分享:
分享到微信朋友圈
X
临床研究
DCE-MRI纹理分析对乳腺癌分子分型的诊断价值
林倩 陈爱华 张婷婷

Cite this article as: LIN Q, CHEN A H, ZHANG T T. Diagnostic value of DCE-MRI texture analysis for molecular typing of breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(12): 40-48.本文引用格式:林倩, 陈爱华, 张婷婷. DCE-MRI纹理分析对乳腺癌分子分型的诊断价值[J]. 磁共振成像, 2023, 14(12): 40-48. DOI:10.12015/issn.1674-8034.2023.12.007.


[摘要] 目的 探讨基于动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)图像的纹理特征术前预测乳腺癌分子分型的价值。材料与方法 回顾性分析宜昌市第一人民医院2021年10月至2022年10月75例经术后病理证实的乳腺癌患者的术前MRI图像及临床病理资料。采用χ2检验、方差分析对患者一般资料进行分析。对分子亚型以是与非作为二分类指标在DCE-MRI图像上提取特征参数,通过标准化、最优特征筛选器进行特征参数降维,采用独立样本t检验或Mann-Whitney U检验识别不同组间差异有统计学意义的最优纹理参数,采用ROC曲线下面积(area under the curve, AUC)评价纹理分析的诊断效能。另基于DCE-MRI纹理特征构建逻辑回归分类模型,绘制ROC曲线并评价模型对不同分子亚型的诊断效能。结果 Luminal A型11例、Luminal B型36例、人表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)过表达型14例及三阴性乳腺癌(triple negative breast cancer, TNBC)14例,各亚型乳腺癌患者间年龄、绝经状态、病理学分型、MRI强化情况、淋巴结状态的差异皆无统计学意义(P>0.05)。基于MRI图像特征参数所建立的预测Luminal A型、Luminal B型、HER-2过表达型、TNBC的AUC [95% 置信区间(confidence interval, CI)]值分别为0.92(0.77~1.00)、0.83(0.62~1.00)、0.83(0.55~1.00)、0.72(0.43~1.00)。Luminal A型与非Luminal A型组间3个纹理参数差异有统计学意义(P<0.05),三者AUC值分别为0.73、0.70和0.75,以纹理特征三维灰度共生矩阵-聚类阴影(3D grey level co-occurrence matrix cluster shadow, 3D_glcm_CS)>0.439时诊断Luminal A型效能最高。Luminal B型与非Luminal B型组间2个纹理特征差异具有统计学意义(P<0.05),当原始灰度共生矩阵-聚类阴影(original gray level co-occurrence matrix cluster shadow, o_glcm_CS)>0.169时诊断Luminal B型效能最佳。HER-2过表达型与非HER-2过表达型组间5个纹理特征差异均有统计学意义,其AUC值分别为0.76、0.81、0.79、0.80和0.82,以三维灰度区域大小矩阵-小区域低灰度优势(3D grey level size zone matrix small area low gray level emphasis, 3D_glszm_SALGLE)≤-0.460时诊断HER-2过表达型的效能最高(AUC=0.82,P<0.001);TNBC与非TNBC组间仅纹理特征高通滤波器-相邻灰度色差矩阵(wavelet LH neighbouring gray tone difference matrix busyness, w-LH_ngtdm_B)的差异有统计学意义,其AUC值为0.65。结论 动态对比增强MRI纹理分析可以无创有效地预测乳腺癌分子分型,对术前乳腺癌分子亚型的分类具有重要的指导价值。
[Abstract] Objective To explore the value of texture features based on dynamic contrast-enhanced MRI (DCE-MRI) images in preoperative prediction of molecular typing of breast cancer.Materials and Methods The preoperative MRI images and clinicopathological data of 75 patients with breast cancer confirmed by postoperative pathology in the First People's Hospital of Yichang from October 2021 to October 2022 were retrospectively analyzed. The general data of patients were analyzed by chi-square test and variance analysis. Feature parameters were extracted from DCE-MRI images for molecular subtypes with yes and no as binary classification indicators. Dimension reduction of feature parameters was performed by standardized and optimal feature filters. Independent sample t-test or Mann-Whitney U test was used to identify the optimal texture parameters with statistically significant differences between different groups. The area under the ROC curve (AUC) was used to evaluate the diagnostic efficacy of texture analysis. In addition, a logistic regression classification model was constructed based on dynamic enhanced MRI texture features, and the ROC curve was drawn to evaluate the diagnostic efficacy of the model for different molecular subtypes.Results There were 11 cases of Luminal A type, 36 cases of Luminal B type, 14 cases of human epidermal growth factor receptor 2 (HER-2) overexpression type and 14 cases of triple negative breast cancer (TNBC). There was no significant difference in age, menopausal status, pathological classification, MRI enhancement and lymph node status among patients with different subtypes of breast cancer (P>0.05). The AUC [95% confidence interval (CI)] values of Luminal A, Luminal B, HER-2 overexpression and TNBC were 0.92 (0.77-1.00), 0.83 (0.62-1.00), 0.83 (0.55-1.00) and 0.72 (0.43-1.00), respectively. There were statistically significant differences in the three texture parameters between Luminal A and non-Luminal A groups (P<0.05). The AUC values of the three were 0.73, 0.70 and 0.75, respectively. When the texture feature 3D grey level co-occurrence matrix cluster shadow (3D_glcm_CS)>0.439, the diagnostic efficiency of Luminal A type was the highest. There were significant differences in the two texture features between Luminal B group and non-Luminal B group (P<0.05). When original gray level co-occurrence matrix cluster shadow (o_glcm_CS)>0.169, the diagnostic efficiency of Luminal B type was the best. There were statistically significant differences in the five texture features between the HER-2 overexpression group and the non-HER-2 overexpression group. The AUC values were 0.76, 0.81, 0.79, 0.80 and 0.82, respectively. When 3D grey level size zone matrix small area low gray level emphasis (3D_glszm_SALGLE)≤-0.460, the diagnostic efficiency of HER-2 overexpression was the highest (AUC=0.82, P<0.001). Only the difference of texture feature wavelet LH neighbouring gray tone difference matrix busyness (w-LH_ngtdm_B) between TNBC and non-TNBC was statistically significant, and the AUC value was 0.65.Conclusions DCE-MRI texture analysis can noninvasively and effectively predict the molecular subtypes of breast cancer, which has important guiding value for the classification of preoperative molecular subtypes of breast cancer.
[关键词] 乳腺肿瘤;分子分型;诊断价值;纹理分析;动态对比增强;磁共振成像
[Keywords] breast neoplasms;molecular typing;diagnostic value;texture analysis;dynamic contrast-enhanced;magnetic resonance imaging

