分享:
分享到微信朋友圈
X
特别关注
心脏磁共振T1 mapping和组织追踪技术在左心室肥厚相关疾病中的鉴别诊断价值
张新娜 蒋雨琦 赵玲玲 束晶苇 俞宏林 杨盼盼 刘小琴 赵韧 钱银锋 余永强 李小虎

Cite this article as: Zhang XN, Jiang YQ, Zhao LL, et al. Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 32-37.本文引用格式:张新娜, 蒋雨琦, 赵玲玲, 等. 心脏磁共振T1 mapping和组织追踪技术在左心室肥厚相关疾病中的鉴别诊断价值[J]. 磁共振成像, 2022, 13(12): 32-37. DOI:10.12015/issn.1674-8034.2022.12.006.


[摘要] 目的 使用心脏磁共振(cardiac magnetic resonance, CMR)T1 mapping及组织追踪(tissue tracking, TT)技术鉴别心肌淀粉样变性(cardiac amyloidosis, CA)、肥厚型心肌病(hypertrophic cardiomyopathy, HCM)及高血压性心脏病(hypertensive heart disease, HHD)等左室肥厚相关疾病。材料与方法 回顾性分析HCM、CA和HHD各20例(三组合称病例组)相关临床和CMR资料,纳入25名健康志愿者作为健康对照(healthy control, HC)组。使用单因素方差分析及Kruskal-Wallis检验比较四组间心肌初始T1值、整体和各节段心肌的纵向应变(longitudinal strain, LS)、周向应变(circumferential strain, CS)、径向应变(radial strain, RS),相对心尖应变(relative apical sparing of strain, RAS)等定量参数。结果 CA组的初始T1值[(1473.05±16.70)ms]明显高于HCM组[(1322.25±8.48)ms]、HHD组[(1289.05±9.18)ms]及HC组[(1100.20±8.42)ms],HCM组初始T1值高于HHD组,差异均有统计学意义(P<0.05);病例组整体及各节段应变均低于HC组,差异有统计学意义(P<0.05)。CA相对心尖径向应变(relative apical radial strain, RASRS)比值为0.77±0.05,相对心尖纵向应变(relative apical longitudinal strain, RASLS)比值为0.93±0.04;在CA与HCM的鉴别诊断中,初始T1值、基底部径向应变(basal radial strain, BRS)、基底部纵向应变(basal longitudinal strain, BLS)、RASRS及RASLS的曲线下面积(area under the curve, AUC)分别为0.95、0.97、0.92、0.84、0.82(P<0.05);在CA与HHD的鉴别诊断中,初始T1、BRS、BLS、RASRS及RASLS的AUC分别为0.97、0.74、0.79、0.73、0.80(P<0.05);在HCM与HHD的鉴别诊断中,初始T1、整体纵向应变(global longitudinal strain, GLS)的AUC分别为0.74、0.69,上述两参数的联合诊断AUC为0.81。结论 初始T1值的明显升高及相对心尖应变保留可以有效鉴别CA与HCM及HHD,其中BRS在CA与HCM中的诊断效能最高,初始T1在CA与HHD中的诊断效能最高;初始T1值联合GLS有助于进一步提高HCM和HHD的鉴别诊断效能。基于CMR测得的心肌组织学成像参数初始T1值及心肌应变参数GLS、BRS能有效鉴别HCM、CA及HHD,可以为心肌增厚性疾病病因诊断及治疗决策提供新的思路。
[Abstract] Objective To study the value of T1 mapping by cardiac magnetic resonance (CMR) and tissue tracking (TT) in the differential diagnosis of cardiac amyloidosis (CA), hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD).Materials and Methods Twenty patients were recruited in HCM group, CA group and HHD group (combined case group), while 25 healthy volunteers were contained in healthy control (HC) group. Parameters of each group (HCM, CA, HHD and HC group) were retrospectively analyzed. One-way ANOVA and Kruskal-Wallis tests were used to compare native T1 values, relative apical sparing of strain (RAS), global and segmental longitudinal strain (LS), circumferential strain (CS), and radial strain (RS) between the four groups.Results The native T1 values in the CA group [(1473.05±16.70) ms] were significantly higher than those in the HCM [(1322.25±8.48) ms], HHD [(1289.05±9.18) ms] and HC groups [(1100.20±8.42) ms], and the native T1 values in the HCM group were higher than those in the HHD group, and the differences were statistically significant (P<0.05). Global and segmental strains were lower in the case group than in the HC group, with statistically significant differences (P<0.05). The CA relative apical radial strain (RASRS) ratio was 0.77±0.05 and the relative apical longitudinal strain (RASLS) ratio was 0.93±0.04. In the differential diagnosis of CA and HCM, the area under the curve (AUC) of native T1 value, basal radial strain (BRS), basal longitudinal strain (BLS), RASRS and RASLS were 0.95, 0.97, 0.92, 0.84 and 0.82 (P<0.05). In the differential diagnosis of CA and HHD, the AUC of native T1, BRS, BLS, RASRS and RASLS were 0.97, 0. 74, 0.79, 0.73 and 0.80, respectively (P<0.05). In the differential diagnosis of HCM and HHD, the AUC of native T1 and global longitudinal strain (GLS) were 0.74 and 0.69, respectively, and combining these two parameters resulted in a combined diagnostic index with an AUC of 0.81.Conclusions Significantly higher native T1 values and preserved relative apical strain can effectively discriminate CA from HCM and HHD, with BRS having the highest diagnostic efficacy in CA and HCM and native T1 in CA and HHD; native T1 values combined with GLS can help further improve the differential diagnostic efficacy in HCM and HHD. Based on the native T1 values of myocardial histological imaging parameters and myocardial strain parameters GLS and BRS measured by CMR can effectively identify HCM, CA and HHD, which can provide new ideas for the diagnosis of myocardial thickening disease etiology and treatment decisions.
[关键词] 肥厚型心肌病;心肌淀粉样变性;高血压性心脏病;心脏磁共振;磁共振成像;T1 mapping;组织追踪技术;鉴别诊断
[Keywords] hypertrophic cardiomyopathy;cardiac amyloidosis;hypertensive heart disease;cardiac magnetic resonance;magnetic resonance imaging;T1 mapping;tissue tracking;differential diagnosis

