planar DWI for the Detection of Cholesteatomas: Correlation with Surgical Validation[J]. AJNR Am J Neuroradiol, 2019, 40(6): 1055-1059. DOI: 10.3174/ajnr.A6079.
[17]
Muzaffar J, Metcalfe C, Colley S, et al. Diffusion-weighted magnetic resonance imaging for residual and recurrent cholesteatoma: a systematic review and meta-analysis[J]. Clinical Otolaryngology, 2017, 42(3): 536-543. DOI: 10.1111/coa.12762.
[18]
Baba A, Kurihara S, Fukuda T, et al. Non-echoplanar diffusion weighed imaging and T1-weighted imaging for cholesteatoma mastoid extension[J]. Auris Nasus Larynx, 2021, 48(5): 846-851. DOI: 10.1016/j.anl.2021.01.010.
[19]
Hirata K, Nakaura T, Okuaki T, et al. Comparison of the image quality of turbo spin echo- and echo-planar diffusion-weighted images of the oral cavity[J]. Medicine (Baltimore), 2018, 97(19): e0447. DOI: 10.1097/MD.0000000000010447.
[20]
Tyagi N, Cloutier M, Zakian K, et al. Diffusion-weighted MRI of the lung at 3T evaluated using echo-planar-based and single-shot turbo spin-echo-based acquisition techniques for radiotherapy applications[J]. J Appl Clin Med Phys, 2019, 20(1): 284-292. DOI: 10.1002/acm2.12493.
[21]
樊晓雪, 丁长伟, 刘兆玉. 快速自旋回波弥散加权成像对诊断颞骨胆脂瘤的应用价值[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(2): 119-123. DOI: 10.13201/j.issn.1001-1781.2020.02.005.
Fan X, Ding CW, Liu ZY. The value of turbo spin-echo diffusion weighted imaging in the diagnosis of temporal bone cholesteatoma[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(2): 119-123. DOI: 10.13201/j.issn.1001-1781.2020.02.005.
[22]
Lin M, Sha Y, Sheng Y, et al. Accuracy of 2D BLADE Turbo Gradient- and Spin-Echo Diffusion Weighted Imaging for the Diagnosis of Primary Middle Ear Cholesteatoma[J]. Otol Neurotol, 2022. DOI: 10.1097/MAO.0000000000003521.
[23]
Sheng Y, Hong R, Sha Y, et al. Performance of TGSE BLADE DWI compared with RESOLVE DWI in the diagnosis of cholesteatoma[J]. BMC Med Imaging, 2020, 20(1): 40. DOI: 10.1186/s12880-020-00438-7.
[24]
Lin M, Lin N, Sheng Y, et al. Detection of cholesteatoma: 2D BLADE turbo gradient- and spin-echo imaging versus readout-segmented echo-planar diffusion-weighted imaging[J]. Eur Arch Otorhinolaryngol, 2022. DOI: 10.1007/s00405-022-07370-2.
[25]
Fan XX, Liu ZY, Ding CW, et al. The value of turbo spin-echo diffusion-weighted imaging apparent diffusion coefficient in the diagnosis of temporal bone cholesteatoma[J]. Clin Radiol, 2019, 74(12): 977.e1-977.e7. DOI: 10.1016/j.crad.2019.08.016.
[26]
Muhonen EG, Mahboubi H, Moshtaghi O, et al. False-Positive Cholesteatomas on Non-Echoplanar Diffusion-Weighted Magnetic Resonance Imaging[J]. Otol Neurotol, 2020, 41(5): e588-e592. DOI: 10.1097/MAO.0000000000002606.

上一篇 多发性硬化U形纤维受累的分布特征及临床价值
下一篇 MRI多序列模型融合影像组学预测局部晚期鼻咽癌患者同步放化疗疗效的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2