林倩    陈爱华    张婷婷 *  

三峡大学人民医院(宜昌市第一人民医院)放射科,宜昌 443000

通信作者:张婷婷,E-mail:tiana0916@sina.com

作者贡献声明:张婷婷设计本研究的方案,对稿件重要的智力内容进行了修改;林倩起草和撰写稿件,获取、分析或解释本研究的数据;陈爱华获取、分析或解释本研究的数据,对稿件重要的智力内容进行了修改;张婷婷获得了北京医学奖励基金会睿影基金项目资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 北京医学奖励基金会睿影基金项目 YXJL-2022-0105-0133
收稿日期:2023-05-05
接受日期:2023-11-24
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.12.007
本文引用格式:林倩, 陈爱华, 张婷婷. DCE-MRI纹理分析对乳腺癌分子分型的诊断价值[J]. 磁共振成像, 2023, 14(12): 40-48. DOI:10.12015/issn.1674-8034.2023.12.007.

0 前言

       乳腺癌是影响全球女性健康的首位高发癌症,病死率居全球第1位、中国第4位[1]。近些年,乳腺癌发病率有上升趋势,但其病死率却较1989年有所降低,这主要得益于乳腺癌的早筛发现和个性化精准治疗[2]。第12届St.Gallen会议[3]提出将乳腺癌细分为管腔A型、管腔B型、人表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)阳性型和三阴性乳腺癌(tripel negative breast cancer, TNBC)四个临床亚型标准。不同亚型患者的临床特点、治疗方案及预后各不相同[4],这也表明乳腺癌具有较高异质性[5, 6]。目前,乳腺癌亚型的确定需对活检标本行免疫组化检查,此方法不仅有创,且局部穿刺活检取材不充分,不能得到肿瘤的全部异质性信息,最终也会影响结果的可靠性,影响临床治疗效果[7]

       因此,寻找一种既能体现病变整体特征又能动态观察病变变化情况的无创、简便、经济的替代方法尤为重要。MRI是常用的乳腺影像学检查方法,MRI软组织分辨度高,对乳腺癌的检出敏感性高,动态对比增强MRI(dynamic contrast-enhanced MRI, DCE-MRI)更是能以高空间分辨率提供肿瘤的形态学以及血流动力学等信息[8]。随着乳腺专用线圈及快速成像序列的开发,乳腺MRI影像质量及检测水平也有了很大提升。通过MRI图像分析术前预测肿瘤分子分型可减轻患者负担,优化诊疗流程,达到精准治疗的目的。在医学图像中,不同纹理特征通常是反映机体的病理异质性。医学图像分析方法-纹理分析是通过计算机技术发现病灶内人眼无法辨别的具有潜在异质性的图像纹理特征,并利用数学算法定量图像空间、像素及灰阶的分布特征[9]。近年来,纹理分析在乳腺疾病中的研究已成为热点,其可鉴别乳腺疾病的良恶性[10, 11]、预测乳腺癌新辅助化疗疗效[12]、判断患者预后[13, 14]等。既往研究发现[15],各分子分型乳腺癌在影像学上存在“异病同影”,判读结果的客观准确性受报告医师经验等主观因素影响。而纹理分析不仅能消除这一影响,还能提供丰富的高层语义信息,通过定量分析图像的纹理特征参数辅助诊断疾病,能够保证诊断效能的稳定并为临床决策提供支持。