张新娜 1   蒋雨琦 2   赵玲玲 2   束晶苇 1   俞宏林 1   杨盼盼 2   刘小琴 1   赵韧 3   钱银锋 1   余永强 1   李小虎 1*  

1 安徽医科大学第一附属医院放射科,合肥 230022

2 安徽医科大学附属阜阳医院放射科,阜阳 236000

3 安徽医科大学第一附属医院心血管内科,合肥 230022

李小虎,E-mail:lixiaohu@ahmu.edu.cn

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 82071897
收稿日期:2022-08-22
接受日期:2022-11-29
中图分类号:R445.2  R541 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.006
本文引用格式:张新娜, 蒋雨琦, 赵玲玲, 等. 心脏磁共振T1 mapping和组织追踪技术在左心室肥厚相关疾病中的鉴别诊断价值[J]. 磁共振成像, 2022, 13(12): 32-37. DOI:10.12015/issn.1674-8034.2022.12.006.

       肥厚型心肌病(hypertrophic cardiomyopathy, HCM)、心肌淀粉样变性(cardiac amyloidosis, CA)和高血压性心脏病(hypertensive heart disease, HHD)是三种具有不同发病机制的心肌病[1, 2, 3],但存在相似的影像学特征即左心室肥厚(left ventricular hypertrophy, LVH)[4],临床上对LVH的病因诊断存在一定的困难。随着心脏磁共振(cardiac magnetic resonance, CMR)技术的不断发展,其在各类心脏疾病的诊断及鉴别诊断中发挥着越来越重要的作用[5]。T1 mapping技术可以定量评价弥漫性纤维化等心肌组织学特征[6],有研究通过T1 mapping技术衍生出的细胞外体积分数来评估心肌纤维化,虽然具有较好的评价效果,但其需要进行增强检查而不适用于肾功能不全的患者,且可能存在打药前后图像不匹配的问题[7]。CMR钆对比剂延迟强化(late gadolinium enhancement, LGE)对鉴别上述三类LVH心肌病有较好的临床应用价值[8],但也需要行对比剂增强检查且对心肌弥漫性病变或疾病早期的评价有较大的局限性[9]。虽然有研究证实可以通过初始T1 mapping序列联合心肌纹理分析来预测CA患者心肌有无延迟强化,但是其感兴趣区的勾画可能存在选择偏倚而影响预测结果[10]。CMR组织追踪(CMR-tissue tracking, CMR-TT)技术可以根据心肌细胞的收缩性,直接在电影图像上对径向、周向和纵向三个维度进行应变分析,获取多维的心肌收缩信息进而客观评估心肌的形变程度[11, 12]。作为新的影像学标志物,许多研究已经证实初始T1 mapping和CMR-TT技术在鉴别三种LVH相关疾病中具有一定的价值,但是通常只单独研究了T1 mapping或CMR-TT技术的应用[13, 14, 15]。因此,本研究对不同病因的LVH患者进行T1 mapping成像以及应变分析,比较初始T1值及各应变参数的诊断效能,进而明确在非增强扫描的情况下鉴别诊断LVH相关疾病的最优参数,指导临床优先考虑相关参数进行诊断以提高诊疗效率。

