分享:
分享到微信朋友圈
X
临床研究
磁共振弥散白质定量分析在观察脑低级别胶质瘤相关性癫痫白质变化中的应用
高安康 高而远 齐金博 赵锴 赵高炀 陈婷 张会婷 严序 赵国桦 马潇越 白洁 张勇 程敬亮

GAO A K, GAO E Y, QI J B, et al. Application of quantitative magnetic resonance diffusion white matter analysis in the observation of white matter changes in low-grade glioma-associated epilepsy[J]. Chin J Magn Reson Imaging, 2023, 14(8): 10-18.引用本文:高安康, 高而远, 齐金博, 等. 磁共振弥散白质定量分析在观察脑低级别胶质瘤相关性癫痫白质变化中的应用[J]. 磁共振成像, 2023, 14(8): 10-18. DOI:10.12015/issn.1674-8034.2023.08.002.


[摘要] 目的 采用磁共振弥散白质定量技术观察低级别脑胶质瘤瘤体和瘤周白质变化在胶质瘤相关癫痫(glioma-associated epilepsy, GAE)发生中的影响。材料与方法 回顾性分析了2018年12月至2020年12月在郑州大学第一附属医院磁共振科进行弥散频谱成像(diffusion spectrum imaging, DSI)扫描且经病理证实为低级别胶质瘤患者的临床和影像学信息,共纳入102例WHO Ⅱ级低级别胶质瘤,其中术前GAE患者37名,术前无GAE患者65名。计算弥散张量成像(diffusion-tensor imaging, DTI)、轴突定向弥散和密度成像(neurite orientation dispersion and density imaging, NODDI)及平均表观传播子(mean apparent propagator, MAP)等弥散模型的定量参数。应用ITK-SNAP软件在b=0的弥散图像上进行肿瘤及瘤周区的感兴趣区(region of interest, ROI)勾画。应用FAE软件进行直方图特征提取、ROI体积计算和形态学特征提取。经单参数分析及共线分析后基于各弥散模型及ROI构建逻辑回归模型,并应用DeLong检验进行模型效能的比较。结果 GAE组间年龄差异有统计学意义(P=0.004);肿瘤位于右侧半球且跨半球生长者GAE的发病率低于位于左侧半球者,差异有统计学意义(P=0.002);年龄和肿瘤所在半球位置所构建GAE预测临床影像学模型AUC=0.779。GAE组肿瘤和瘤周的体积小于无GAE组(P<0.05);肿瘤区诸形态学特征差异无统计学意义;瘤周区长径、短径越小越倾向于GAE发生,同时表面积越小、越倾向于球形者倾向于GAE发生,差异有统计学意义(P<0.05);应用瘤周区形态学特征构建GAE logistic回归模型的AUC=0.730。存在GAE组间差异(P<0.05)的肿瘤区和瘤周区弥散模型定量参数直方图特征包括DTI_FA_Maximum、NODDI_ODI_90 Percentile、MAP_NG_10 Percentile,其中瘤周区NODDI_ODI_90Percentile值GAE组高于无GAE组,余瘤周区同肿瘤区特征GAE组均低于无GAE组。肿瘤区模型效能略高于瘤周区模型,差异无统计学意义;肿瘤区和瘤周区特征共同构建融合模型的效能最高,较瘤周区差异有统计学意义(P=0.02)。融合模型中,肿瘤特征占绝大部分,OR值最高者为肿瘤DTI_MD_10Percentile,与GAE发生呈正相关。所有基于弥散参数的模型中OR值最高者为瘤周特征NODDI_ODI_Mean,与GAE发生呈正相关。基于肿瘤区、瘤周区的单个弥散模型间预测效能,MAP模型的效能略高于DTI和NODDI模型。临床影像学模型、瘤周形态学模型及基于弥散参数的融合模型的GAE预测效能比较差异无统计学意义。结论 磁共振白质定量分析为早期预测GAE的发生及分析GAE的发生机制提供了条件;肿瘤区白质的损伤同时伴有瘤周区白质分散度增加或相对完整增加了GAE的发生风险。
[Abstract] Objective To observe the effect of low-grade glioma (LGG) tumor and peritumoral white matter changes in the occurrence of glioma-associated epilepsy (GAE) by magnetic resonance diffusion white matter quantification analysis.Materials and Methods The clinical and imaging information of patients with LGG confirmed by pathology who underwent diffusion spectrum imaging (DSI) in the First Affiliated Hospital of Zhengzhou University from December 2018 to December 2020 was retrospectively analyzed. A total of 102 patients with WHO Ⅱ low-grade gliomas were enrolled, including 37 patients with preoperative GAE and 65 patients without preoperative GAE. Diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator (MAP) metrics. ITK snap was used to draw tumor and peritumoral regions of interest (ROI) were based on b=0 diffusion images. FAE was used to perform histogram feature extraction, volume calculation of interest, and morphological feature extraction. After single parameter analysis and collinear analysis, logistic regression models were constructed based on each diffusion model and ROIs, and the DeLong test was used to compare the performance of models.Results There is a statistical difference in age between GAE groups (P=0.004). The incidence of GAE in patients with tumors located in the right hemisphere and trans hemisphere growth was lower than that in patients with tumors located in the left hemisphere, with a statistically significant difference (P=0.002). GAE predictive clinical-imaging model is constructed by age and hemispheric location of tumor, with AUC=0.779. The tumor and peritumoral volumes in the GAE group were significantly smaller than those in the non-GAE group (P<0.05). There was no statistical difference in the morphological characteristics of the tumor area. The smaller the long and short diameters of the peritumoral area, the smaller the surface area, the more likely it is to be spherical, with higher incidence of GAE, and the difference is statistically significant (P<0.05); the AUC value of constructing a GAE logistic regression model using morphological features of the peritumoral area can reach 0.730. Histogram features of quantitative parameters of diffusion models in tumor and peritumor areas with differences between GAE and non-GAE groups (P<0.05), which including DTI_FA_Maximum, NODDI_ODI_90Percentile, MAP_NG_10Percentile. NODDI_ODI_90Percentile value of the peritumoral area in the GAE group was higher than that in the non-GAE group. The remaining features in tumor and peritumoral areas of GAE group were lower than the non-GAE group. Logistical models based on tumor area and peritumoral area showed no statistically significant difference in predictive performance of GAE, while the tumor area model had slightly higher performance than the peritumor area model. The combined model constructed by combining the features based on tumor area and peritumoral area have the highest performance, with a statistically significant difference compared to model based on the peritumor area (P=0.02) only. In the combined model, tumor features account for the majority, and the tumor DTI_MD_10Percentiles has the highest OR value, which positively correlated with the occurrence of GAE. The highest OR value among all models is the NODDI_ODI_Mean based on peritumoral feature, which is positively correlated with the occurrence of GAE. The MAP model has slightly higher performance than the DTI and NODDI models based on the individual diffusion models in the tumor area and peritumor area. There was no statistically significant difference in the predictive performance of GAE among clinical-imaging model, peritumoral morphological model, and combined models based on diffusion parameters.Conclusions Quantitative analysis of white matter is a promising way to predict the occurrence and mechanism of GAE. White matter damage in the tumor area, accompanied by increased dispersity or relatively intact white matter in the peritumoral area, increases the risk of GAE.
[关键词] 低级别胶质瘤;磁共振弥散成像;磁共振成像;脑白质;胶质瘤相关癫痫;直方图
[Keywords] low grade glioma;magnetic resonance diffusion imaging;magnetic resonance imaging;brain white matter;glioma-associated epilepsy;histogram

