分享:
分享到微信朋友圈
X
综述
肥厚型心肌病合并心房颤动的磁共振成像研究进展
武佳磊 杨斌

Cite this article as: WU J L, YANG B. Research status of hypertrophic cardiomyopathy complicated with atrial fibrillation based on cardiac magnetic resonance imaging technology[J]. Chin J Magn Reson Imaging, 2023, 14(5): 181-185.本文引用格式:武佳磊, 杨斌. 肥厚型心肌病合并心房颤动的磁共振成像研究进展[J]. 磁共振成像, 2023, 14(5): 181-185. DOI:10.12015/issn.1674-8034.2023.05.032.


[摘要] 肥厚型心肌病常继发心房颤动(简称房颤),导致临床结局显著变差,早期识别其房颤易感性、量化风险尤为重要。心脏磁共振成像集心脏解剖成像、功能成像于一体,可从左心房、左心室的结构、功能进行评价,可以对房颤发生风险进行早期预测、分层。本文回顾了心脏磁共振在肥厚型心肌病合并房颤时左心房、室结构、功能改变的相关进展,阐述了肥厚型心肌病发生房颤的相关机理,探讨了各种结构、功能参数在疾病发生发展过程中的应用价值及局限性,为制订更精准的诊断、治疗、管理策略提供可靠依据。
[Abstract] Atrial fibrillation (AF) is often secondary to hypertrophic cardiomyopathy (HCM), which leads to significantly worse clinical ending. It is particularly important to identify the risks of AF and quantification. Cardiac magnetic resonance (CMR) imaging integrates cardiac anatomy and function, evaluates the structure and function of the left atrium and ventricle, and can predict and stratify the risk of AF early. We reviewed the relevant progress of CMR in the structure and function changes of the left atrium and ventricle in HCM complicated with AF, expounds the relevant mechanism of AF in hypertrophic cardiomyopathy, discussed the application value and limitations of various structural and functional parameters in the process of disease occurrence and development, to provide a reliable basis for formulating more accurate diagnosis, treatment and mangement strategies.
[关键词] 心肌病;肥厚型;心律失常;心房颤动;心脏磁共振成像;心肌应变;预测
[Keywords] cardiomyopathy;hypertrophic;arrhythmia;atrial fibrillation;cardiac magnetic resonance;myocardial strain;prediction

武佳磊 1   杨斌 2*  

1 大理大学临床医学院,大理 671000

2 昆明市第一人民医院医学影像中心,昆明 650051

通信作者:杨斌,E-mail:yangbinapple@163.com

作者贡献声明:杨斌对稿件整体结构进行设计、修改,对稿件的重要内容进行修改;武佳磊起草、撰写稿件,收集、整理、总结相关领域研究成果,对研究结论进行归纳总结;杨斌获得国家自然科学基金、中华国际医学交流基金会专项基金、云南省医学学科后备人才项目资金资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金 82160348 中华国际医学交流基金会专项基金 Z-2014-07-2101 云南省医学学科后备人才项目 H-2018008
收稿日期:2022-12-15
接受日期:2023-04-23
中图分类号:R445.2  R541 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.05.032
本文引用格式:武佳磊, 杨斌. 肥厚型心肌病合并心房颤动的磁共振成像研究进展[J]. 磁共振成像, 2023, 14(5): 181-185. DOI:10.12015/issn.1674-8034.2023.05.032.

0 前言

       肥厚型心肌病(hypertrophic cardiomyopathy, HCM)是一种常染色体显性遗传病,发病率约为1/500,是青少年和运动员猝死的最常见原因之一[1]。HCM患者常继发心房颤动(atrial fibrillation, AF),约20%的HCM患者可继发AF[2],HCM患者发生AF的风险是普通人群的10倍,随之而来的栓塞性卒中、脑微出血风险明显升高[3, 4, 5]。在疾病终末期,相较于左心室(left ventricle, LV)收缩功能正常的患者,收缩功能异常的患者AF、卒中的发生率将增加两倍以上[6]。因此,早期预测HCM患者AF发生的风险并进行分层就显得尤为重要。

       心脏磁共振(cardiac magnetic resonance, CMR)拥有良好的软组织分辨率,具有集解剖成像、功能成像为一体的一站式检查优势,现已广泛应用于HCM的临床评估。CMR常规扫描可以评价心房、心室的结构改变,晚期钆对比剂增强(late gadolinium enhancement, LGE)可以清晰显示心肌纤维化,基于CMR组织特征追踪成像技术的心肌应变(myocardial strain, MS)技术作为一种无创、定量分析心脏整体、节段心肌形变受损的工具,可以发现早期心房、心室心肌结构、功能紊乱,从而实现疾病的早期诊断。本文就CMR在HCM合并AF的研究进展进行综述,旨在探索HCM合并AF的潜在机制及CMR多参数的临床价值,总结CMR在其诊断、治疗、预后中的重要作用。