       本研究旨在探讨DCE-MRI纹理分析对乳腺癌分子亚型的诊断价值,并探讨基于MRI纹理特征结合机器学习算法建立的预测模型的诊断效能,为临床提供一种无创性的诊断手段。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,并经宜昌市第一人民医院医学伦理委员会批准,免除受试者知情同意(批件号:PJ-KY2022-44)。回顾性分析2021年10月至2022年10月在宜昌市第一人民医院行乳腺MRI检查的患者75例。纳入标准:(1)均为肿块型病灶,经病理证实为乳腺癌,并同时进行免疫组化检测;(2)有完整的术前乳腺DCE-MRI检查资料;(3)进行MRI检查前未接受任何乳腺疾病相关的治疗,包括穿刺、新辅助化疗及其他抗肿瘤治疗。排除标准:(1)MRI图像质量不佳,不易勾画ROI者;(2)患者MRI检查时间与病理检查相隔>1周。最终共纳入患者75例(共75个病灶),皆为女性,年龄32~78(50.32±1.25)岁,其中导管原位癌9例,非特殊性浸润性癌62例,特殊性浸润性癌4例;Lumianl A型11例,Luminal B型36例,HER-2过表达型14例,TNBC 14例。

1.2 MRI检查方法

       采用GE Discovery MR 750 3.0 T扫描仪,使用8通道相控阵乳腺表面线圈。患者采取俯卧位,两侧乳腺自然悬垂于线圈中央部位,且与线圈呈垂直角度。

       平扫序列与扫描参数如下:(1)轴位T2WI,采用快速反转恢复(T2-weighted short-tau inversion recovery, T2WI STIR)序列,TR 5341.0 ms,TE 82.5 ms,层厚5.0 mm,FOV 32 cm×32 cm,矩阵512×512;(2)轴位T1WI,采用3D快速小角度激发成像脂肪抑制(three-dimensional fast low angle shot imaging, T1WI 3D FLASH)序列,TR 3.9 ms,TE 1.7 ms,层厚1.4 mm,FOV 36 cm×36 cm,矩阵512×512;(3)弥散加权成像(diffusion weighted imaging, DWI)序列,TR 2769.6 ms,TE 61.7 ms,层厚4.0 mm,FOV 32 cm×32 cm,矩阵256×256,b值为0、800 s/mm2

       增强扫描采用三维快速小角度激发回波序列+横轴位抑脂扫描,TR 3.0 ms,TE 1.4 ms,层厚1.0 mm,FOV 36 cm×36 cm,矩阵256×256。DCE-MRI共扫描9个时相,每个时相扫描时间为60 s,其中前1个时相为蒙片,在第2个时相使用高压注射器(MED TRON)经肘静脉推注顺磁性对比剂Gd-DTPA(拜耳公司),剂量为0.1 mmol/kg,注射流率2.0 mL/s,然后注射生理盐水15.0 mL,流率3.0 mL/s。

1.3 图像分析方法

       从影像归档和通信系统(picture archiving and communication systems, PACS)系统将病灶MR增强扫描后的T1WI抑脂横轴位图像导入后处理平台(医准-达尔文科研平台,http://premium.darwin.yizhun-ai.com),然后由两名具有5年以上乳腺MRI诊断经验的放射科主治医师在未知其病理情况下,选择肿块最大层面且强化最明显的区域沿病灶边缘手动勾ROI,勾画时尽量避开肿瘤坏死囊变及瘤周水肿区域。如存在意见不同的靶区勾画部分,将另请一位具有10年以上乳腺MRI诊断经验的高年资放射学专家(主任医师)进行商讨后最终确定。

       ROI勾画完毕后,以分子分型是与非作为二分类指标进行特征参数提取(Luminal A型与非Luminal A型;Luminal B型与非Luminal B型;HER-2过表达型与非HER-2过表达型;TNBC与非TNBC),共计提取1125个特征。首先对特征进行标准化处理,使算法收敛更快,然后用最优特征筛选器进行特征降维,从原始特征中筛选出每组最相关特征参数,最后基于MRI最优特征结合逻辑回归分类器建立二分类预测模型。