高安康 1   高而远 1   齐金博 1   赵锴 1   赵高炀 1   陈婷 1   张会婷 2   严序 2   赵国桦 1   马潇越 1   白洁 1   张勇 1   程敬亮 1*  

1 郑州大学第一附属医院磁共振科,郑州 450052

2 西门子医疗系统有限公司磁共振科研市场部,上海 201318

通信作者:程敬亮,E-mail:fccchengjl@zzu.edu.cn

作者贡献声明:程敬亮设计本研究的方案,对稿件重要内容进行了修改;高安康起草和撰写稿件,获取、分析或解释本研究的数据;高而远、齐金博、赵锴、赵高炀、陈婷参与本研究数据采集和整理;张会婷、严序、赵国桦、马潇越分析或解释本研究的数据,赵国桦获得了河南省科技攻关计划联合共建项目的基金资助;白洁、张勇对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河南省科技攻关计划联合共建项目 LHGJ20220403
收稿日期:2023-03-17
接受日期:2023-07-27
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.08.002
引用本文:高安康, 高而远, 齐金博, 等. 磁共振弥散白质定量分析在观察脑低级别胶质瘤相关性癫痫白质变化中的应用[J]. 磁共振成像, 2023, 14(8): 10-18. DOI:10.12015/issn.1674-8034.2023.08.002.