1 HCM发生AF的主要危险因素及机制

       LV结构功能障碍、微血管缺血等所致的左心房(left atrium, LA)结构重构、电重构以及因遗传因素导致的基因异常是引起AF的主要原因,可间接导致AF的发生[7]。MYH7基因中的Arg663His错译突变与HCM患者AF的风险增加相关[8]。参与编码肾血管紧张素-醛固酮系统、胶原合成蛋白的非肌细胞基因,也被证明是HCM疾病的调节因子,可增加AF的发生率[9]。另外,年龄(≥40岁)、阻塞性睡眠呼吸暂停也是HCM发生AF的独立危险因素[10, 11]

       在HCM中,发生AF的主要机制是舒张功能障碍所致的LA重构。LV肥厚导致心室顺应性下降,LV舒张末期压升高,LV主动扩张在快速充盈期对LV充盈的贡献减少,导致LA后负荷增加,LA进行性扩张引起继发性心房肌病。HCM患者常出现心房缺血、微血管功能障碍导致心房纤维化、心房肌原纤维紊乱增多[12],通过削弱窦性冲动传导并引起心房内折返,成为AF致心律失常的物质基础,最终导致心房增大、电生理异常、功能障碍。其他诱发HCM发生AF的机制包括钙调控异常导致去极化后的冲动延迟、负责传导肺静脉冲动至LA的肌袖肥大以及导致心房缺血的冠状动脉微血管功能障碍等[13, 14]

2 CMR对于HCM发生AF的预测价值

2.1 LV结构、功能改变对HCM发生AF的预测

2.1.1 LV结构改变对HCM发生AF的预测

       LV形态学改变是HCM的病理生理基础,可以间接导致LA的形态、功能改变,从而导致AF的发生、发展,在HCM患者发生AF的过程中扮演着重要角色。LV心肌肥厚程度与心肌的缺血负荷正相关,与心肌原始T1值升高、LGE显著相关[15]。但是,对于LV心肌最大厚度(maximal wall thickness, MWT)的测量,在超声检查和CMR检查之间存在很大的差异,在一项涉及769例病例的多中心研究中,观察者间变异性较大(-59%~117%),超声检查和CMR检查组间测量一致性较差(差值约4.8 mm),并且测量结果的差异可能会影响临床植入式心律转复除颤器(implantable cardioverter-defibrillator, ICD)植入的决策[16]。因此,为了减少观察者主观因素的影响,有研究利用机器学习的方法对HCM的MWT进行自动测量,结果显示机器学习对MWT的测量优于人类专家,对诊断、风险分层和临床试验具有潜在意义[17]。而心室肌纤维化,与心房肌纤维化一样,代表着结构重构的结果。在无血流动力学障碍的HCM患者中,心肌原始T1值延长、细胞外体积增加表明弥漫性心肌纤维化[18]。心室纤维化程度可独立预测HCM患者AF的发生[19],COCHET等[20]进一步研究发现心脏特殊部位——室间隔与右心室游离壁交界处出现LGE是HCM患者AF发生的预测指标。LGE程度(>14.4%)是HCM患者血栓栓塞并发症的独立预测因子,如果伴有AF,血栓栓塞事件的风险显著升高[21]。一项研究基于多变量构建的AF风险评分模型,表明LV心肌纤维化程度(LGE%)及LA容积指数可以将HCM患者发生AF的风险进行分层,并且LGE%在量化HCM发生AF的危险分层时具有增量价值[19]

       然而,一部分研究也阐述了LGE对于HCM发生AF的预测价值可能并没有那么显著。有研究显示,虽然HCM伴有AF的患者比无AF的患者表现出更多的LGE,但LGE程度预测AF的效能不如LA大小显著[22]。LA重构和功能障碍的决定因素是LV质量指数而不是LV心肌纤维化[23]。一部分研究则显示LV重构指数是HCM患者发生AF的独立预测因子,提示HCM患者AF的发生可能与LV重构有关[24]。LGE对于HCM患者发生AF的预测价值在不同研究之间出现差异,可能与使用的设备、参数之间的不统一相关,因此,有研究利用三维深度卷积神经网络自动、定量测量HCM的纤维化,可以快速准确地量化纤维化体积,优于常规的二维卷积神经网络,还能够准确识别心源性猝死高危患者(98%),显著降低了观察者主观性,显示了影像组学在这一领域的重要作用[25]。其次,由于LV的结构、功能异常可以间接导致LA结构、功能的改变,在疾病早期,心肌纤维化不显著,LV以舒张功能障碍为主,但是在疾病晚期,明显的纤维化可导致LV的收缩功能障碍,类似于扩张型心肌病,而LA扩大的主要原因是LV舒张功能障碍之后的继发改变。因此,在将来的研究中,更准确的疾病分期或许能减少不同研究间的差异。