1 材料与方法

1.1 一般资料

       回顾性分析2018年12月至2021年10月在安徽医科大学第一附属医院接受CMR扫描的85名患者病例,分别为CA组20例,男10例;HCM组20例,男11例;HHD组20例,男17例(CA组、HCM组、HHD组合称病例组);健康对照(healthy control, HC)组25例,男8例。

       CA组纳入标准:(1)临床经过肾脏、舌肌活检或心内膜活检确诊;(2)舒张末期左心室最大室壁厚度≥12 mm(诊断LVH)。排除标准:(1)合并其他心脏疾病者;(2)存在磁共振检查禁忌证或无法配合检查者。HCM组纳入标准:(1)临床及CMR诊断,无家族史的患者左心室任何部位心肌在舒张末期最大室壁和(或)间隔壁厚度≥15 mm,有家族史的患者左室壁厚度≥13 mm(诊断LVH);(2)左心室腔无扩张。排除标准:(1)合并其他心脏疾病者;(2)心尖肥厚型等特殊类型的HCM;(3)患者曾接受室间隔切除术或射频、酒精消融术;(4)存在磁共振检查禁忌证或无法配合检查者。HHD组纳入标准:(1)有高血压病史;(2)舒张末期心肌任一节段室壁≥12 mm(诊断LVH)。排除标准:(1)合并其他心脏疾病者;(2)存在磁共振检查禁忌证或无法配合检查者。HC组纳入标准:(1)CMR、超声、心电图、血常规、体格检查等无明显异常;(2)无心血管疾病病史及家族史。本研究严格遵循《赫尔辛基宣言》并经安徽医科大学第一附属医院医学伦理委员会批准,免除受试者知情同意,批准文号:PJ 2016-02-01。

1.2 仪器与方法

       采用Philips Ingenia 3.0 T磁共振扫描仪,16通道相控阵线圈配合心电触发、呼吸门控技术,使用自由稳态进动(steady-state free precession, SSFP)序列采集左心室两腔心、四腔心及短轴电影图像,主要扫描参数为FOV 300 mm×300 mm,TR 2.9 ms,TE 1.5 ms,翻转角45°,层厚8 mm;以改良的Look-Locker反转恢复(modified look-locker inversion recovery, MOLLI)序列采集心尖部、心中部、基底部各一层T1 mapping图像,主要扫描参数为FOV 320 mm×320 mm,TR 2.17 ms,TE 1.05 ms,翻转角20°,层厚8 mm。使用CVI42软件(Circle Cardiovascular Imaging公司,加拿大)自动勾画心肌内外膜(不包含乳头肌),通过双平面法测量心功能参数:左心室射血分数(left ventricular ejection fraction, LVEF)、左心室收缩末期容积指数(left ventricular end-systolic volume index, LVESVi)、左心室舒张末期容积指数(left ventricular end-diastolic volume index, LVEDVi)、左心室心肌质量指数(left ventricular myocardial mass index, LVMi);在心室舒张末期测量左室最大室壁厚度(maxmium left ventricular wall thickness, LVWTmax);在软件的组织追踪(tissue tracking, TT)模块经手动精细调节心肌内外膜后进行2D整体及各节段应变分析,包括基底部、心中部、心尖部的纵向应变(longitudinal strain, LS)、周向应变(circumferential strain, CS)、径向应变(radial strain, RS),并根据[心尖部平均应变值/(基底部平均应变值+心中部平均应变值)]算式计算得到相对心尖应变(relative apical sparing of strain, RAS)。