0 前言

       胶质瘤相关癫痫(glioma-associated epilepsy, GAE)是胶质瘤患者的常见症状性诊断,尤其是低级别胶质瘤患者,发生率高达60%~85%[1, 2]。GAE的发作归于肿瘤位置、瘤体和瘤周的物质代谢、基因和遗传背景等多因素综合作用[3, 4, 5]。目前关于GAE患者的癫痫起源于瘤周还是瘤体,仍存在争议[6]。胶质瘤瘤周和瘤体白质纤维束的存在、变形及破坏在癫痫的发生和传播过程中存在重要的影响[7, 8, 9, 10]。然而,低级别胶质瘤患者癫痫发作与瘤体、瘤周白质改变的相关性研究目前尚未见明确报道。

       目前,随着磁共振弥散成像的发展,脑白质定量分析从弥散张量成像(diffusion-tensor imaging, DTI),发展至更高分辨率并且可以评估交叉纤维的轴突定向弥散和密度成像(neurite orientation dispersion and density imaging, NODDI)[11]以及能够更精确、更全面地识别大脑白质微结构信息的平均表观传播子(mean apparent propagator, MAP)[12, 13, 14, 15]。然而,DTI虽然在胶质瘤相关的白质纤维研究中得到广泛的临床和科研应用[16, 17],但弥散角度小,对于交叉纤维及水肿区白质显示欠佳。弥散频谱成像(diffusion spectrum imaging, DSI)因同时计算多种弥散模型的白质定量参数,成为观察脑白质变化的热点[18, 19, 20]。为进一步探讨低级别胶质瘤相关癫痫发作与脑白质纤维变化的相关性,本研究应用磁共振DSI对脑低级别胶质瘤患者脑部进行扫描,采用DTI、NODDI及MAP模型对瘤体及瘤周白质纤维进行定量分析,构建预测GAE发生的回归模型,并分析GAE患者瘤体和瘤周白质纤维的分布特点。

1 材料与方法

1.1 一般资料

       本研究遵守《赫尔辛基宣言》,经过郑州大学第一附属医院伦理委员会批准,免除受试者知情同意,批准文号:2019-KY-231。本研究回顾性分析了2018年12月至2020年12月在郑州大学第一附属医院磁共振科进行DSI序列扫描单发脑占位患者的临床和影像学信息。纳入标准:手术或穿刺病理依据2016年WHO中枢神经系统肿瘤分类标准证实为WHO Ⅱ级胶质瘤的患者,初始纳入122例。排除标准:(1)在术前MRI扫描前接受穿刺活检或开始抗肿瘤治疗,共3例;(2)近期具有其他可能导致癫痫的颅内病变,如脑出血、卒中和其他脑肿瘤的患者,共2例(合并脑膜瘤1例,合并垂体瘤1例);(3)非单发脑胶质瘤患者,共5例;(4)水肿短径大于3 mm,共10例。GAE 的术前诊断基于临床症状、脑电图和影像学表现[21]。收集患者的临床特征包括年龄、性别、肿瘤位置等信息,影像学特征包括是否累及皮层、有无囊肿等。

1.2 扫描参数

       磁共振DSI扫描参数如下:TE 71.0 ms,TR 2500.0 ms,层厚2.2 mm,层数60,b=0、500、1500、2000、2500、3000 s/mm2,弥散方向为64,FOV 220 mm×220 mm,矩阵384×384,扫描时间5 min 48 s。

1.3 图像后处理

       DTI、NODDI和MAP 参数图通过基于DIPY(Diffusion Imaging in Python,https://dipy.org)[22, 23]和 Amico[15](https://github.com/daducci/AMICO/)的NeuDiLab软件得到。DTI参数包括各向异性分数(fractional anisotropy, FA)、平均弥散系数(mean diffusivity, MD)、径向弥散系数(radial diffusivity, RD)、轴向弥散系数(axial diffusivity, AD);NODDI参数包括神经突内体积分数(intracellular volume fraction, ICVF)、各向同性间隔的体积分数(volume fraction of the isotropic compartment, ISOVF)、神经突方向离散度指数(orientation dispersion index, ODI);MAP参数包括回原点的概率(return to origin probability, RTOP)、返回轴的概率(return to axis probability, RTAP)、返回平面的概率(return to plane probability, RTPP)、均方位移(mean squared displacement, MSD)、信号方差(q-space inverse variance, QIV)、非高斯弥散指数(non-Gaussianity, NG)、径向非高斯弥散指数(radial non-Gaussianity, NGRad)、轴向非高斯弥散指数(axial non-Gaussianity, NGAx)。

1.4 感兴趣区勾画

       由一名从事脑肿瘤影像诊断的中级医师(从事中枢神经系统肿瘤磁共振诊断7年)进行勾画,后经1名副高级医师(从事中枢神经系统肿瘤磁共振诊断15年)进行审核,存在分歧时由两人商讨达成一致后决定勾画范围。参考T2WI在b=0的弥散图像上进行肿瘤及瘤周区的感兴趣区(region of interest, ROI)勾画(图1)。肿瘤ROI包括整个瘤体及水肿区,避开周围大血管及脑脊液;瘤周ROI包括肿瘤周围10 mm的正常脑白质区,避开周围大血管、脑脊液、颅骨及头皮。应用FAE软件(v0.4.0)[24]进行各个ROI内MRI参数的直方图分析值的提取、体积计算和形状分析,将DTI、NODDI、MAP的定量参数都进行直方图分析,形态学特征是基于b0勾画ROI提取,体积是根据b0勾画ROI计算,具体的直方图特征和形态特征计算过程参考见https://pyradiomics.readthedocs.io/en/latest/features.html#。

图1  肿瘤及瘤周ROI勾画范围。1A为b=0的原始图像;1B为基于b=0图像勾画的肿瘤区(绿色)和瘤周10 mm区(黄色)。
Fig. 1  Range of tumor and peritumoral ROI delineation. 1A shows the original image with b=0. 1B is the tumor area (green) and the 10 mm area around the tumor (yellow) based on the b=0 image.

