分享:
分享到微信朋友圈
X
临床研究
三维酰胺质子转移成像鉴别前列腺癌伴骨转移与不伴骨转移的可行性研究
张鹏运 汤芸行 姜昊洋 陈丽华 张钦和 林良杰 刘爱连

Cite this article as: Zhang PY, Tang YX, Jiang HY, et al. Feasibility study of three-dimensional amide proton transfer imaging in differentiating prostate cancer with and without bone metastasis[J]. Chin J Magn Reson Imaging, 2022, 13(12): 100-103, 110.本文引用格式:张鹏运, 汤芸行, 姜昊洋, 等. 三维酰胺质子转移成像鉴别前列腺癌伴骨转移与不伴骨转移的可行性研究[J]. 磁共振成像, 2022, 13(12): 100-103, 110. DOI:10.12015/issn.1674-8034.2022.12.017.


[摘要] 目的 探讨三维酰胺质子转移(3D amide proton transfer, 3D-APT)成像鉴别前列腺癌(prostate cancer, PCa)伴骨转移与不伴骨转移的价值。材料与方法 回顾性分析2019年4月至2022年8月于我院经病理证实的62例PCa病例,根据同位素发射计算机辅助断层显像(emission computed tomography, ECT)结果分为两组:PCa伴骨转移组(21例)和PCa不伴骨转移组(41例)。所有患者在3.0 T MR扫描仪上进行图像扫描,扫描序列包括T2加权成像(T2 weighted imaging, T2WI)、扩散加权成像(diffusion weighted imaging, DWI)及3D-APT。由两名观察者采用双盲法进行数据测量,根据T2WI和DWI图像确定病灶,在3D-APT和DWI融合图像上病灶显示最大层面手动勾画圆形感兴趣区(region of interest, ROI)进行APT值测量。采用组内相关系数(intra-class correlation coefficient, ICC)检验两名观察者之间APT值的测量一致性。采用两独立样本t检验比较两组病例APT值的差异。采用受试者工作特征(receiver operating characteristic, ROC)曲线及其曲线下面积(area under the curve, AUC)来评估APT值对PCa是否伴骨转移的鉴别诊断效能。结果 两名观察者APT测量结果一致性良好(ICC>0.75)。PCa伴骨转移组的APT值(2.76%±0.44%)高于PCa不伴骨转移组(2.26%±0.64%),差异有统计学意义(P<0.05)。APT值诊断PCa伴有骨转移的AUC为0.766。当APT值>2.50%时,其诊断PCa伴有骨转移的敏感度和特异度分别为71.43%和70.73%。结论 本研究首次采用3D-APT成像技术来鉴别PCa伴骨转移与不伴骨转移,伴有骨转移的PCa患者病变组织的APT值要显著高于无骨转移的PCa患者,且APT值诊断PCa伴有骨转移具有较高的敏感度和特异度;因此,APT成像可作为一种潜在的、无创可靠的影像方法来预测PCa的侵袭性。
[Abstract] Objective The study aims to explore the performance of 3D amide proton transfer (3D-APT) weighted imaging in differentiation of prostate cancer (PCa) with and without bone metastasis.Materials and Methods A total of 62 (from April 2019 to August 2022) pathology-proven PCa patient cases were included categorized into two groups: 21 PCas with bone metastasis, and 41 without bone metastasis. Bone metastasis was proved by emission computed tomography (ECT). MR scans were performed on a 3.0 T clinical scanner with the body coil to transmit RF pulse and a 16-channel abdominal coil to receive signals. MR sequences including 3D-APT, T2 weighted imaging (T2WI), and diffusion weighted imaging (DWI) were performed. All data were transferred to the IntelliSpace Portal workstation and processed independently by two observers using a double-blind method. According to T2WI and DWI images, the lesions were identified. On the 3D-APT and DWI fusion images, the circular region of interest (ROI) was manually delineated to measure the APT value. The mean APT values from the ROIs were used for statistical analysis by the SPSS 19.0 software (IBM). Measurement consistency of APT values between the two observers was tested using intra-class correlation coefficients (ICC). APT values were compared between twogroups using the t test. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy.Results Measurements by the two observers were in good agreement (ICC>0.75). APT values in group PCa with bone metastasis (2.76%±0.44%) were significantly higher than those in group PCa without bone metastasis (2.26%±0.64%) (P<0.05). The area under the ROC curves (AUC) of APT for distinguishing the lesions between two groups was 0.766. The diagnostic sensitivity and specificity were 71.43% and 70.73%, respectively, with the cut-off APT value of 2.50%.Conclusions In this study, 3D-APT imaging technology was used for the first time to distinguish PCa with and without bone metastasis, PCas with bone metastases were observed with significantly higher mean APT values than those without bone metastasis. The diagnostic sensitivity and specificity of APT imaging for differentiation of these two type PCas were good. Therefore, APT imaging may serve as a promising non-invasive method for clinical evaluation of the aggressiveness of PCa.
[关键词] 前列腺癌;骨转移;酰胺质子转移加成像;磁共振成像;同位素发射计算机辅助断层显像;扩散加权成像
[Keywords] prostate cancer;bone metastasis;amide proton transfer weighted imaging;magnetic resonance imaging;emission computed tomography;diffusion weighted imaging