图1  乳腺癌动态对比增强MRI ROI示意图。1A~1D分别为Luminal A型、Luminal B型、HER-2过表达型、三阴性乳腺癌患者术前动态对比增强MRI T1WI压脂轴位单层靶区勾画示意,红线范围内为病灶ROI。HER-2:人表皮生长因子受体2;ROI:感兴趣区。
Fig. 1  Breast cancer dynamic enhanced MRI ROI diagram. 1A-1D are Luminal A type, Luminal B type, HER-2 overexpression type, triple negative breast cancer patients with preoperative MRI dynamic contrast-enhanced T1WI fat suppression axial single-layer target area delineation, the red line range is the ROI of lesion. HER-2: human epidermal growth factor receptor 2; ROI: region of interest.

1.4 免疫组化及分子分型判断标准

       2015年St.Gallen国际乳腺会议[16]4种免疫组化指标雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)、人类表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)、Ki-67的表达情况不同,将乳腺癌分为4种不同的分子亚型:Luminal A型、Luminal B型、HER-2过表达型及TNBC。分型标准详见表1

表1  乳腺癌分子分型标准
Tab. 1  Molecular classification criteria for breast cancer

1.5 统计学方法

       采用SPSS 26.0软件进行统计分析。计数资料采用χ2检验及Fisher确切概率法,计数资料用频数表示。本研究的计量资料有:年龄、纹理特征,符合正态分布的计量资料以x¯±s表示,两组间比较采用独立样本t检验,多组间比较进行方差分析(单因素ANOVA检验),并取其中有意义的计量资料进行事后多重比较;不符合正态分布的计量资料以中位数和四分位数M(P25,P75表示,两组间比较采用Mann-Whitney U检验,多组间比较行Kruskal-Wallis检验。对两组间差异有统计学意义的纹理特征以Medcalc软件建立ROC曲线,计算曲线下面积(area under the curve, AUC),确定截断值,评价其对不同乳腺癌分子分型的鉴别诊断效能。P<0.05为差异具有统计学意义。

2 结果

2.1 患者临床病理资料

       四种分子分型乳腺癌患者间年龄、绝经状态、病理学分型、MRI强化情况及淋巴结转移情况的差异均不具有统计学意义(P>0.05)(表2)。

表2  四种分子分型乳腺癌患者临床资料
Tab. 2  Four molecular classification of breast cancer patients with clinical data

2.2 特征提取及模型构建

       将四种乳腺癌分子分型以二分类(Luminal A型/非Luminal A型、Luminal B型/非Luminal B型、HER-2过表达型/非HER-2过表达型及TNBC/非TNBC)分组,经过特征筛选降维,最终每组各筛选出5个最优特征(表3),其中包含有一阶统计特征、形状特征及纹理特征,本研究仅对纹理特征进行统计分析。

       基于MRI图像特征参数,使用逻辑回归分类器构建预测模型,各模型的AUC值、特异度、敏感度、准确率见表4,四种模型中预测Luminal A型乳腺癌效能最高,AUC为0.92。

表3  经筛选降维所得最优特征参数名称
Tab. 3  Optimal feature parameter names obtained by dimension reduction through screening
表4  基于MRI纹理特征各亚型分类模型的诊断效能
Tab. 4  Diagnostic efficacy of each subtype classification model based on MRI texture features

2.3 MRI纹理特征诊断Luminal A型乳腺癌的价值

       在Luminal A型组中有4个纹理特征:灰度共生矩阵-逆差矩归一化(wavelet-HL grey level co-occurrence matrix_inverse difference moment normalized, w-HL_glcm_Idmn)、相邻灰度色差矩阵-对比度(wavelet-LL neighboring gray tone difference matrix contrast, w-LL_ngtdm_C)、三维灰度共生矩阵-聚类阴影(3D grey level co-occurrence matrix cluster shadow, 3D_glcm_CS)、三维相邻灰度色差矩阵-强度(3D neighboring gray tone difference matrix Strength, 3D ngtdm_S)。使用Mann-Whitney U检验对Luminal A型与非Luminal A型组间4个纹理特征进行统计学分析,发现3D_ngtdm_S在组间的差异无统计学意义,其他3个MRI纹理特征的差异均具有统计学意义(P<0.05)。

       w-HL_glcm_Idmn、w-LL_ngtdm_C、3D_glcm_CS诊断Luminal A型乳腺癌的AUC值分别为0.73、0.70和0.75,其中3D_glcm_CS的鉴别诊断效能最高,以3D_glcm_CS>0.439时诊断Luminal A型乳腺癌的敏感度为54.55%,特异度为90.62%,诊断效能的ROC曲线见图2A