1.5 统计学分析

       本研究采用SPSS 22.0软件进行数据统计分析,计量资料均以(x¯±s)表示,数据呈正态分布时采用独立样本t检验,非正态分布的计量资料两组间比较采用秩和检验;计数资料以例(%)表示,两组间比较采用χ²检验或Fisher确切概率法。应用Person相关性分析,Pearson相关系数(Pearson correlation coefficient, PCC)大于0.9认为参数间存在显著共线性。多因素logistic回归分析筛选低级别胶质瘤术前癫痫相关因素:分别对比临床资料和定量参数的组间差异,P<0.05的因素经共线性分析后纳入到多因素logistic回归分析中,分别构建独立预测模型及融合模型;模型间预测效能的比较通过R软件用DeLong检验进行。以癫痫发作为因变量(0=无术前癫痫发作,1=术前癫痫发作),以影响因素和定量参数为自变量,分析影响低级别胶质瘤术前癫痫发作的相关因素。

2 结果

2.1 一般情况与临床影像预测模型

       本研究共纳入低级别胶质瘤102例,均为WHO Ⅱ级,其中术前GAE患者37名,术前无GAE患者65名,GAE发病率为36.27%。患者临床影像信息分布的癫痫组(GAE组)和无癫痫组(non-GAE组)间比较见表1。GAE的组间年龄差异存在统计学意义(P=0.004),GAE的发生更倾向于年轻的患者。肿瘤位于左侧大脑半球者的GAE发生率明显低于肿瘤位于右侧大脑半球者(P<0.05);肿瘤跨半球者癫痫发生率低于无跨半球者,差异有统计意义(P<0.05)。额叶、颞叶肿瘤的发病率较高,额颞叶低级别胶质瘤GAE的发生率也稍高于其他位置的肿瘤,但差异无统计学意义(P>0.05)。在皮层受累方面GAE组的皮层累及率(97%,36/37)较无non-GAE组(86%,56/65)稍高,而肿瘤囊肿发生率non-GAE组(70.7%,46/65)略高于GAE组(54%,20/37),以上差异不具有统计学意义(P>0.05)。将存在GAE组间差异(P<0.05)的年龄和肿瘤位置1(左侧、右侧、跨半球)进行回归分析构建临床影像学模型,得到年龄(P=0.002,OR=0.934,95% CI:0.894~0.975)和肿瘤位置1(P<0.001,OR=0.228,95% CI:0.099~0.523)共同构建GAE发作预测模型的AUC=0.779(95% CI:0.689~0.870)。

表1  低级别胶质瘤相关癫痫影像学和基因分型特征分布
Tab. 1  Distribution of imaging and genotyping characteristics of low-grade glioma associated epilepsy

2.2 肿瘤体积与形态

       GAE组的肿瘤区体积、瘤周区体积低于无GAE组,差异具有统计学意义(P<0.05),瘤周区部分形状特征组间差异有统计学意义(P<0.05)(表2),瘤周区长径、短径越小越倾向于GAE发生,同时表面积越小、越倾向于球形者倾向于GAE发生。肿瘤区形状特征组间差异无统计学意义(P>0.05)。瘤周区形态特征组间差异有统计学意义的特征经共线性分析,网格体积和表面积与其余多个参数存在共线性(PCC>0.9),删除这两个参数后,构建瘤周形态学logistics回归模型,最终纳入最小轴长度(P=0.051,OR=1.107,95% CI:1.000~1.226)、最大二维直径长列(P=0.008,OR=0.9871,95% CI:0.786~0.964)两个参数,经计算得到GAE发作预测模型 AUC=0.730(95% CI:0.629~0.832)。

表2  肿瘤和瘤周的体积、形态参数在低级别胶质瘤相关癫痫组间分布
Tab. 2  Distribution of tumor and peritumoral volume and morphological parameters among low-grade glioma associated epilepsy groups