张鹏运 1   汤芸行 1   姜昊洋 1   陈丽华 1   张钦和 1   林良杰 2   刘爱连 1*  

1 大连医科大学附属第一医院放射科,大连 116011

2 飞利浦(中国)投资有限公司北京分公司,北京 100016

刘爱连,E-mail:liuailian@dmu.edu.cn

作者利益冲突声明:全体作者均声明无利益冲突。


收稿日期:2022-02-24
接受日期:2022-11-29
中图分类号:R445.2  R735.25 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.017
本文引用格式:张鹏运, 汤芸行, 姜昊洋, 等. 三维酰胺质子转移成像鉴别前列腺癌伴骨转移与不伴骨转移的可行性研究[J]. 磁共振成像, 2022, 13(12): 100-103, 110. DOI:10.12015/issn.1674-8034.2022.12.017.

       前列腺癌(prostate cancer, PCa)是男性第二常见的肿瘤,也是男性癌症死亡的主要原因[1]。早期PCa可以通过根治性手术或根治性放疗等方式达到良好的治疗效果,而转移性PCa目前仍以雄激素阻断治疗(androgen deprivation therapy, ADT)为一线治疗方案[2]。相关研究表明,转移性PCa患者中接受过根治性前列腺切除术的患者比未行手术的患者死亡风险明显降低[3]。PCa起病隐匿,多数患者在确诊时已发展为中晚期且常伴有骨转移,而发生骨转移的PCa患者五年生存率不足30%[4]。因此,早期判断PCa是否伴有骨转移对改善患者预后尤为重要。同位素发射计算机辅助断层显像(emission computed tomography, ECT)和正电子发射计算机断层显像(positron emission tomography-computed tomography, PET-CT)是诊断骨转移的重要方法[5, 6],但是由于检查成本高及核素的使用,限制了其在临床的广泛应用。MRI是目前公认的诊断PCa的最佳影像学方法[7]。常规MR检查对于骨髓腔内的早期改变有一定敏感性,但也存在局限性[8]。酰胺质子转移(amide proton transfer, APT)加权成像通过检测组织中的多肽分子或内源性游离蛋白的数量来间接反映组织的代谢情况或生理状态,是一种无辐射、无创的检查方法,受到了临床广泛的关注和认可[9],并已被证明在许多临床常见疾病中的应用价值[10, 11, 12]。目前,APT成像在前列腺的应用研究主要集中于良恶性鉴别、PCa危险度评估方面[13, 14],APT用于PCa骨转移的研究尚未见报道。本研究旨在探讨3D-APT技术鉴别PCa伴骨转移与不伴骨转移的价值。

1 材料与方法

1.1 一般资料

       回顾性分析2019年4月至2022年8月于我院接受前列腺3.0 T MRI检查的病例。纳入标准:(1)完成MRI检查,影像资料齐全;(2)MR检查后(间隔时间约1个月)进行手术或穿刺,病理诊断结果显示为PCa;(3)诊断为PCa后,进行ECT检查,明确是否伴有骨转移。排除标准:(1)MRI检查前曾接受活检或相关治疗;(2)既往有前列腺手术史;(3)MRI图像伪影重,图像质量不符合诊断要求。最终纳入62例患者病例。根据ECT检查结果分为两组:PCa伴骨转移组,21例,年龄59~86(71.95±7.91)岁;PCa不伴骨转移组,41例,年龄54~94(71.00±8.40)岁。本研究遵守《赫尔辛基宣言》,并经大连医科大学附属第一医院伦理委员会同意,免除受试者知情同意,批准文号:PJ-KS-XJS-2021-20(X)。