2.1.2 LV功能改变对HCM发生AF的预测

       LV结构的异常可加重其功能障碍,而功能的异常则通常早于结构异常。反映LV功能的主要指标包括容积指标和心肌质量(myocardial mass, MM)及室壁厚度(wall thickness, WT)。容积指标[包括射血分数(ejection fraction, EF)、舒张末期容积(end-diastolic volume, EDV)、收缩末期容积(end-systolic volume, ESV)]是评价心功能常用、基本的指标[26],而MM及WT则能够反映心室重构及心脏舒张功能情况[27]。MS是目前用于评价心脏收缩和舒张功能较前沿的技术,主要参数包括整体纵向应变(global longitudinal strain, GLS)、整体周向应变(global circumferential strain, GCS)和整体径向应变(global radial strain, GRS)。当EF受EDV及WT的影响而保持不变时,MS可发现心肌细微异常改变,其直接反映心肌运动的变化,因此MS对LV功能障碍评价比EF更为敏感[28]。荟萃分析显示,LV整体纵向应变(LV-GLS)异常主要与不良的复合心脏结局和室性心律失常有关[29]。MS在HCM合并AF的相关研究相对较少,受限于因心律不齐所致的运动伪影,MS在AF相关领域研究的可靠性、可重复性还需更多研究支持,如何减少运动伪影、改善图像质量也是亟待解决的问题。

2.2 LA结构、功能改变对HCM发生AF的预测

2.2.1 LA结构改变对HCM发生AF的预测

       LA直径是反映LA重构的一个直接参数,是预测HCM患者发生AF的重要影响因素。HCM患者LA的直径大于45 mm与AF发生的重要风险相关,现已纳入筛查指南[30],当LA直径超过40 mm时,LA直径与AF风险之间存在线性关系[31]。并且,事件性AF的风险随着LA大小的增加、LA功能的恶化而显著增加。LA容积指数(left atrial volume index, LAVI)也是反映LA结构重构的一个重要指标,LAVI超过30 mL/m2的患者,AF发生率可增加2倍[32]

       心房心肌纤维化作为心房心律失常最重要的物质基础,也是近来研究的重点,但对于HCM患者心房心肌纤维化的相关研究偏少。一项前瞻性的多中心研究对诊断为阵发性和持续性AF并且首次接受导管消融的患者,在消融前30 d的LGE图像进行LA纤维化定量分析,结果显示接受导管消融术的AF患者中,通过LGE评估的心房组织纤维化与复发性心律失常的可能性独立相关,LA心肌纤维化面积每增加1%,AF复发的风险增加1.06倍[33],但此研究的研究对象为普通AF患者,对于HCM合并AF患者的预测还需更多的研究证实。另外,在梗阻性HCM患者合并阵发性AF患者中,LA有较高的纤维化负荷,所有患者的LA后壁均有LGE,并且LV-LGE和LA-LGE之间存在显著的正相关性,其中LA-LGE程度是HCM患者AF发生的独立预测因子[34, 35]

       心外膜脂肪组织(epicardial adipose tissue, EAT)的积累和浸润也与心房的病理生理学相关,在心房心肌病的发生发展过程中,出现心外膜脂肪组织的再活化,参与心房重构[36]。最新研究显示,除了心肌结构的破坏,这种影响还可以归因于EAT-心肌细胞旁分泌轴,导致粘连组织蛋白质的局灶性异常沉积,最终成为心房心律失常的底物[37],EAT还可诱导LA炎症并促进LA纤维化。HCM合并AF患者的EAT体积指数明显高于无AF患者[38]。目前,对于心外膜脂肪、心房纤维化的识别是主要技术难点,有研究开发了一种3D双回波采集和运动校正的重建方法,可靠地抑制了脂肪信号、增加了各向同性空间分辨率和体积覆盖,生成了具有较高分辨率的水/脂3D LGE图像,对于纤维化的识别更具优势[39]。SKODA等[40]使用3D LGE Dixon同时评估AF患者纤维化和EAT,该方法在观察者内、观察者间的一致性好、可重复性高。为了减少右肺静脉流入伪影的影响,有研究使用了自适应翻转角导航恢复脉冲,显著降低了右肺静脉流入伪影的影响,使得心房LGE的图像质量更好,对于心房纤维化的识别更加准确[41]。深度学习对于EAT的识别也有一定价值,有研究通过CMR 4腔心电影图像自动识别EAT,重复性、一致性良好[42]。上述研究表明,涉及LA结构改变的参数很多,如何更好地发挥每一项参数最大的价值,从整体的角度制订科学的研究方案,以及利用更优的扫描参数,提高脂肪、纤维化的识别能力,减少图像伪影,改善图像质量,也是未来研究的方向。