图2  管腔型乳腺癌中差异有统计学意义的纹理特征的ROC曲线。2A为差异有统计学意义的特征参数鉴别Luminal A型与非Luminal A型乳腺癌的ROC曲线。2B为差异有统计学意义的特征参数鉴别Luminal B型与非Luminal B型乳腺癌的ROC曲线。ROC:受试者工作特征;AUC:曲线下面积;w-HL_glcm_Idmn:灰度共生矩阵-逆差矩归一化;w-LL_ngtdm_C:相邻灰度色差矩阵-对比度;3D_glcm_CS:三维灰度共生矩阵-聚类阴影;o_glcm_CS:原始灰度共生矩阵-聚类阴影;w-LL_glcm_CS:低通滤波器-灰度共生矩阵-聚类阴影。
Fig. 2  ROC curve of texture features with statistically significant differences in luminal breast cancer. 2A is the ROC curve of the characteristic parameters with statistically significant differences in differentiating Luminal A and non-Luminal A breast cancer. 2B is the ROC curve of the characteristic parameters with statistically significant differences to identify Luminal B and non-Luminal B breast cancer. ROC: receiver operating characteristic; AUC: area under the curve; w-HL_glcm_Idmn: wavelet-HL grey level co-occurrence matrix_inverse difference moment normalized; w-LL_ngtdm_C: wavelet-LL neighboring gray tone difference matrix contrast; 3D_glcm_CS: 3D grey level co-occurrence matrix cluster shadow; o_glcm_CS: original gray level co-occurrence matrix cluster shadow; w-LL_glcm_CS: wavelet-LL grey level co-occurrence matrix cluster shade.

2.4 MRI纹理特征诊断Luminal B型乳腺癌的价值

       在Luminal B型组间选出的5个特征中有3个纹理特征:原始灰度共生矩阵-聚类阴影(original gray level co-occurrence matrix cluster shadow, o_glcm_CS)、高通滤波器-灰度共生矩阵-聚类阴影(wavelet-HH grey level co-occurrence matrix cluster shade, w-HH_glcm_CS)、低通滤波器-灰度共生矩阵-聚类阴影(wavelet-LL grey level co-occurrence matrix cluster shade, w-LL_glcm_CS)。使用Mann-Whitney U检验对Luminal B型与非Luminal B型2组间3个纹理特征进行统计学分析,发现w-HH_glcm_CS组间的差异无统计学意义(Z=1.315,P=0.189),o_glcm_CS、w-LL_glcm_CS两个纹理特征组间差异均具有统计学意义(P<0.05),两者鉴别诊断Luminal B型乳腺癌亚型的AUC分别为0.65和0.65(图2B),其中o_glcm_CS的鉴别诊断效能最高,以o_glcm_CS>0.169时诊断Luminal B型乳腺癌的敏感度为72.22%,特异度为64.10%。

2.5 MRI纹理特征诊断HER-2过表达型乳腺癌的价值

       对HER-2过表达型与非HER-2过表达型2组间5个纹理特征进行统计学分析,发现二维-灰度游程长度矩阵-运行熵(local binary pattern 2D gray level run length matrix run entropy, lbp-2D_glrlm_RE)、灰度区域大小矩阵-依存熵(sigma grey level size zone matrix dependent entropy, s_glszm_DE)、灰度依赖矩阵-小依赖低灰度级强调(3D grey level dependence matrix small dependent low gray level emphasis, 3D_gldm_SDLGLE)、灰度区域大小矩阵-低灰度级区域强调(3D grey level size zone matrix low gray level zone emphasis, 3D_glszm_LGLZE)、三维灰度区域大小矩阵-小区域低灰度优势(3D grey level size zone matrix small area low gray level emphasis, 3D_glszm_SALGLE)的组间差异均具有统计学意义(P<0.05)(表5),各特征鉴别诊断HER-2过表达型乳腺癌亚型的诊断效能详见表6图3A,其中3D_glszm_SALGLE的鉴别诊断效能最高,3D_glszm_SALGLE≤-0.460时诊断HER-2过表达型乳腺癌的敏感度为92.86%,特异度为70.49%。