1.2 仪器与方法

       采用Philips 3.0 T(Ingenia CX; Philips Healthcare, the Netherlands)MR扫描仪,16通道腹部线圈。患者检查前清洁肠道,排空尿液。所有患者进行T2加权成像(T2 weighted imaging, T2WI)、扩散加权成像(diffusion weighted imaging, DWI;b值:0、50和1200 mm2/s)及3D-APT扫描(饱和射频脉冲功率2 μT,持续时间2 s)。APT成像采用三维快速自旋回波Dixon序列进行数据采集,并采用选择性翻转的方法对脂肪信号进行抑制,特异性吸收率(specific absorption rate, SAR)值为1.1 W/kg(符合美国食品药品管理局的相关要求),采集了七个饱和频率偏移(±2.7、±3.5、±4.3、1540 ppm)的数据,并且在+3.5 ppm处采集三个不同回波时间的信号。三个不同回波时间采集的信号用来校正磁场不均匀所带来的影响,七个不同饱和频点的信号用来计算最终的APT值。数据后处理在数据扫描结束后自动进行。其他扫描参数见表1

表1  扫描序列及参数
Tab. 1  Scan sequence and parameters

1.3 图像分析与处理

       扫描后的数据自动传输到IntelliSpace Portal(ISP, Philips Healthcare)工作站,由两名观察者(分别有3年、5年前列腺MRI诊断经验)采用双盲法对PCa病灶进行APT值测量。根据T2WI和DWI图像确定病灶,在APT和DWI的融合图像上的病灶显示最大层面手动勾画圆形感兴趣区(region of interest, ROI),ROI覆盖病灶的2/3左右,尽量避开出血、坏死、钙化区(图1)。

图1  1A~1D:男,74岁,PCa伴骨转移。1A:T2WI图示前列腺中央带稍低信号影,病灶边界不清;1B:DWI图示病灶呈高信号;1C:APT图病灶呈高信号,APT值为3.50%;1D:ECT成像示胸骨处高摄取,骨转移(箭)。1E~1H:男,62岁,PCa不伴骨转移。1E:T2WI图示前列腺左侧中央带稍低信号影,病灶边界不清;1F:DWI图示病灶呈高信号;1G:APT图病灶呈高信号,APT值为2.40%;1H:ECT成像未见明确高摄取。PCa:前列腺癌;T2WI:T2加权成像;DWI:扩散加权成像;APT:酰胺质子转移加权成像;ECT:同位素发射计算机辅助断层显像。
Fig. 1  1A-1D: A 74-year-old male patient with PCa with bone metastasis. 1A: On T2WI, the central band of the prostate is slightly low signal shadow, and the boundary of the lesion is unclear. 1B: The lesion shows hypersignal on DWI; 1C: The lesion shows high signal in APT diagram and the APT value is 3.50%. 1D: ECT imaging shows high uptake at the sternum with bone metastases (arrow). 1E-1H: A 62-year-old male patient with PCa without bone metastasis. 1E: This T2WI image shows a slightly low signal shadow in the left central band of the prostate, with ambiguous lesion boundaries. 1F: The lesion shows hypersignal on DWI; 1G: APT map shows high signal intensity and APT value is 2.40%. 1H: No clear high uptake is observed in ECT imaging. PCa: prostate cancer; T2WI: T2-weighted imaging; DWI: diffusion-weighted imaging; APT: amide proton transfer; ECT: emission computed tomography.