2.2.2 LA功能改变对HCM发生AF的预测

       LA应变(LA strain, LAS)可以反映LA功能,包括存储应变、导管应变和收缩应变,其中存储应变主要反映LA结构,导管、收缩应变则主要反映LA输出能力。有研究表明,随着LA功能的恶化,不良心脏事件的发生率明显升高,LA功能减低与不良结局显著相关[43]。LA功能也是HCM新发AF的预测因子,LA功能不全的HCM患者发生AF的风险较高,LAS≤23.4%是除LA体积以外新发AF的独立预测因子[30]。对于未出现LA直径增大的早期患者,LAS降低对于远期终点事件发生的预测较GLS更敏感[44]。与健康人群相比,HCM合并AF患者的LA存储应变、导管应变和收缩应变显著降低,并与年龄一起独立预测新发AF的风险[45],而非梗阻性HCM患者在LA扩大之前就已经存在LA存储和导管功能障碍,以及LA局部的形变[46]。LAS还可作为LV舒张功能障碍分级的预测指标[47, 48],LAS联合LV细胞外容积分数,可以作为识别阵发性AF患者LA、LV重塑的标志,能够检测到传统参数无法检测到的细微LA收缩功能障碍,并且LV细胞外容积分数与LA存储功能、导管功能显著相关,两者的结合可以更好地反映LA、LV的功能[49],并且有研究显示LA存储应变的基线水平与AF消融术后复发独立相关[50]。LAS作为反映LA功能的重要参数,虽可实现局部病变的早期诊断,但受限于LA结构的特殊性及运动的复杂性,还需结合LA结构的常规参数,以及大样本研究的不断探索,以期实现更精准的测量。

2.3 左心房-室耦联指数对HCM发生AF的预测

       LA结构和功能重塑能够强烈预测HCM患者的AF发展,LA大小增加和LA功能受损在HCM中很常见,可能是LV舒张功能受损的结果,与LV肥厚和室壁僵硬相关,在没有二尖瓣狭窄的情况下,两者紧密耦联。在此基础上,有人提出了左心房-室耦联指数(left atrioventricular coupling index, LACI),即将LA和LV看作整体的单个左房-室参数可能是比单独的LA、LV参数更敏感的LA重塑标志。在普通人群中,LACI比CHARGE-AF及单独的LA、LV参数更能独立预测AF事件,当LACI截断值为29%时,可以很好地预测AF事件[51]。在HCM患者中,LACI比常规LA参数更能预测新发AF的发生[52]。当然,LACI也有其局限性,在存在二尖瓣异常的时候,LACI的准确性就会降低,而HCM大部分合并了二尖瓣异常,使其在HCM中的应用受到限制。

3 总结与展望

       CMR作为“一站式”评估心脏结构、功能的重要工具,随着新技术的不断发展与应用,早期发现心脏结构、功能异常逐渐成为可能。更早发现、量化AF风险,可以实现HCM患者的精准化治疗。CMR可以从多角度、多维度对心房、心室的结构、功能进行评估,常规测量参数的预测价值相对滞后,而心房纤维化、MS等的量化又存在技术依赖性,重复性、一致性欠佳,并且各种参数对于AF预测价值的比较研究也较少。因此,Mapping、3D-LGE Dixon等新技术在心脏的进一步应用,人工智能在心脏定量测量、分析的广泛应用,以及更详细的参数比较研究,或许可以更好地解决这些问题,更进一步地阐明心肌结构紊乱与心律失常的关系。