1.3 统计学方法

       采用SPSS 26.0和Prism 9.0软件进行统计学分析。各组数据均进行正态性检验,符合正态分布的计量资料用均数±标准差(x¯±s)表示,四组间比较采用单因素方差分析,两两比较采用LSD检验;不符合正态分布的计量资料用中位数(上下四分位数)表示,各组间差异用Kruskal-Wallis检验。计数资料用χ2检验比较组间差异。P<0.05为差异有统计学意义。采用组内相关系数(intra-class correlation coefficient, ICC)分析心肌应变的观察者内和观察者间的一致性,ICC>0.75说明一致性较好。应用受试者工作特征(receiver operator characteristic, ROC)曲线分析各指标的检验效能。

2 结果

2.1 基本临床特征及CMR相关参数

       四组间年龄差异无统计学意义(P>0.05);性别差异有统计学意义(P<0.05),其中HHD组男性所占比例较大。四组间LVEDVi、LVESVi、LVEF等心功能参数差异有统计学意义(P均<0.05),具体组间两两比较见表1。其中,HHD组LVEDVi值明显高于HCM及CA组(P<0.05);CA组及HHD组LVEF与HC组差异有统计学意义且两组的LVEF值较HC组明显下降,HCM组LVEF与HC组差异无统计学意义(P>0.05);病例组与HC组间LVMi差异有统计学意义(P<0.05),四组的LVWTmax总体差异有统计学意义且除CA组与HHD组间差异无统计学意义外,其余各两组间差异有统计学意义(P<0.05)。病例组的初始T1值均高于HC组,四组间差异有统计学意义(P<0.05)。CA组初始T1升高最显著,HCM组初始T1高于HHD组(P<0.05)。

表1  临床特征及CMR相关参数
Tab. 1  Basic clinical characteristics and CMR related parameters

2.2 左心室整体、各节段应变及相对心尖应变值的比较

       四组间整体及各节段应变差异均具有统计学意义,且病例组应变均低于HC组(P<0.05)。CA组基底部径向应变(basal radial strain, BRS)及基底部纵向应变(basal longitudinal strain, BLS)均明显低于HCM和HHD组(P<0.05),HCM组GLS大于HHD组且差异有统计学意义(P<0.05),具体组间两两比较见表2。相对心尖应变比值见表3,可见四组间总体差异有统计学意义(P<0.05),并且CA组相对心尖纵向应变(relative apical longitudinal strain, RASLS)及相对心尖径向应变(relative apical radial strain, RASRS)分别达到0.93±0.04、0.77±0.05,显著高于HCM及HHD组(P<0.05)。

表2  四组间整体及各节段心肌应变比较
Tab. 2  Comparison of global and segmental myocardial strains among the four groups
表3  四组径向、周向、纵向RAS比较
Tab. 3  Comparison of four groups of radial, circumferential and longitudinal RAS

2.3 一致性检验

       各参数在观察者间及观察者内一致性均较好,详见表4

表4  观察者内及观察者间一致性
Tab. 4  Intra-observer and inter-observer consistency

2.4 鉴别诊断效能

2.4.1 CA与其他两组疾病(HCM、HHD)的鉴别诊断

       对CA组与HCM组的初始T1值及心肌应变值进行ROC曲线分析(图1),结果显示初始T1的ROC曲线下面积(area under the curve, AUC)为0.95,左心室BRS、BLS的AUC分别为0.97、0.92,RASRS及RASLS的AUC分别为0.84、0.82(P<0.05)。BRS的AUC明显高于其他参数。并且在BRS为25.09%时,敏感度为90%,特异度为95%(P<0.05)。此外,初始T1在截断值为1379 ms时,敏感度达到95%,特异度为90%(P<0.05)。

       对CA组与HHD组的初始T1值及心肌应变值进行ROC曲线分析(图2),结果显示初始 T1的AUC为0.97,BRS、BLS的AUC分别为0.74、0.79,RASRS及RASLS的AUC分别为0.73、0.80(P均<0.05)。

图1  初始T1(native T1)及基底部纵向应变(BLS)、基底部径向应变(BRS)、相对心尖纵向应变(RASLS)、相对心尖径向应变(RASRS)鉴别心肌淀粉样变(CA)及肥厚型心肌病(HCM)诊断效能的受试者工作特征(ROC)曲线。
图2  Native T1及BLS、BRS、RASLS、RASRS鉴别CA及高血压性心脏病(HHD)诊断效能的ROC曲线
图3  Native T1、整体纵向应变(GLS)及两参数联合鉴别HCM及HHD诊断效能的ROC曲线。
Fig. 1  Receiver operator characteristic (ROC) curve of native T1, basal longitudinal strain (BLS), basal radial strain (BRS), relative apical longitudinal strain (RASLS), and relative apical radial strain (RASRS) in differentiating myocardial amyloidosis (CA) and hypertrophic cardiomyopathy (HCM).
Fig. 2  ROC curve of native T1, BLS, BRS, RASLS, and RASRS in differentiating CA and HHD.
Fig. 3  ROC curve of native T1, global longitudinal strain (GLS), and the efficacy of the combination of two parameters in the differential diagnosis of HCM and HHD.