1.4 统计学分析

       使用SPSS 19.0软件进行统计分析。采用组内相关系数(intra-class correlation coefficient, ICC)检验两名观察者之间APT值测量的一致性,如一致性良好(ICC>0.75),采用两名观察者测量值的平均值进行后续统计分析。采用两独立样本t检验比较两组病例APT值的差异。采用受试者工作特征(receiver operating characteristic, ROC)曲线及其曲线下面积(area under the curve, AUC)评估APT值对PCa伴骨转移组和不伴骨转移组的鉴别诊断效能。P<0.05为差异有统计学意义。

2 结果

2.1 两名观察者APT值测量一致性检验

       两名观察者测量的两组患者的APT值一致性良好,ICC值>0.75(表2),保证了APT值测量的可靠性。

表2  两名观察者APT值测量一致性检验结果
Tab. 2  Consistency test results of APT values measured by two observers

2.2 两组病例之间APT值的差异性分析

       PCa伴骨转移组的APT值(2.76%±0.44%)高于PCa不伴骨转移组的APT值(2.26%±0.64%),差异有统计学意义(P<0.05)。两组APT值的箱式图见图2

图2  APT值箱式图。
图3  APT诊断PCa伴骨转移组的ROC曲线。APT:酰胺质子转移;PCa:前列腺癌;ROC:受试者工作特征。
Fig. 2  Box diagram of two groups of APT values.
Fig. 3  ROC curve of APT diagnosis of PCa with bone metastasis. APT: amide proton transfer; PCa: prostate cancer; ROC: receiver operating characteristic.

2.3 APT值对PCa有无骨转移的预测效能

       APT值诊断PCa伴有骨转移的AUC为0.766(图3)。当APT阈值大于2.50%时,诊断PCa伴有骨转移的敏感度为71.43%,特异度为70.73%。

3 讨论

       本研究首次采用3D-APT成像技术,通过APT定量值鉴别PCa伴骨转移与不伴骨转移,结果显示PCa伴骨转移组的APT值明显高于不伴骨转移组,并且有较高的特异度和敏感度,说明3D-APT成像有潜力作为一种无创、可靠的影像学方法来评估PCa的侵袭性,为临床鉴别诊断及治疗方案的制订提供一定参考依据和思路。

3.1 PCa诊断及治疗现状

       近年来,我国PCa呈明显持续增长趋势,正成为严重影响我国男性健康的泌尿系恶性肿瘤[15]。PCa的自然病程一般较长,个体间特性差异大,治疗方法及预后主要取决于早期诊断。我国多数地区新确诊患者中的晚期比例高于欧美国家,对我国PCa患者的治疗效果及长期生存产生直接影响[16]。明确PCa是否转移在临床治疗决策中具有重要意义,研究表明接受根治性前列腺切除术的转移性PCa患者比未行手术的患者死亡风险明显降低[3]。CT、ECT目前多用于检查是否有转移性病灶。MRI因其具有较高的软组织分辨率、多参数及多平面成像、无创等优点,成为目前临床上前列腺检查的首选方法。除了常规的T2WI序列外,包括DWI和动态对比增强(dynamic contrast enhanced, DCE)扫描等功能MRI序列也已经在前列腺疾病的鉴别诊断中得到广泛应用[17]。本研究于国内外首次探索了APT成像评估PCa是否伴骨转移的可行性,研究结果表明伴有骨转移的PCa患者病变组织APT值明显高于无骨转移的PCa患者,且用APT值来鉴别两种类型PCa组织具有较高的敏感度和特异度。

3.2 3D-APT成像原理

       化学交换饱和转移(chemical exchange saturation transfer, CEST)成像最早是在2000年由Ward等[18]提出,并获得了CEST的对比图像。其原理是利用特定频率的偏共振饱和脉冲对感兴趣物质分子中的特定类型氢质子信号(如多肽或蛋白质分子上的酰胺基质子、葡萄糖分子上的羟基质子等)进行充分预饱和;接着这种饱和作用会通过这些氢质子与自由水分子上氢质子(传统MRI的信号来源)的交换,传递给自由水分子;从而导致自由水信号的衰减,由此来间接反映这些感兴趣物质在组织中的分布水平。APT成像是CEST技术的一种,其观测的目标是多肽或蛋白质分子上的酰胺氢质子信号。在相对稳定的组织环境中,当蛋白质/多肽含量增高时,则对应的酰胺基质子含量也会提高,它们与自由水分子之间的交换就发生得越频繁,这样组织的APT信号也就越强[19, 20]。因此,APT成像是一种对多肽/蛋白质浓度敏感的成像技术,可以通过APT成像评估肿瘤组织的蛋白质含量,进而了解肿瘤细胞的增殖情况及生物学状态。