       综上所述,CMR对于HCM合并AF的早期预测有很高的价值,可以为临床提供更科学、精准的诊疗信息,最终建立完善的疾病预防、诊疗体系。

[1]
OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J/OL]. Circulation, 2020, 142(25): e558-e631 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/33215931/. DOI: 10.1161/CIR.0000000000000937">10.1161/CIR.0000000000000937">10.1161/CIR.0000000000000937.
[2]
LEE S E, PARK J K, UHM J S, et al. Impact of atrial fibrillation on the clinical course of apical hypertrophic cardiomyopathy[J]. Heart, 2017, 103(19): 1496-1501. DOI: 10.1136/heartjnl-2016-310720">10.1136/heartjnl-2016-310720">10.1136/heartjnl-2016-310720.
[3]
ROWIN E J, HAUSVATER A, LINK M S, et al. Clinical profile and consequences of atrial fibrillation in hypertrophic cardiomyopathy[J]. Circulation, 2017, 136(25): 2420-2436. DOI: 10.1161/CIRCULATIONAHA.117.029267">10.1161/CIRCULATIONAHA.117.029267">10.1161/CIRCULATIONAHA.117.029267.
[4]
TIAN T, WANG Y L, SUN K, et al. Clinical profile and prognostic significance of atrial fibrillation in hypertrophic cardiomyopathy[J]. Cardiology, 2013, 126(4): 258-264. DOI: 10.1159/000354953">10.1159/000354953">10.1159/000354953.
[5]
CORICA B, ROMITI G F, RAPARELLI V, et al. Epidemiology of cerebral microbleeds and risk of adverse outcomes in atrial fibrillation: a systematic review and meta-analysis[J]. Europace, 2022, 24(9): 1395-1403. DOI: 10.1093/europace/euac028">10.1093/europace/euac028">10.1093/europace/euac028.
[6]
MARSTRAND P, HAN L, DAY S M, et al. Hypertrophic cardiomyopathy with left ventricular systolic dysfunction: insights from the SHaRe registry[J]. Circulation, 2020, 141(17): 1371-1383. DOI: 10.1161/CIRCULATIONAHA.119.044366">10.1161/CIRCULATIONAHA.119.044366">10.1161/CIRCULATIONAHA.119.044366.
[7]
GARG L, GUPTA M, SABZWARI S R A, et al. Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical impact, and management[J]. Heart Fail Rev, 2019, 24(2): 189-197. DOI: 10.1007/s10741-018-9752-6">10.1007/s10741-018-9752-6">10.1007/s10741-018-9752-6.
[8]
LAN F, LEE A S, LIANG P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(1): 101-113. DOI: 10.1016/j.stem.2012.10.010">10.1016/j.stem.2012.10.010">10.1016/j.stem.2012.10.010.
[9]
ORENES-PIÑERO E, HERNÁNDEZ-ROMERO D, ROMERO-ANIORTE A I, et al. Prognostic value of two polymorphisms in non-sarcomeric genes for the development of atrial fibrillation in patients with hypertrophic cardiomyopathy[J]. QJM, 2014, 107(8): 613-621. DOI: 10.1093/qjmed/hcu046">10.1093/qjmed/hcu046">10.1093/qjmed/hcu046.
[10]
MARON B J, HAAS T S, MARON M S, et al. Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance[J]. Am J Cardiol, 2014, 113(8): 1394-1400. DOI: 10.1016/j.amjcard.2013.12.045">10.1016/j.amjcard.2013.12.045">10.1016/j.amjcard.2013.12.045.
[11]
XU H B, WANG J, YUAN J S, et al. Implication of apnea-hypopnea index, a measure of obstructive sleep apnea severity, for atrial fibrillation in patients with hypertrophic cardiomyopathy[J/OL]. J Am Heart Assoc, 2020, 9(8): e015013 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/32297565/. DOI: 10.1161/JAHA.119.015013">10.1161/JAHA.119.015013">10.1161/JAHA.119.015013.
[12]
HABIBI M, LIMA J A, KHURRAM I M, et al. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: cardiac magnetic resonance study[J]. Circ Cardiovasc Imaging, 2015, 8(2): e002769. DOI: 10.1161/CIRCIMAGING.114.002769">10.1161/CIRCIMAGING.114.002769">10.1161/CIRCIMAGING.114.002769.
[13]
DI DONNA P, OLIVOTTO I, DELCRÈ S D, et al. Efficacy of catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: impact of age, atrial remodelling, and disease progression[J]. Europace, 2010, 12(3): 347-355. DOI: 10.1093/europace/euq013">10.1093/europace/euq013">10.1093/europace/euq013.
[14]
PROVIDENCIA R, ELLIOTT P, PATEL K, et al. Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: a systematic review and meta-analysis[J]. Heart, 2016, 102(19): 1533-1543. DOI: 10.1136/heartjnl-2016-309406">10.1136/heartjnl-2016-309406">10.1136/heartjnl-2016-309406.