2.4.2 HCM与HHD的鉴别诊断

       对HCM组与HHD组的初始T1值及GLS这两个参数进行ROC曲线分析(图3),结果显示GLS的AUC为0.69,初始T1的AUC为0.74,将这个两参数联合起来得到一个综合诊断指标,其AUC达到0.81(P均<0.05)。

3 讨论

       已有研究证实心肌应变及初始 T1值可以鉴别LVH相关疾病[14, 15, 16, 17],本研究通过T1 mapping及CMR-TT技术相关参数鉴别左室肥厚相关疾病,结果显示:(1)在鉴别CA和HCM时,BRS诊断效能最好,其AUC达到0.97;其次是BLS及初始T1,AUC均达到0.95;(2)在鉴别CA和HHD时,初始T1值的AUC达到0.97;其次是RASLS,AUC为0.80;(3)在鉴别HCM和HHD时,初始T1及GLS的AUC分别为0.74、0.69,两参数的联合诊断AUC可以达到0.81。

3.1 CMR基本心功能参数

       本研究中HHD组的LVEDVi明显高于HCM及CA组,表明其左心室舒张功能受损更加严重,这可能与其发病机制相关,即后负荷持续增加导致左心室功能失代偿,舒张功能明显下降,LVEF值也有所降低[18]。HCM组的LVEF与HC组没有明显差异,但是其心肌应变明显降低,说明心肌应变较LVEF更加敏感[19]。LVEF是通过心室腔容积变化来反映心室的收缩功能,容易受到心率等多种因素的影响。而心肌应变是通过心肌长度变化值与原长度的比值来反映心肌功能,因此更敏感且更准确[20]

3.2 初始T1值

       T1 mapping技术是在不使用钆对比剂的情况下能够直接获得心肌初始T1值的新型成像技术[21],能够反映弥漫性心肌纤维化及其他病理特征[22]。本研究中初始T1值在三种疾病的两两鉴别中都发挥重要作用,其中,在CA中,淀粉样蛋白弥漫浸润心肌细胞外间质引起CA患者的初始T1显著升高;但是HCM及HHD主要是在肥厚节段出现局灶性纤维化[23]。因此,CA的初始T1明显高于HCM及HHD。另一个可能的原因是CA患者心肌细胞外淀粉样纤维的含量大于心肌纤维化或者淀粉样纤维的T1值高于心肌纤维[24]。另外HCM组的初始 T1值高于HHD组,可能的原因是HCM存在心肌细胞体积肥大和排列紊乱,而HHD只存在心肌细胞体积肥大而排列不紊乱[25, 26]。但是仅通过初始T1值进行鉴别诊断的效能不高,这与其他研究结果一致[16],因此本研究中联合了GLS,进一步将诊断效能提高到0.81。

3.3 心肌应变

       本研究中CA组整体及各节段纵向应变受损最严重,与之前的研究结果一致[27]。分析原因如下:左室心肌分为三层,并分别由不同方向走行的纤维组成,其中心内膜下层心肌是由从基底部到心尖部纵向排列的纤维组成的,主要影响心肌纵向应变[28]。由于CA主要累及心内膜下[29, 30],所以CA患者纵向应变受损最严重。另外,本研究中还发现:CA组各节段均呈现从心尖部到基底部递减的应变梯度,称为RAS[31]。可能的原因是心肌淀粉样蛋白主要沉积在基底部[17],因此CA患者基底部心肌应变受损最严重。RAS主要通过相对心尖应变比值来表示,本研究中RASLS为0.93,这与Korthals等[17]及Pagourelias等[32]的研究结果类似。然而与HC组相比,HHD及HCM组中也出现了一定程度的RAS,与Senapati等[33]等的研究结果一致,这强调了计算RAS比值的重要性。已有研究采用一定的RASLS截断值诊断CA[27,32],进一步证实了将RAS应用于诊断CA具有较高的特异性。此外,RAS不仅可以提高CA诊断的准确性还有助于CA的预后评估[33]