3.3 APT应用现状

       APT技术目前已在多个临床领域展开应用,尤其在神经系统已取得了公认的诊断价值,比如在脑肿瘤的鉴别、分级和疗效评估等方面[21],以及在多发性硬化、肝性脑病等疾病中的应用[22, 23, 24]。另外,APT成像在宫颈癌病理分级、直肠癌分级等研究中也有一些初步应用[9, 25]。APT成像最早是在2011年被应用于PCa的鉴别诊断研究当中[26],结果表明PCa病变组织的APT值要显著高于非病变组织,显示出了APT成像在PCa的病变检测应用潜力。2016年的一项研究探索了APT值与Gleason评分之间的关系[27]。经过多年的发展,APT成像在技术成熟度和测量结果稳定性上都得到了很大的提升[28]。本研究中,两名观察者测量的两组患者的APT值一致性良好,ICC值均大于0.75,说明了APT值测量的可靠性。但截至目前,APT技术在前列腺疾病研究方面的应用依然较少。本研究首次将3D-APT成像应用于评估PCa的骨转移情况,结果表明,伴骨转移的PCa病变组织的APT值要明显高于无骨转移PCa病变组织。

3.4 APT值在PCa伴骨转移与不伴骨转移组中的差异及其影响因素

       本研究中,PCa伴骨转移组的APT值高于不伴骨转移组的APT值,差异有统计学意义(P<0.05),其原因可能是伴骨转移的PCa患者病灶中癌细胞增殖更多、细胞密度大、代谢旺盛,进而合成更多的游离蛋白质,故导致APT值升高,这与既往研究的结果相同[26, 27]。与此同时,每个肿瘤细胞胞质核糖体数目增加,代谢旺盛,产生更多与肿瘤侵袭、转移相关的蛋白质,这些因素都可导致APT值增高。此外,更多的肿瘤血管生成是PCa细胞骨转移的基础,不成熟的肿瘤血管网及更高的灌注也导致APT值升高[29]

3.5 本研究的局限性

       本研究存在以下局限性:(1)本研究的样本量较小,后续研究中有待加大样本量对结果进行进一步验证;(2)对于病灶ROI的勾画主要采用手动方式,可能会引入人为因素所引起的偏差,后续研究希望可以加入自动分割技术;(3)本研究选取病灶所在最大层面进行二维ROI勾画,后续研究可以考虑进行多层面三维容积提取来选择ROI;(4)本研究只单独分析3D-APT序列的诊断价值,后续研究中考虑加入更多序列及临床指标并分析其相关性。

       综上所述,APT成像诊断PCa伴有骨转移具有较高的敏感度与特异度,且无需对比剂,APT值有作为有效预测PCa骨转移的影像学标志物的潜能。这种对PCa骨转移风险的无创、早期的预测有利于高风险患者有效、及时地选择适合的治疗方案,以提高患者的预后效果,减轻患者的医疗费用负担。