[15]
AGUIAR ROSA S, THOMAS B, FIARRESGA A, et al. The impact of ischemia assessed by magnetic resonance on functional, arrhythmic, and imaging features of hypertrophic cardiomyopathy[J/OL]. Front Cardiovasc Med, 2021, 8: 761860 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34977179/. DOI: 10.3389/fcvm.2021.761860">10.3389/fcvm.2021.761860">10.3389/fcvm.2021.761860.
[16]
CAPTUR G, MANISTY C H, RAMAN B, et al. Maximal wall thickness measurement in hypertrophic cardiomyopathy: biomarker variability and its impact on clinical care[J]. JACC Cardiovasc Imaging, 2021, 14(11): 2123-2134. DOI: 10.1016/j.jcmg.2021.03.032">10.1016/j.jcmg.2021.03.032">10.1016/j.jcmg.2021.03.032.
[17]
AUGUSTO J B, DAVIES R H, BHUVA A N, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance[J/OL]. Lancet Digit Health, 2021, 3(1): e20-e28 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/33735065/. DOI: 10.1016/S2589-7500(20)30267-3">10.1016/S2589-7500(20)30267-3">10.1016/S2589-7500(20)30267-3.
[18]
XU J, ZHUANG B Y, SIRAJUDDIN A, et al. MRI T1 mapping in hypertrophic cardiomyopathy: evaluation in patients without late gadolinium enhancement and hemodynamic obstruction[J]. Radiology, 2020, 294(2): 275-286. DOI: 10.1148/radiol.2019190651">10.1148/radiol.2019190651">10.1148/radiol.2019190651.
[19]
RAPHAEL C E, LIEW A C, MITCHELL F, et al. Predictors and mechanisms of atrial fibrillation in patients with hypertrophic cardiomyopathy[J]. Am J Cardiol, 2020, 136: 140-148. DOI: 10.1016/j.amjcard.2020.09.006">10.1016/j.amjcard.2020.09.006">10.1016/j.amjcard.2020.09.006.
[20]
COCHET H, MORLON L, VERGÉ M P, et al. Predictors of future onset of atrial fibrillation in hypertrophic cardiomyopathy[J]. Arch Cardiovasc Dis, 2018, 111(10): 591-600. DOI: 10.1016/j.acvd.2018.03.007">10.1016/j.acvd.2018.03.007">10.1016/j.acvd.2018.03.007.
[21]
HOHNECK A, OVERHOFF D, DOESCH C, et al. Extent of late gadolinium enhancement predicts thromboembolic events in patients with hypertrophic cardiomyopathy[J]. Circ J, 2020, 84(5): 754-762. DOI: 10.1253/circj.cj-19-0936">10.1253/circj.cj-19-0936">10.1253/circj.cj-19-0936.
[22]
PAPAVASSILIU T, GERMANS T, FLÜCHTER S, et al. CMR findings in patients with hypertrophic cardiomyopathy and atrial fibrillation[J/OL].J Cardiovasc Magn Reson, 2009, 11(1): 1-9 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/19740409/. DOI: 10.1186/1532-429X-11-34">10.1186/1532-429X-11-34">10.1186/1532-429X-11-34.
[23]
KIM K J, CHOI H M, YOON Y E, et al. Left atrial mechanical function and global strain in hypertrophic cardiomyopathy[J/OL]. PLoS One, 2016, 11(6): e0157433 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/27336444/. DOI: 10.1371/journal.pone.0157433">10.1371/journal.pone.0157433">10.1371/journal.pone.0157433.
[24]
TIAN H W, CUI J G, YANG C Z, et al. Left ventricular remodeling in hypertrophic cardiomyopathy patients with atrial fibrillation[J/OL].BMC Cardiovasc Disord, 2018, 18(1): 1-6 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/30390664/. DOI: 10.1186/s12872-018-0945-7">10.1186/s12872-018-0945-7">10.1186/s12872-018-0945-7.
[25]
FAHMY A S, NEISIUS U, CHAN R H, et al. Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: a multicenter multivendor study[J]. Radiology, 2020, 294(1): 52-60. DOI: 10.1148/radiol.2019190737">10.1148/radiol.2019190737">10.1148/radiol.2019190737.
[26]
PONIKOWSKI P, VOORS A A, ANKER S D, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC[J]. Eur Heart J, 2016, 37(27): 2129-2200. DOI: 10.1093/eurheartj/ehw128">10.1093/eurheartj/ehw128">10.1093/eurheartj/ehw128.
[27]
GEBHARD C, BUECHEL R R, STÄHLI B E, et al. Impact of age and sex on left ventricular function determined by coronary computed tomographic angiography: results from the prospective multicentre CONFIRM study[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(9): 990-1000. DOI: 10.1093/ehjci/jew142">10.1093/ehjci/jew142">10.1093/ehjci/jew142.