3.4 局限性

       本研究存在一定的局限性:(1)样本量少,可能存在选择性偏倚。后续会增加样本量进行进一步的研究。(2)未进行亚组分析,可能忽略了不同亚组之间的差异。后续会进一步将HCM组分为梗阻型、非梗阻型、心尖肥厚型或将CA组按照免疫球蛋白轻链型和遗传性甲状腺素转载蛋白型分组进行研究。(3)未进行随访,无法提供预后评估。

       综上,T1 mapping和CMR-TT技术在CA、HCM和HHD等LVH相关疾病鉴别中具有较好的临床应用价值。BRS在CA与HCM中的诊断效能最高,初始T1及RASLS在CA与HHD中的鉴别诊断效能较高;初始T1值联合GLS有助于进一步提高HCM和HHD的鉴别诊断效能。因此在鉴别左室肥厚相关疾病时,首先评估在CA中有较高特异性的RAS,诊断或排除CA,然后联合初始T1值及GLS进一步鉴别诊断HCM与HHD。可以为心肌增厚性疾病的病因诊断及诊疗决策提供新思路,进而指导临床尽早进行精准的干预,改善患者预后。

[1]
Raphael CE, Mitchell F, Kanaganayagam GS, et al. Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and the microcirculation[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 26 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/33685501/. DOI: 10.1186/s12968-021-00720-9.
[2]
Sennott J, Ananthasubramaniam K. Multimodality imaging approach to cardiac amyloidosis: part 2[J]. Heart Fail Rev, 2022, 27(5): 1515-1530. DOI: 10.1007/s10741-021-10179-6.
[3]
Tadic M, Cuspidi C, Plein S, et al. Comprehensive assessment of hypertensive heart disease: cardiac magnetic resonance in focus[J]. Heart Fail Rev, 2021, 26(6): 1383-1390. DOI: 10.1007/s10741-020-09943-x.
[4]
Burrage MK, Ferreira VM. Cardiovascular Magnetic Resonance for the Differentiation of Left Ventricular Hypertrophy[J]. Curr Heart Fail Rep, 2020, 17(5): 192-204. DOI: 10.1007/s11897-020-00481-z.
[5]
胡瑞, 李瑞, 杨鹏程, 等. 心脏磁共振在诊断左室肥厚疾病中的临床应用进展[J]. 磁共振成像, 2022, 13(5): 151-153. DOI: 10.12015/issn.1674-8034.2022.05.032.
Hu R, Li R, Yang PC, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 151-153, 170. DOI: 10.12015/issn.1674-8034.2022.05.032.
[6]
Vigneault DM, Yang E, Jensen PJ, et al. Left Ventricular Strain Is Abnormal in Preclinical and Overt Hypertrophic Cardiomyopathy: Cardiac MR Feature Tracking[J]. Radiology, 2019, 290(3): 640-648. DOI: 10.1148/radiol.2018180339.
[7]
陈艳菲, 周莹雪, 刘鹏飞. 基于T1 mapping技术对心外膜脂肪组织与肥厚性心肌病左室重构关系的研究[J]. 磁共振成像, 2021, 12(6): 34-37. DOI: 10.12015/issn.1674-8034.2021.06.007.
Chen YF, Zhou YX, Liu PF. Study on the relationship between epicardial adipose tissue and left ventricular remodeling in hypertrophic cardiomyopathy based on T1 mapping technology[J]. Chin J Magn Reson Imaging, 2021, 12(6): 34-37. DOI: 10.12015/issn.1674-8034.2021.06.007.
[8]
Takeda M, Amano Y, Tachi M, et al. MRI differentiation of cardiomyopathy showing left ventricular hypertrophy and heart failure: differentiation between cardiac amyloidosis, hypertrophic cardiomyopathy, and hypertensive heart disease[J]. Jpn J Radiol, 2013, 31(10): 693-700. DOI: 10.1007/s11604-013-0238-0.
[9]
赵世华. 迎接心脏磁共振成像新技术挑战[J]. 中国医学影像技术, 2017, 33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120
Zhao SH. To meet the challenge of new cardiac magnetic resonance imaging technology[J]. Chin J Med imaging Technol, 2017, 33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120.
[10]
伍希, 唐露, 邓巧, 等. MRI 纹理分析预测心肌淀粉样变有无延迟强化的价值初探[J]. 磁共振成像, 2021, 12(12): 6-11. DOI: 10.12015/issn.1674-8034.2021.12.002.
Wu X, Tang L, Deng Q, et al. The feasibility study of MRI texture analysis in predicting delayed enhancement status in cardiac amyloidosis[J]. Chin J Magn Reson Imaging, 2021, 12(12): 6-11. DOI: 10.12015/issn.1674-8034.2021.12.002.
[11]