[1]
Wang SC, Ting WC, Chang YC, et al. Whole pelvic radiotherapy with stereotactic body radiotherapy boost vs. conventionally fractionated radiotherapy for patients with high or very high-risk prostate cancer[J/OL]. Front Oncol, 2020, 10: 814 [2022-10-23]. https://www.frontiersin.org/articles/10.3389/fonc.2020.00814. DOI: 10.3389/fonc.2020.00814.
[2]
方友强, 周祥福. 2020版欧洲泌尿外科学会前列腺癌诊疗指南更新要点解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(6): 401-404 [2022-11-02]. http://qikan.cqvip.com/Qikan/Article/Detail?id=7103633127. DOI: 10.3877/cma.j.issn.1674-3253.2020.06.001.
Fang YQ, Zhou XF. Interpretation of the update points of the 2020 edition of the guidelines for diagnosis and treatment of prostate cancer of European Urology Society[J/OL]. Chinese Journal of Endoscopic Urology (electronic edition), 2020, 14 (6): 401-404 [2022-11-02]. http://qikan.cqvip.com/Qikan/Article/Detail?id=7103633127. DOI: 10.3877/cma.j.issn.1674-3253.2020.06.001.
[3]
Thompson IM, Tangen C, Basler J, et al. Impact of previous local treatment for prostate cancer on subsequent metastatic disease[J]. J Urol, 2002, 168(3): 1008-1012. DOI: 10.1097/01.ju.0000026656.62692.67.
[4]
Manfredi M, Mele F, Garrou D, et al. Multiparametric prostate MRI: technical conduct, standardized report and clinical use[J]. Italian J Urol Nephrol, 2018, 70(1): 9-21. DOI: 10.23736/S0393-2249.17.02846-6.
[5]
Tabotta F, Jreige M, Schaefer N, et al. Quantitative bone SPECT/CT: high specificity for identification of prostatecancer bone metastases[J/OL]. BMC Musculoskel Dis, 2019, 20(1): 619-625 [2022-11-02]. https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/s12891-019-3001-6. DOI: 10.1186/s12891-019-3001-6.
[6]
Zacho HD, Ravn S, Afshar-Oromieh A, et al. Added value of 68 Ga-PSMA PET/CT for the detection of bone metastases inpatients with newly diagnosed prostate cancer and a previous99mTc bone scintigraphy[J/OL]. EJNMMI Res, 2020, 10(1): 31-39 [2022-11-02]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-020-00618-0. DOI: 10.1186/s13550-020-00618-0.
[7]
Kamimura K, Nakajo M, Yoneyama T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions[J]. Jpn J Radiol, 2019, 37(2): 109-116. DOI: 10.1007/s11604-018-0787-3.
[8]
周长友, 陈久尊, 何家维, 等. 四肢骨转移瘤的影像学分析[J]. 实用放射学杂志, 2013, 29(11): 1823-1825, 1843. DOI: 10.3969/j.issn.1002-1671.2013.11.027.
Zhou CY, Chen JZ, He JW, et al. Imaging analysis of bone metastases in the extremities[J]. J Pract Radiol, 2013, 29(11): 1823-1825, 1843. DOI: 10.3969/j.issn.1002-1671.2013.11.027.
[9]
Nishie A, Takayama Y, Asayama Y, et al. Amide proton transfer imaging can predict tumor grade in rectal cancer[J]. Magn Reson Imaging, 2018, 51: 96-103. DOI: 10.1016/j.mri.2018.04.017.
[10]
Msayib Y, Harston GWJ, Tee YK, et al. Quantitative CEST imaging of amide proton transfer in acute ischaemic stroke[J/OL]. Neuroimage Clin, 2019, 23: 101833 [2022-11-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411782. DOI: 10.1016/j.nicl.2019.101833.
[11]
Li S, Chan P, Li C, et al. Changes of Amide Proton Transfer Imaging in Multiple System Atrophy Parkinsonism Type[J/OL]. Front Aging Neurosci, 2020, 12: 572421 [2022-11-02]. https://www.frontiersin.org/articles/10.3389/fnagi.2020.572421. DOI: 10.3389/fnagi.2020.572421.
[12]
邓佳, 詹瑞森, 王卫国. 前列腺癌骨转移的研究进展[J]. 医学临床研究, 2020(3): 325-328. DOI: 10.3969/j.issn.1671-7171.2020.03.002.
Deng J, Zhan RS, Wang WG. Research progress of prostate cancer bone metastasis[J]. J Clin Res, 2020(3): 325-328. DOI: 10.3969/j.issn.1671-7171.2020.03.002.
[13]