2.3 白质定量参数直方图单因素分析结果

       肿瘤区和瘤周区DTI、NODDI、MAP各弥散参数直方图特征中在GAE组和无GAE间差异有统计学意义者(P<0.05)见表3,GAE组间差异有统计学意义的弥散参数直方图特征来源于肿瘤的数目明显多于瘤周者。各弥散模型参考既往发表文献[20]的常用参数直方图特征组间分布见表4。存在GAE组间差异(P<0.05)的肿瘤区和瘤周区弥散模型定量参数直方图特征包括DTI_FA_Maximum、NODDI_ODI_90Percentile、MAP_NG_10Percentile,其中瘤周区NODDI_ODI_90Percentile值GAE组高于无GAE组,余瘤周区同肿瘤区特征GAE组均低于无GAE组。

表3  低级别胶质瘤GAE组与Non-GAE 组间存在统计学差异的DTI, NODDI和MAP直方图参数
Tab. 3  DTI, NODDI, and MAP histogram parameters with statistical differences between the GAE group and the Non GAE group in low-grade glioma
表4  常用弥散定量参数直方图特征在GAE组间分布
Tab. 4  Histogram features of commonly used diffusion quantification parameters were distributed among GAE groups

2.4 白质弥散定量参数直方图回归分析结果

       经共线性分析后,分别构建基于DTI、NODDI和MAP单个弥散模型的瘤周、瘤体以及二者融合的logistics回归模型(表56)。

       在基于肿瘤区DTI、NODDI和MAP参数直方图特征分别构建的GAE预测回归模型的AUC值中,MAP参数构建的回归模型预测效能略高(表5),经DeLong检验结果提示模型两两之间差异无统计学意义。基于瘤周区DTI、NODDI和MAP参数直方图特征分别构建的GAE预测回归模型的AUC值中,MAP参数构建的回归模型的效能(AUC=0.76)较NODDI(AUC=0.662)明显增高,差异有统计学意义(P=0.02),余模型间两两比较差异无统计学意义(P>0.05)。

       基于独立弥散模型的肿瘤和瘤周特征共同构建的回归融合模型,AUC值均高于对应弥散模型的独立ROI模型的AUC,经DeLong检验结果提示,融合模型的效能与独立瘤周区对应弥散模型的效能差异有统计学意义,较为显著者为NODDI瘤周区和融合模型(瘤周区AUC=0.66,融合模型AUC=0.77,P=0.02),但与独立肿瘤区对应弥散模型的效能差异无统计学意义(P>0.05)。三组弥散模型的融合模型中,基于MAP的融合模型的AUC略高于其余两组,经DeLong检验GAE预测效能两两之间比较差异无统计学意义(P>0.05)。经观察融合模型中纳入的特征,瘤体特征占绝大部分,OR值最高者为肿瘤DTI_MD_10Percentile,在所有模型中瘤周特征OR值最高者为NODDI_ODI_Mean,上述特征的组间分布见图2

图2  回归模型中肿瘤和瘤周特征OR值最高者在GAE组间分布。GAE为胶质瘤相关癫痫;non-GAE为胶质瘤无癫痫;NODDI为轴突定向弥散和密度成像;ODI为神经突方向离散度指数;MD为平均弥散系数。
Fig. 2  Distribution of GAE groups with the highest OR values for tumor and peritumoral features in the regression model. GAE: glioma-associated epilepsy; non-GAE: glioma without epileps; NODDI: neurite orientation dispersion and density imaging; ODI: orientation dispersion index; MD: mean diffusivity.
表5  低级别胶质瘤GAE肿瘤区和瘤周区独立分析多弥散参数模型及预测效能
Tab. 5  Multidiffusion parameter model and prediction efficacy were independently analyzed in the tumor and peritumor areas of GAE of low-grade glioma
表6  低级别胶质瘤GAE肿瘤区和瘤周区融合分析多弥散参数模型及预测效能
Tab. 6  Multi diffusion parameter model and predictive efficacy for fusion analysis of GAE tumor and peritumoral regions in low-grade glioma

2.5 临床影像学模型、瘤周形态学模型和融合模型GAE预测效能比较

       临床影像学模型(AUC=0.779)和瘤周形态学模型(AUC=0.730)GAE预测效能差异无统计学意义(P=0.760);临床影像学模型与基于DTI、NODDI、MAP的融合模型GAE预测效能比较差异无统计学意义(P值依次为0.900、0.730、0.877);瘤周形态学模型与基于DTI、NODDI、MAP的融合模型GAE预测效能比较差异无统计学意义(P值依次为0.080、0.740、0.651)。

3 讨论

       本研究通过观察GAE患者肿瘤临床和影像学特征,计算瘤体和瘤周的体积、形态、定量分析白质弥散直方图特征并构建定量弥散特征回归模型。最终得到肿瘤和瘤周体积越小、瘤周越倾向于球形、年龄越小、肿瘤位于额颞叶的GAE患病风险越大。在回归模型中肿瘤和瘤周特征的融合模型效能要明显好于瘤周独立模型,在融合模型中瘤体特征较瘤周特征占比较大。