Xia H, Yeung DF, Di Stefano C, et al. Ventricular strain analysis in patients with no structural heart disease using a vendor-independent speckle-tracking software[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 274 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/32503490/. DOI: 10.1186/s12872-020-01559-1.
[12]
Li X, Wang H, Zhao R, et al. Elevated Extracellular Volume Fraction and Reduced Global Longitudinal Strains in Participants Recovered from COVID-19 without Clinical Cardiac Findings[J/OL]. Radiology, 2021, 299(2): E230-E240 [2022-08-10]. https://doi.org/10.1148/radiol.2021203998. DOI: 10.1148/radiol.2021203998.
[13]
Aquaro GD, Corsi E, Todiere G, et al. Magnetic Resonance for Differential Diagnosis of Left Ventricular Hypertrophy: Diagnostic and Prognostic Implications[J/OL]. J Clin Med, 2022, 11(3): 651 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/35160102/. DOI: 10.3390/jcm11030651.
[14]
冉玲平, 黄璐, 赵培君, 等. 心脏MR非对比增强纵向弛豫时间定量成像在左心室肥厚中的鉴别诊断价值[J]. 中华放射学杂志, 2018, 52(5): 374-378. DOI: 10.3760/cma.j.issn.1005-1201.2018.05.010.
Ran LP, Huang L, Zhao PJ, et al. Differential diagnostic value of non contrast enhanced longitudinal relaxation time quantitative imaging of cardiac MR in left ventricular hypertrophy[J] Chin J Radiol, 2018, 52(5): 374-378. DOI: 10.3760/cma.j.issn.1005-1201.2018.05.010.
[15]
郭杨钰, 谭利华, 姜孟春, 等. 心血管磁共振组织追踪技术评价心肌淀粉样变性与其他左心室肥厚疾病心肌应变差异[J]. 中国医学影像技术, 2020, 36(3): 382-386. DOI: 10.13929/j.issn.1003-3289.2020.03.015.
Guo YY, Tan LH, Jiang MC, et al. Evaluation of myocardial strain difference between myocardial amyloidosis and other left ventricular hypertrophy diseases by cardiovascular magnetic resonance tissue tracking technique[J]. Chin J Med Imaging Technol, 2020, 36(3): 382-386. DOI: 10.13929/j.issn.1003-3289.2020.03.015.
[16]
Neisius U, Myerson L, Fahmy AS, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy[J/OL]. PLoS One, 2019, 14(8): e221061 [2022-08-11]. https://doi.org/10.1371/journal.pone.0221061. DOI: 10.1371/journal.pone.0221061.
[17]
Korthals D, Chatzantonis G, Bietenbeck M, et al. CMR-based T1-mapping offers superior diagnostic value compared to longitudinal strain-based assessment of relative apical sparing in cardiac amyloidosis[J/OL]. Sci Rep, 2021, 11(1): 15521 [2022-08-11]. https://pubmed.ncbi.nlm.nih.gov/34330967/. DOI: 10.1038/s41598-021-94650-2.
[18]
郭杨钰, 谭利华, 曾牧, 等. 心脏磁共振组织追踪技术定量评估心肌淀粉样变性左室心肌应变[J]. 临床放射学杂志, 2020, 39(5): 908-912. DOI: 10.13437/j.cnki.jcr.2020.05.014.
Guo YY, Tan LH, Zeng M, et al. Quantitative assessment of left ventricular strain in amyloidosis by magnetic resonance tissue tracing[J]. J Clin Radiol, 2020, 39(5): 908-912. DOI: 10.13437/j.cnki.jcr.2020.05.014.
[19]
Smiseth OA, Torp H, Opdahl A, et al. Myocardial strain imaging: how useful is it in clinical decision making?[J]. Eur Heart J, 2016, 37(15): 1196-1207. DOI: 10.1093/eurheartj/ehv529.
[20]
Gastl M, Lachmann V, Christidi A, et al. Cardiac magnetic resonance T2 mapping and feature tracking in athlete's heart and HCM[J]. Eur Radiol, 2021, 31(5): 2768-2777. DOI: 10.1007/s00330-020-07289-4.
[21]
崔越, 曹玉坤, 刘佳, 等. 心脏磁共振T1 mapping和特征追踪技术定量评价肥厚型心肌病患者心肌纤维化和形变[J]. 临床心血管病杂志, 2020, 36(9): 856-862. DOI: 10.13201/j.issn.1001-1439.2020.09.017.