Yin H, Wang D, Yan R, et al. Comparison of Diffusion Kurtosis Imaging and Amide Proton Transfer Imaging in the Diagnosis and Risk Assessment of Prostate Cancer[J/OL]. Front Oncol, 2021, 11: 640906 [2022-11-02]. https://www.frontiersin.org/articles/10.3389/fonc.2021.640906.
[14]
殷慧佳, 韩东明, 翟战胜, 等. 氨基质子转移成像对前列腺癌与良性前列腺增生的鉴别诊断价值[J]. 中国医学影像学杂志, 2019, 27(12): 938-941. DOI: 10.3969/j.issn.1005-5185.2019.12.014.
Yin HJ, Han DM, Zhai ZS, et al. Diagnosis of amide proton transfer imaging between prostatic cancer and benign prostatic hyperplasia[J]. Chin J Med Imaging, 2019, 27(12): 938-941. DOI: 10.3969/j.issn.1005-5185.2019.12.014.
[15]
李星, 曾晓勇. 中国前列腺癌流行病学研究进展[J]. 肿瘤防治研究, 2021, 48(1): 98-102. DOI: 10.3971/j.issn.1000-8578.2021.20.0370.
Li X, Zeng XY. Advances in epidemiology of prostate cancer in China[J]. Cancer Res Prev Treat, 2021, 48(1): 98-102. DOI: 10.3971/j.issn.1000-8578.2021.20.0370.
[16]
姬宏利, 王梅, 苗朋, 等. 晚期前列腺癌的治疗进展[J]. 检验医学与临床, 2020, 17(20): 3041-3044. DOI: 10.3969/j.issn.1672-9455.2020.20.041.
Ji HL, Wang M, Miao P, et al. Progress in treatment of advanced prostate cancer[J]. Lab Med Clin, 2020, 17(20): 3041-3044. DOI: 10.3969/j.issn.1672-9455.2020.20.041.
[17]
Sun Y, Reynolds HM, Parameswaran B, et al. Multiparametric MRI and radiomics in prostate cancer: a review[J]. Australas Phys Eng Sci Med, 2019, 42(1): 3-25. DOI: 10.1007/s13246-019-00730-z.
[18]
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
[19]
贾绚, 赖灿, 马晓辉. 酰胺质子转移成像的临床研究进展[J]. 中国医疗器械杂志, 2020, 44(2): 185-188. DOI: 10.3969/j.issn.1671-7104.2020.02.018.
Jia X, Lai C, Ma XH. Progress in clinical research of amide proton transfer imaging[J]. Chinese Journal of Medical Instrumentation, 2020, 44(2): 185-188. DOI: 10.3969/j.issn.1671-7104.2020.02.018.
[20]
Milot L. Amide proton transfer-weighted MRI: insight into cancer cell biology[J]. Radiology, 2022, 305(1): 135-136. DOI: 10.1148/radiol.221376.
[21]
Joo B, Han K, Choi YS, et al. Amide proton transfer imaging for differentiation of benign and atypical meningiomas[J]. Eur Radiol, 2018, 28(1): 331-339. DOI: 10.1007/s00330-017-4962-1.
[22]
Bai Y, Lin YS, Zhang W, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas[J]. Oncotarget, 2017, 8(4): 5834-5842. DOI: 10.18632/oncotarget.13970.
[23]
By S, Barry RL, Smith AK, et al. Amide proton transfer CEST of the cervical spinal cord in multiple sclerosis patients at 3T[J]. Magn Reson Med, 2018, 79(2): 806-814. DOI: 10.1002/mrm.26736.
[24]
Zöllner HJ, Butz M, Jördens M, et al. Chemical exchange saturation transfer imaging in hepatic encephalopathy[J/OL]. Neuroimage Clin, 2019, 22: 101743 [2022-11-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411782. DOI: 10.1016/j.nicl.2019.101743.
[25]
He YL, Li Y, Lin CY, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted MRI for cervical cancer: a preliminary study[J]. J Magn Reson Imaging, 2019, 50(4): 1318-1325. DOI: 10.1002/jmri.26710.
[26]
Jia G, Abaza R, Williams JD, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study[J]. J Magn Reson Imaging, 2011, 33(3): 647-654. DOI: 10.1002/jmri.22480.
[27]
Takayama Y, Nishie A, Sugimoto M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. MAGMA, 2016, 29(4): 671-679. DOI: 10.1007/s10334-016-0537-4.
[28]
Dou WQ, Lin CE, Ding HY, et al. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies[J]. Quant Imaging Med Surg, 2019, 9(10): 1747-1766. DOI: 10.21037/qims.2019.10.03.
[29]
Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2013, 16(3): 441-448. DOI: 10.1093/neuonc/not158.

上一篇 基于术前增强MRI影像组学分析的列线图模型预测肝细胞癌切除术后复发风险的价值
下一篇 磁共振表观扩散系数鉴别前列腺癌预后相关风险分层的应用研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2