3.1 肿瘤、瘤周体积与GAE

       胶质瘤肿瘤体积较小者与体积较大病变相比,癫痫发作率较高,这一趋势多认为是由于瘤体体积较大者肿瘤对周围白质的破坏较严重,导致兴奋传播障碍,从而抑制癫痫的发生[25, 26]。同时,肿瘤累及皮层者易引起癫痫的发生[27],但当肿瘤体积较大对周围及瘤体局部皮层神经元破坏严重,使痫性放电产生障碍时,同样也抑制了癫痫的发生。上述机制与本研究结果中肿瘤体积小且累及皮层者发生癫痫的风险大于肿瘤体积大且累及皮层者相一致。而对于瘤周区体积而言,瘤体体积小的瘤周体积也相对小;另外,同样的肿瘤体积,肿瘤位于大脑边缘位置者的瘤周体积较位于大脑深部者的瘤周体积小。

3.2 肿瘤、瘤周白质弥散特征与GAE

       KOHLING等[28]证明瘤体周围1~2 mm的瘤周区域可以是癫痫的起源区,因此在本研究中仅涉及瘤周水肿短径小于3 mm的病例,并将此部分区域包含在肿瘤ROI内。本研究中无论是单参数分析还是构建多参数回归模型,均得到肿瘤因素在低级别胶质GAE发生中所占比重大于瘤周因素,这再次验证了手术切除肿瘤是治疗低级别胶质瘤GAE有效的方法 [29, 30]。同时,我们观察到肿瘤区参数中DTI_MD_10Percentile模型中的OR值最高且呈正相关;前期研究证明MD值与ISOVF、MSD等反映细胞外间隙的参数密切相关[11, 31],与肿瘤细胞密度及恶性程度呈负相关[32]。因此,肿瘤细胞密度越小,细胞外间隙越大,GAE的发生风险越大,从侧面支持了GAE患者的瘤体内有残存神经元[33]

       FA是一个相对综合的因素,与NG、ICVF和RTAP(RTOP、RTPP)等参数密切相关[34],反映了细胞内体积和髓鞘的完整性[35]。本研究中肿瘤区、瘤周区FA值GAE组均较非GAE组下降,这可能说明了肿瘤区及瘤周10 mm区域内白质的损伤,使局部皮层的兴奋性传导障碍,增加了瘤周区白质的重塑甚至是异常突触连接的建立的可能性[36]。ODI被认为是除FA、NG、ICVF和RTAP等参数外,反映有关轴突和髓磷脂信息的参数,较DTI参数具有更高的敏感性[11, 34]。本研究中ODI在肿瘤区明显低于瘤周区,表明肿瘤区白质纤维的破坏程度较高,瘤周区白质相对完整或分散度增加;同时ODI在肿瘤区和瘤周区的GAE组间分布是相反的,即肿瘤区 ODI越低,瘤周区ODI越高,越易引起GAE的发生,表明肿瘤区白质破坏越严重,瘤周区白质纤维分散度增加或相对完整增加了GAE发生风险。这些都为癫痫电信号的传导或形成提供了条件,促成了GAE的发生[8, 37]

3.3 本研究的局限性

       本研究中反映微观白质信息的MAP模型预测GAE发生的效能略高于DTI、NODDI等模型,但差异无统计学意义,尤其是在肿瘤区。可能是因为肿瘤内信息较混杂,MAP模型各参数特异性相对较高,反而没有DTI模型中FA等综合参数能够更全面地反映整体弥散信息。另外,可能由于本研究存在的一些局限性所致:(1)本研究样本量相对较小;(2)本研究中未涉及优势半球等信息,造成数据存在一定的误差;(3)本研究未设计正常对照组;(4)本研究未纳入WHO I级胶质瘤。

4 结论

       综上所述,磁共振白质定量分析为早期预测GAE的发生及分析GAE的发生机制提供了条件;肿瘤区白质的损伤,同时伴有瘤周区白质分散度增加或相对完整增加了GAE的发生风险。