[28]
STOKKE T M, HASSELBERG N E, SMEDSRUD M K, et al. Geometry as a confounder when assessing ventricular systolic function[J]. J Am Coll Cardiol, 2017, 70(8): 942-954. DOI: 10.1016/j.jacc.2017.06.046">10.1016/j.jacc.2017.06.046">10.1016/j.jacc.2017.06.046.
[29]
TOWER-RADER A, MOHANANEY D, TO A, et al. Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2019, 12(10): 1930-1942. DOI: 10.1016/j.jcmg.2018.07.016">10.1016/j.jcmg.2018.07.016">10.1016/j.jcmg.2018.07.016.
[30]
DEBONNAIRE P, JOYCE E, HIEMSTRA Y, et al. Left atrial size and function in hypertrophic cardiomyopathy patients and risk of new-onset atrial fibrillation[J/OL]. Circ Arrhythm Electrophysiol, 2017, 10(2): e004052 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/28183843/. DOI: 10.1161/CIRCEP.116.004052">10.1161/CIRCEP.116.004052">10.1161/CIRCEP.116.004052.
[31]
GUTTMANN O P, PAVLOU M, O'MAHONY C, et al. Predictors of atrial fibrillation in hypertrophic cardiomyopathy[J]. Heart, 2017, 103(9): 672-678. DOI: 10.1136/heartjnl-2016-309672">10.1136/heartjnl-2016-309672">10.1136/heartjnl-2016-309672.
[32]
BERTELSEN L, DIEDERICHSEN S Z, HAUGAN K J, et al. Left atrial volume and function assessed by cardiac magnetic resonance imaging are markers of subclinical atrial fibrillation as detected by continuous monitoring[J]. Europace, 2020, 22(5): 724-731. DOI: 10.1093/europace/euaa035">10.1093/europace/euaa035">10.1093/europace/euaa035.
[33]
MARROUCHE N F, WILBER D, HINDRICKS G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation[J/OL]. JAMA, 2014, 311(5): 498 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/24496537/. DOI: 10.1001/jama.2014.3">10.1001/jama.2014.3">10.1001/jama.2014.3.
[34]
LATIF S R, NGUYEN V Q, PETERS D C, et al. Left atrial fibrosis correlates with extent of left ventricular myocardial delayed enhancement and left ventricular strain in hypertrophic cardiomyopathy[J].Int J Cardiovasc Imaging, 2019, 35(7): 1309-1318. DOI: 10.1007/s10554-019-01551-7">10.1007/s10554-019-01551-7">10.1007/s10554-019-01551-7.
[35]
SANJAY, SIVALOKANATHAN, MBBS, et al. Hypertrophic cardiomyopathy patients with paroxysmal atrial fibrillation have a high burden of left atrial fibrosis by cardiac magnetic resonance imaging[J]. JACC Clin Electrophysiol, 2019, 5(3): 364-375. DOI: 10.1016/j.jacep.2018.10.016">10.1016/j.jacep.2018.10.016">10.1016/j.jacep.2018.10.016.
[36]
SUFFEE N, MOORE-MORRIS T, JAGLA B, et al. Reactivation of the epicardium at the origin of myocardial fibro-fatty infiltration during the atrial cardiomyopathy[J]. Circ Res, 2020, 126(10): 1330-1342. DOI: 10.1161/CIRCRESAHA.119.316251">10.1161/CIRCRESAHA.119.316251">10.1161/CIRCRESAHA.119.316251.
[37]
NALLIAH C J, BELL J R, RAAIJMAKERS A J A, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality[J]. J Am Coll Cardiol, 2020, 76(10): 1197-1211. DOI: 10.1016/j.jacc.2020.07.017">10.1016/j.jacc.2020.07.017">10.1016/j.jacc.2020.07.017.
[38]
ZHOU Y, YU M, CUI J G, et al. The predictive value of epicardial adipose tissue volume assessed by cardiac magnetic resonance for atrial fibrillation in patients with hypertrophic obstructive cardiomyopathy[J]. Int J Cardiovasc Imaging, 2021, 37(4): 1383-1393. DOI: 10.1007/s10554-020-02092-0">10.1007/s10554-020-02092-0">10.1007/s10554-020-02092-0.
[39]
MUNOZ C, BUSTIN A, NEJI R, et al. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 53 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/32684167/. DOI: 10.1186/s12968-020-00649-5">10.1186/s12968-020-00649-5">10.1186/s12968-020-00649-5.
[40]
SKODA I, HENNINGSSON M, CARLHALL C. Simultaneous visualization of left atrial fibrosis and epicardial adipose tissue using 3D Dixon late gadolinium enhancement cardiovascular magnetic resonance[J/OL]. Eur Heart J Cardiovasc Imaging, 2021, 22(Supplement_1): jeaa356.370 [2022-12-14]. https://academic.oup.com/ehjcimaging/article/22/Supplement_1/jeaa356.370/6131200?login=true. DOI: 10.1093/ehjci/jeaa356.370">10.1093/ehjci/jeaa356.370">10.1093/ehjci/jeaa356.370.