图3  HER-2过表达型及TNBC中差异有统计学意义的纹理特征的ROC曲线。3A:差异有统计学意义的特征参数鉴别HER-2过表达型与非HER-2过表达型乳腺癌的ROC曲线。3B:差异有统计学意义的特征参数鉴别TNBC与非TNBC的ROC曲线。AUC:曲线下面积;HER-2:人表皮生长因子受体2;TNBC:三阴性乳腺癌;ROC:受试者工作特征;lbp-2D_glrlm_RE:二维-灰度游程长度矩阵-运行熵;3D_gldm_SDLGLE:灰度依赖矩阵-小依赖低灰度级强调;3D_glszm_LGLZE:灰度区域大小矩阵-低灰度级区域强调;s_glszm_DE:灰度区域大小矩阵-依存熵;3D_glszm_SALGLE:三维灰度区域大小矩阵-小区域低灰度优势;w-LH_ngtdm_B:高通滤波器-相邻灰度色差矩阵。
Fig. 3  ROC curve of texture features with statistically significant differences between HER-2 overexpression and TNBC. 3A is the ROC curve of the characteristic parameters with statistically significant differences in identifying HER-2 overexpressing and non- HER-2 overexpressing breast cancer. 3B is the ROC curve of the characteristic parameters with statistically significant differences to identify TNBC and non-TNBC. AUC: area under the curve; HER-2: human epidermal growth factor receptor 2; TNBC: triple negative breast cancer; ROC: receiver operating characteristic. lbp-2D_glrlm_RE: local binary pattern 2D gray level run length matrix run entropy; 3D_gldm_SDLGLE: 3D grey level dependence matrix small dependent low gray level emphasis; 3D_glszm_LGLZE: 3D grey level size zone matrix low gray level zone emphasis; s_glszm_DE: sigma grey level size zone matrix dependent entropy; 3D_glszm_SALGLE: 3D grey level size zone matrix small area low gray level emphasis; w-LH_ngtdm_B: wavelet LH neighbouring gray tone difference matrix busyness.
表5  HER-2过表达型与非HER-2过表达型组间纹理特征比较分析
Tab. 5  Comparative analysis of texture features between HER-2 overexpression and non- HER-2 overexpression groups
表6  纹理特征鉴别HER-2过表达型乳腺癌的诊断效能
Tab. 6  Diagnostic efficacy of texture features in the identification of HER-2 overexpressing breast cancer

2.6 MRI纹理特征诊断三阴性乳腺癌的价值

       在三阴性乳腺癌组中有4个纹理特征:高通滤波器-相邻灰度色差矩阵(wavelet LH neighbouring gray tone difference matrix busyness, w-LH_ngtdm_B)、灰度游程长度矩阵-长运行强度(wavelet-HH gray level run lngth matrix long run emphasis, w-HH_glrlm_LRE)、灰度游程长度矩阵-运行方差(wavelet-HH gray level run lngth matrix run variance, w-HH_glrlm_RV)、灰度区域大小矩阵-小区域强调(wavelet-HH grey level size zone matrix small area emphasis, w-HH_glszm_SAE)。对TNBC与非TNBC组间4个纹理特征进行统计学分析,发现组间w-LH_ngtdm_B的差异具有统计学意义(P<0.05),其鉴别诊断TNBC的诊断效能见图3B,AUC为0.65,以w-LH_ngtdm_B>-0.255时诊断TNBC的敏感度为92.86%,特异度为39.34%。

3 讨论

       本研究使用回顾性方法评估了乳腺癌MRI图像纹理特征在术前鉴别乳腺癌分子分型中的价值。结果发现三个纹理特征在Luminal A型与非Luminal A型组之间的差异有统计学意义,两个纹理特征在Luminal B型与非Luminal B型组之间的差异有统计学意义,五个纹理特征在HER-2过表达型与非HER-2过表达型组之间的差异有统计学意义,仅一个纹理特征在TNBC与非TNBC组之间的差异有统计学意义。此外,基于MRI图像特征参数所建立的Luminal A 型、Luminal B型、HER-2过表达型、TNBC的预测模型AUC值分别为0.92、0.83、0.83、0.72。研究表明,部分纹理特征在鉴别乳腺癌分子分型时具有显著差异,其中HER-2过表达型的多个MRI纹理特征明显有别于非HER-2过表达型组,说明MRI纹理分析对HER-2过表达型与非HER-2过表达型的分类具有一定提示意义,这与BRAMAN等[17]的研究结果相似。通过特征筛选降维构建的基于逻辑回归的二分类模型中,鉴别管腔A型与非管腔A型乳腺癌组诊断效能最高、AUC为0.92,这一结果与SUTTON等[18]的发现一致,笔者今后也将收集更多样本数据来验证模型。由于HER-2过表达型乳腺癌治疗方案与其他分型截然不同,其预后较管腔型乳腺癌差,通常通过分子靶向联合化疗进行,TNBC恶性程度最高,需行新辅助化疗。因此,这一研究结果可以支持及帮助临床分型诊断及选择治疗方案,为临床医生术前决策提供一定的理论参考依据。