Cui Y, Cao YK, Liu J, et al. Quantitative evaluation of myocardial fibrosis and deformation in patients with hypertrophic cardiomyopathy by cardiac magnetic resonance T1 mapping and feature tracking[J]. J Clin Cardiol, 2020, 36(9): 856-862. DOI: 10.13201/j.issn.1001-1439.2020.09.017.
[22]
Taylor AJ, Salerno M, Dharmakumar R, et al. T1 Mapping: Basic Techniques and Clinical Applications[J]. JACC Cardiovasc Imaging, 2016, 9(1): 67-81. DOI: 10.1016/j.jcmg.2015.11.005.
[23]
Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease[J]. Heart, 2012, 98(19): 1436-1441. DOI: 10.1136/heartjnl-2012-302346.
[24]
Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis[J]. JACC Cardiovasc Imaging, 2013, 6(4): 488-497. DOI: 10.1016/j.jcmg.2012.11.013.
[25]
Rodrigues JCL, Rohan S, Ghosh Dastidar A, et al. Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness≥15 mm[J]. Eur Radiol, 2017, 27(3): 1125-1135. DOI: 10.1007/s00330-016-4468-2.
[26]
Hinojar R, Varma N, Child N, et al. T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy[J/OL]. Circ Cardiovasc Imaging, 2015, 8(12): e003285 [2022-08-10]. https://doi.org/10.1161/CIRCIMAGING.115.003285. DOI: 10.1161/CIRCIMAGING.115.003285.
[27]
Williams LK, Forero JF, Popovic ZB, et al. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 61 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/28784140/. DOI: 10.1186/s12968-017-0376-0.
[28]
Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance[J]. Heart Fail Rev, 2017, 22(4): 465-476. DOI: 10.1007/s10741-017-9621-8.
[29]
刘宇豪, 李薇, 欧阳丽娜, 等. 心脏磁共振组织特征追踪技术对射血分数保留的肥厚型心肌病患者左心功能的初步研究[J]. 磁共振成像, 2022, 13(1): 31-36. DOI: 10.12015/issn.1674-8034.2022.01.007.
Liu YH, Li W, Ouyang LN, et al. Preliminary study on left ventricular function in patients with hypertrophic cardiomyopathy with preserved ejection fraction by cardiac magnetic resonance tissue feature tracking technique[J]. Chin J Magn Reson Imaging, 2022, 13(1): 31-36. DOI: 10.12015/issn.1674-8034.2022.01.007.
[30]
李晨菲, 陈文剑, 谢瑞刚, 等. 心脏淀粉样变磁共振特征分析[J]. 中华实用诊断与治疗杂志, 2021, 35(10): 988-990. DOI: 10.13507/j.issn.1674-3474.2021.10.005.
Li CF, Chen WJ, Xie RG, et al. Magnetic resonance characteristic analysis of cardiac amyloidosis[J]. J Chin Pract Diagn Ther, 2021, 35(10): 988-990. DOI: 10.13507/j.issn.1674-3474.2021.10.005.
[31]
Bravo PE, Fujikura K, Kijewski MF, et al. Relative Apical Sparing of Myocardial Longitudinal Strain Is Explained by Regional Differences in Total Amyloid Mass Rather Than the Proportion of Amyloid Deposits[J]. JACC Cardiovasc Imaging, 2019, 12(7): 1165-1173. DOI: 10.1016/j.jcmg.2018.06.016.
[32]
Pagourelias ED, Mirea O, Duchenne J, et al. Echo Parameters for Differential Diagnosis in Cardiac Amyloidosis[J/OL]. Circ Cardiovasc Imaging, 2017, 10(3): e005588 [2022-08-12]. https://doi.org/10.1161/CIRCIMAGING.116.005588. DOI: 10.1161/CIRCIMAGING.116.005588.
[33]
Senapati A, Sperry BW, Grodin JL, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis[J]. Heart, 2016, 102(10): 748-754. DOI: 10.1136/heartjnl-2015-308657.

上一篇 基于CMR左室长轴应变预测多发性骨髓瘤继发心肌淀粉样变LGE的临床价值
下一篇 基于CMR电影序列的心肌收缩分数在射血分数保留的肥厚型心肌病中的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2