[41]
HENNINGSSON M, CARLHÄLL C J. Inflow artifact reduction using an adaptive flip-angle navigator restore pulse for late gadolinium enhancement of the left atrium[J]. Magn Reson Med, 2020, 84(6): 3308-3315. DOI: 10.1002/mrm.28334">10.1002/mrm.28334">10.1002/mrm.28334.
[42]
DAUDÉ P, ANCEL P, CONFORT GOUNY S, et al. Deep-learning segmentation of epicardial adipose tissue using four-chamber cardiac magnetic resonance imaging[J/OL]. Diagnostics, 2022, 12(1): 126 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/35054297/. DOI: 10.3390/diagnostics12010126.
[43]
ESSAYAGH B, RESSEGUIER N, MICHEL N, et al. Left atrial dysfunction as marker of poor outcome in patients with hypertrophic cardiomyopathy[J]. Arch Cardiovasc Dis, 2021, 114(2): 96-104. DOI: 10.1016/j.acvd.2020.06.004">10.1016/j.acvd.2020.06.004">10.1016/j.acvd.2020.06.004.
[44]
ZHOU D, YANG W J, YANG Y X, et al. Left atrial dysfunction may precede left atrial enlargement and abnormal left ventricular longitudinal function: a cardiac MR feature tracking study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 99 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/35282817/. DOI: 10.1186/s12872-022-02532-w">10.1186/s12872-022-02532-w">10.1186/s12872-022-02532-w.
[45]
RAMAN B, SMILLIE R W, MAHMOD M, et al. Incremental value of left atrial booster and reservoir strain in predicting atrial fibrillation in patients with hypertrophic cardiomyopathy: a cardiovascular magnetic resonance study[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 109 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34635131/. DOI: 10.1186/s12968-021-00793-6.
[46]
YANG Y X, YIN G, JIANG Y, et al. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 1 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/31898543/. DOI: 10.1186/s12968-019-0589-5">10.1186/s12968-019-0589-5">10.1186/s12968-019-0589-5.
[47]
SINGH A, ADDETIA K, MAFFESSANTI F, et al. LA strain for categorization of LVDiastolicDysfunction[J]. JACC Cardiovasc Imaging, 2017, 10(7): 735-743. DOI: 10.1016/j.jcmg.2016.08.014">10.1016/j.jcmg.2016.08.014">10.1016/j.jcmg.2016.08.014.
[48]
FRYDAS A, MORRIS D A, BELYAVSKIY E, et al. Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure[J]. ESC Heart Fail, 2020, 7(4): 1956-1965. DOI: 10.1002/ehf2.12820">10.1002/ehf2.12820">10.1002/ehf2.12820.
[49]
YAMADA A, HASHIMOTO N, FUJITO H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J/OL]. Sci Rep, 2021, 11: 10941 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34035345/. DOI: 10.1038/s41598-021-90117-6">10.1038/s41598-021-90117-6">10.1038/s41598-021-90117-6.
[50]
BENJAMIN MINA M, NAEEM M, ANEEQ W, et al. Association of left atrial strain by cardiovascular magnetic resonance with recurrence of atrial fibrillation following catheter ablation[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 3 [2022-12-14]. https://pubmed.ncbi.nlm.nih.gov/34980165/. DOI: 10.1186/s12968-021-00831-3">10.1186/s12968-021-00831-3">10.1186/s12968-021-00831-3.
[51]
PEZEL T, VENKATESH B A, DE VASCONCELLOS H D, et al. Left atrioventricular coupling index as a prognostic marker of cardiovascular events: the MESA study[J]. Hypertension, 2021, 78(3): 661-671. DOI: 10.1161/HYPERTENSIONAHA.121.17339">10.1161/HYPERTENSIONAHA.121.17339">10.1161/HYPERTENSIONAHA.121.17339.
[52]
MEUCCI M C, FORTUNI F, GALLOO X, et al. Left atrioventricular coupling index in hypertrophic cardiomyopathy and risk of new-onset atrial fibrillation[J]. Int J Cardiol, 2022, 363: 87-93. DOI: 10.1016/j.ijcard.2022.06.017">10.1016/j.ijcard.2022.06.017">10.1016/j.ijcard.2022.06.017.

上一篇 基于多模态MRI影像组学与深度学习的脑胶质瘤诊断及预后预测研究进展
下一篇 磁共振成像预测前列腺癌根治术后生化复发的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2