[1]
KEMERDERE R, YUKSEL O, KACIRA T, et al. Low-grade temporal gliomas: Surgical strategy and long-term seizure outcome[J]. Clin Neurol Neurosurg, 2014, 126: 196-200. DOI: 10.1016/j.clineuro.2014.09.007.
[2]
YOY G, SHA Z Y, YAN W, et al. Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study[J]. Neuro Oncol, 2012, 14: 230-241. DOI: 10.1093/neuonc/nor205.
[3]
TOBOCHNIK S, PISANO W, LAPINSKAS E, et al. Effect of PIK3CA variants on glioma-related epilepsy and response to treatment[J]. Epilepsy Res, 2021, 175: 106681. DOI: 10.1016/j.eplepsyres.2021.106681.
[4]
SUN K, LIU Z, LI Y, et al. Radiomics Analysis of Postoperative Epilepsy Seizures in Low-Grade Gliomas Using Preoperative MR Images[J]. Front Oncol, 2020, 10: 1096. DOI: 10.3389/fonc.2020.01096.
[5]
LANGE F, HORNSCHEMEYER J, KIRSCHSTEIN T. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy[J]. Cells, 2021, 10(5): 1226. DOI: 10.3390/cells10051226.
[6]
SLEGERS R J, BIUMCKE I. Low-grade developmental and epilepsy associated brain tumors: a critical update 2020[J]. Acta Neuropathol Commun, 2020, 8(1): 27. DOI: 10.1186/s40478-020-00904-x.
[7]
MATO D, VELASQUEZ C, GOMEZ E, et al. Predicting the Extent of Resection in Low-Grade Glioma by Using Intratumoral Tractography to Detect Eloquent Fascicles Within the Tumor[J/OL]. Neurosurgery, 2021, 88(2): E190-E202 [2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/33313812/. DOI: 10.1093/neuros/nyaa463.
[8]
SEOW P, HERNOWO AT, NARAYANA V, et al. Neural Fiber Integrity in High- Versus Low-Grade Glioma using Probabilistic Fiber Tracking[J]. Acad Radiol, 2021, 28(12): 1721-1732. DOI: 10.1016/j.acra.2020.09.007.
[9]
LUAT A F, CHUGANI H T. Molecular and diffusion tensor imaging of epileptic networks[J/OL]. Epilepsia, 2008, 49(Suppl 3): 15-22. DOI: 10.1111/j.1528-1167.2008.01506.x.
[10]
ARMSTRONG T S, GRANT R, GILBERT M R, et al. Epilepsy in glioma patients: mechanisms, management, and impact of anticonvulsant therapy[J]. Neuro Oncol, 2016, 18(6): 779-789. DOI: 10.1093/neuonc/nov269.
[11]
HAGIWARA A, KAMAGATA K, SHIMOJI K, et al. White Matter Abnormalities in Multiple Sclerosis Evaluated by Quantitative Synthetic MRI, Diffusion Tensor Imaging, and Neurite Orientation Dispersion and Density Imaging[J]. Am J Neuroradiol, 2019, 40(10): 1642-1648. DOI: 10.3174/ajnr.A6209.
[12]
SUN Y, SU C, DENG K, et al. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status[J]. Eur Radiol, 2022, 32(6): 3744-3754. DOI: 10.1007/s00330-021-08522-4.
[13]
WANG P, GAO E, QI J, et al. Quantitative analysis of mean apparent propagator-magnetic resonance imaging for distinguishing glioblastoma from solitary brain metastasis[J]. Eur J Radiol, 2022, 154: 110430. DOI: 10.1016/j.ejrad.2022.110430.
[14]
QIU Y, LI Q, WU D, et al. Altered mean apparent propagator-basedmicrostructure and the corresponding functional connectivity of the parahippocampus and thalamus in Crohn's disease[J]. Front Neurosci, 2022, 16: 985190. DOI: 10.3389/fnins.2022.985190.
[15]
FICK R H J, WASSERMANN D, CARUYER E, et al. MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data[J]. Neuroimage, 2016, 134: 365-385. DOI: 10.1016/j.neuroimage.2016.03.046.
[16]
ALIOTA E, NOURZADEH H, BATCHALA P P, et al. Molecular Subtype Classification in Lower-Grade Glioma with Accelerated DTI[J]. Am J Neuroradiol, 2019, 40(9): 1458-1463. DOI: 10.3174/ajnr.A6162.
[17]
MASJOODI S, HASHEMI H, OGHABIAN M A, et al. Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging[J]. J Biomed Phys Eng, 2018, 8(3): 251-260.
[18]
BAETE S H, BOADA F E. Accelerated radial diffusion spectrum imaging using a multi-echo stimulated echo diffusion sequence[J]. Magn Reson Med, 2018, 79(1): 306-316. DOI: 10.1002/mrm.26682.
[19]
LUO S P, CHEN F F, ZHANG H W, et al. Trigeminal Nerve White Matter Fiber Abnormalities in Primary Trigeminal Neuralgia: A Diffusion Spectrum Imaging Study[J]. Front Neurol, 2022, 12: 798969. DOI: 10.3389/fneur.2021.798969.