3.1 不同分子分型乳腺癌患者的一般资料

       乳腺癌作为一种高度异质性的肿瘤,其分子分型与患者的预后及临床治疗方案密切相关[19, 20]。随着基因组学的发展,以往仅关注形态学的组织病理学诊断越来越无法满足临床诊疗需求,需根据免疫组化结果进行肿瘤的分子分型。PEROU等[21]的研究显示,管腔A型乳腺癌的发病率在四种分子亚型中最高,与SUN等[22]和TSAI等[23]的研究结果一致。本研究对75例乳腺癌患者的病理资料进行分析,结果显示Luminal A型约14.7%、Luminal B型约48.0%、HER-2过表达型约18.7%、三阴性乳腺癌约18.7%,其中Luminal B型占比最高,这与黄峻琳等[24]的研究一致。其原因在于本研究采用的分型标准,将PR高表达(≥20%)作为管腔A型的分型条件,而不满足上述条件的管腔型乳腺癌均认为是管腔B型。

       本研究中,各分子亚型乳腺癌患者间年龄、绝经状态、淋巴结转移情况的分布差异不具有统计学意义,与SHENG等[25]的研究结果一致。郭俊字等[26]、汪玲等[27]研究却发现不同分子分型在年龄、淋巴结转移间差异具有统计学意义。这些研究得到的结果不同,可能与研究对象的选择、样本量大小及组间数据是否均衡有关。

3.2 特征筛选与模型构建

       乳腺MRI可产生大量的图像数据,近些年,许多学者利用MRI图像勾画乳腺疾病的ROI并提取特征,通过研究发现所提取的部分纹理特征在鉴别乳腺病变的良恶性[28, 29]、预测腋窝淋巴结状态[30]等方面具有较高的价值。本研究则是通过MRI图像纹理特征来术前预判乳腺癌分子分型,因为乳腺癌的分子亚型及其高异质性是目前研究证明影响治疗和预后的重要因素,因而本研究更具有现实的临床意义。既往国内一些学者[31]利用T2WI压脂平扫图像进行肿瘤分割并提取纹理特征,而DCE-MRI图像蕴含着更多病灶血流动力学数据信息,本研究较既往一些研究更严谨、完善,勾画了乳腺肿块强化最明显的最大层面ROI,更深度挖掘的病灶的内部异质性。

       纹理分析利用计算机视觉,尽可能地从原始图像中提取纹理特征进行量化以供算法和模型使用[32]。现在各类软件所提取的特征数量众多,导致模型过度拟合,所以需要通过降维筛选出最优特征参数,便于解释与研究。特征选择主要是为了降维以减少特征数量,加强模型泛化能力,减少过度拟合,同时增加对特征和特征值之间的理解。目前研究中对于特征选择应用较多的有LASSO算法、方差阈值筛选器、迭代筛选特征、最小冗余最大相关算法、最优特征筛选等[33, 34]。本研究选择的特征降维手段是用最优特征筛选器进行降维,最优特征筛选器是通过统计方法筛选出对分类重要的特征。其内置的评价准则有χ2检验、样本方差F值及离散类别交互信息,可以配置特征选择的评价准则,以及需要保留的特征维数。

       本研究采用的逻辑回归是一种分类算法,其功能是提供一个回归分类预测模型,根据输入的样本特征向量预测样本所属类别的概率,并估计每个自变量的权重,同时逻辑回归模型还可以结合特征对应的权值,分析单一因素对某一事件发生的影响因素。具有快速高效、模型可解释性强及其结果具备概率意义、可扩展性强等优点。

3.3 MRI纹理特征预测乳腺癌分子分型

       随着技术的发展,以纹理分析、放射组学、深度学习为代表的多种计算机辅助诊断方法在医学研究中发挥着重要作用[35]。现有纹理分析研究多采用MRI图像,也有部分学者采用DCE-MRI定量参数图、DWI、ADC图等进行分析,不同研究选用的纹理参数不尽相同,各个研究得出的纹理参数与肿瘤分子亚型间的关系也不尽相同。总体来说,既往研究已发现了与乳腺癌亚型相关的MRI纹理特征。如薛珂等[36]研究发现基于动态增强MRI纹理分析是潜在评估乳腺癌异质性的一种方法,纹理特征能够很好地区分HR阳性与HR阴性型乳腺癌;HOLLI-HELENIUS等[37]使用TA软件MaZda从每个肿瘤T1WI抑脂增强前后的MR图像中提取基于共生矩阵的纹理特征,结果得到了区分Luminal A型和Luminal B型最具鉴别性的2个纹理参数是总熵和总方差。