[20]
毛椿平, 毛家骥, 张翔, 等. 磁共振弥散频谱成像机遇和挑战——中国十年来发展成果及展望[J]. 磁共振成像, 2022, 13(10): 37-45. DOI: 10.12015/issn.1674-8034.2022.10.005.
MAO C P, MAO J J, ZHANG X, et al. Opportunities and Challenges for Magnetic Resonance Diffusion Spectrum Imaging: Development Achievements and Prospects in China in the Past Decade[J]. Chin J Magn Reson Imaging, 2022, 13(10): 37-45. DOI: 10.12015/issn.1674-8034.2022.10.005.
[21]
LIANG S, FAN X, ZHAO M, et al. Clinical Practice Guidelines for the Diagnosis and Treatment of Adult Diffuse Glioma-Related Epilepsy[J/OL]. Cancer Med, 2019, 8: 4527-4535. DOI: 10.1002/cam4.2362.
[22]
WANG P, WENG L, XIE S, et al. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma[J]. Eur J Radiol, 2021, 138: 109622. DOI: 10.1016/j.ejrad.2021.109622.
[23]
DADUCCI A, CANALES-RODRIGUEZ E J, ZHANG H, et al. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[J]. Neuroimage, 2015, 105: 32-44. DOI: 10.1016/j.neuroimage.2014.10.026.
[24]
SONG Y, ZHANG J, ZHANG Y D, et al. FeAture Explorer (FAE): A Tool for Developing and Comparing Radiomics Models[J/OL]. PloS One, 2020, 8: e0237587 [2023-03-16]. https://pubmed.ncbi.nlm.nih.gov/32804986/. DOI: 10.1371/journal.pone.0237587.
[25]
MARKU M, RASMUSSEN B K, BELMONTE F, et al. Prediagnosis epilepsy and survival in patients with glioma: a nationwide population-based cohort study from 2009 to 2018[J]. J Neurol, 2022, 269(2): 861-872. DOI: 10.1007/s00415-021-10668-6.
[26]
LEE J W, WEN P Y, HURWITZ S, et al. Morphological characteristics of brain tumors causing seizures[J]. Arch Neurol, 2010, 67: 336-342. DOI: 10.1001/archneurol.2010.2.
[27]
ZHANG J, YAO L, PENG S, et al. Correlation between glioma location and preoperative seizures: a systematic review and meta-analysis[J]. Neurosurg Rev, 2019, 42(3): 603-618. DOI: 10.1007/s10143-018-1014-5.
[28]
KOHLING R, SENNER V, PAULUS W, et al. Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants[J]. Neurobiol Dis, 2006, 22(1): 64-75. DOI: 10.1016/j.nbd.2005.10.001.
[29]
SHAN X, FAN X, LIU X, et al. Clinical characteristics associated with postoperative seizure control in adult low-grade gliomas: a systematic review and meta-analysis[J]. Neuro Oncol, 2018, 20(3): 324-331. DOI: 10.1093/neuonc/nox130.
[30]
王森林, 王丰, 姚培森, 等. 弥漫性低级别胶质瘤相关癫痫的术后疗效及影响因素[J]. 中华医学杂志, 2022, 102(4): 290-293. DOI: 10.3760/cma.j.cn112137-20210504-01055.
WANG S L, WANG F, YAO P S, et al. Postoperative efficacy and influencingfactors of diffuse low grade gliomas associated epilepsy[J]. Natl Med J China, 2022, 102(4): 290-293. DOI: 10.3760/cma.j.cn112137-20210504-01055.
[31]
MAO J, ZENG W, ZHANG Q, et al. Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models[J]. BMC Med Imaging, 2020, 20(1): 124. DOI: 10.1186/s12880-020-00524-w.
[32]
GAO A, ZHANG H, YAN X, et al. Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
[33]
BARAJAS R F, HESS C P, PHILLIPS J J, et al. Super-resolution track density imaging of glioblastoma: histopathologic correlation[J]. Am J Neuroradiol, 2013, 34(7): 1319-1325. DOI: 10.3174/ajnr.A3400.
[34]
STIKOV N, CAMPBELL J S, STROH T, et al. In vivo histology of the myelin g-ratio with magnetic resonance imaging[J]. Neuroimage, 2015, 118: 397-405. DOI: 10.1016/j.neuroimage.2015.05.023.
[35]
MAXIMOV I I, TONOYAN A S, PRONIN I N. Differentiation of glioma malignancy grade using diffusion MRI[J]. Phys Med, 2017, 40: 24-32. DOI: 10.1016/j.ejmp.2017.07.002.
[36]
WIRSCHING H G, WELLER M. Does Neuronal Activity Promote Glioma Progression?[J]. Trends Cancer, 2020, 6(1): 1-3. DOI: 10.1016/j.trecan.2019.11.002.
[37]
JIN B, LV Z, CHEN W, et al. Perilesional white matter integrity in drug-resistant epilepsy related to focal cortical dysplasia[J]. Seizure, 2021, 91: 484-489. DOI: 10.1016/j.seizure.2021.07.027.

上一篇 基于颅内斑块影像组学联合传统标志物预测缺血性脑卒中复发风险
下一篇 术前常规磁共振影像预测胶质瘤复发部位的临床研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2