       本研究在对不同分型乳腺癌进行两组间比较时发现,TNBC与非TNBC组间只有1个MRI纹理特征差异有统计学意义,即纹理分析对鉴别TNBC可能存在一定局限性。XIE等[38]基于定量ADC图和DCE半定量图发现部分纹理参数在不同亚型乳腺癌组间存在统计学差异,在鉴别TNBC和Luminal A型、和HER-2阳性癌、和非TNBC的AUC分别为0.71、0.76、0.68,纹理分析在鉴别TNBC时表现欠佳,这与本研究结果一致。BRAMAN等[17]、GRIMM等[39]研究发现HER-2过表达型乳腺癌与常规增强乳腺MRI半自动提取的特征相关。马晓雯[40]对乳腺DCE-MRI图像进行影像组学特征的提取及分析,结果发现HER-2过表达与非HER-2过表达组间最优特征最多,然后基于这些影像参数构建模型得到鉴别HER-2过表达和非HER-2过表达的效能最高AUC为0.66,此结果与本研究不尽相同。与之前研究相反,WU等[41]对乳腺癌患者的MRI图像行纹理分析,发现在Luminal A型与非Luminal A型、Luminal B型与非Luminal B型、TNBC与非TNBC组间均存在显著统计学差异的纹理特征,且三组分子亚型分类诊断模型的AUC分别为0.71、0.67、0.66,此结果与本研究及SUTTON等[18]发现一致。

       本文利用逻辑回归基于MRI纹理参数建立分类模型,在不同分子分型乳腺癌中达到了较好的鉴别效果,鉴别Luminal A型和非Luminal A型时表现最佳(AUC达0.92),但鉴别TNBC和非TNBC效果欠佳(AUC为0.72),本研究与WU等[41]研究一致。本研究与既往相似研究结果不尽相同,笔者认为这可能与患者的纳入排除标准、实验技术设计等有关,需要在相同的条件下使用动态分析进一步验证。

       以上结果均提示,纹理分析已日趋显示其临床应用价值,本研究MRI纹理分析在鉴别乳腺癌分子亚型方面具有一定价值,一些纹理特征可能成为潜在影像标志物,为临床提供相应的参考价值。

3.4 局限性

       本研究仍有一些不足之处:(1)由于非肿块型乳腺癌病灶难以准确勾画ROI边界,因此本研究仅纳入肿块型病变,可能存在数据偏倚;(2)本研究为单中心、小样本回顾性研究,样本量较小,有些分子亚型乳腺癌的病例数较少,组间数据平衡性欠佳,在今后研究中有待收集更多样本数据进一步验证;(3)肿瘤ROI均为放射科医师手动勾画,可能存在一定的偏差。

4 结论

       综上所述,基于DCE-MRI纹理分析可实现术前较准确地预测乳腺癌分子分型,基于MRI纹理特征构建的逻辑回归模型在乳腺癌分子分型中有较好的诊断效能,为临床医生术前指导治疗及预后评估提供一定的理论参考依据。

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
GIAQUINTO A N, SUNG H, MILLER K, et al. Breast cancer statistics, 2022[J]. CA: a cancer journal for clinicians, 2022, 72(6): 524-541. DOI: 10.3322/caac.21754.
[3]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[4]
朱碧云, 陈卉. 医学图像纹理分析的方法及应用[J]. 中国医学装备, 2013, 10(8): 77-81. DOI: 10.3969/J.ISSN.1672-8270.2013.08.028.
ZHU B Y, CHEN H. Research on methods and application of texture analysis of medical images[J]. China Med Equip, 2013, 10(8): 77-81. DOI: 10.3969/J.ISSN.1672-8270.2013.08.028.
[5]
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
Breast Cancer Committee of Chinese Anticancer Association. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
[6]
BURSTEIN H J, CURIGLIANO G, THÜRLIMANN B, et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021[J]. Ann Oncol, 2021, 32(10): 1216-1235. DOI: 10.1016/j.annonc.2021.06.023.
[7]
SLOSTAD J A, YUN N K, SCHAD A E, et al. Concordance of breast cancer biomarker testing in core needle biopsy and surgical specimens: a single institution experience[J]. Cancer Med, 2022, 11(24): 4954-4965. DOI: 10.1002/cam4.4843.
[8]
ZHAO Q F, XIE T W, FU C X, et al. Differentiation between idiopathic granulomatous mastitis and invasive breast carcinoma, both presenting with non-mass enhancement without rim-enhanced masses: the value of whole-lesion histogram and texture analysis using apparent diffusion coefficient[J/OL]. Eur J Radiol, 2020, 123: 108782 [2023-05-04]. https://pubmed.ncbi.nlm.nih.gov/31864142/. DOI: 10.1016/j.ejrad.2019.108782.
[9]
KAMIYA S, SATAKE H, HAYASHI Y, et al. Features from MRI texture analysis associated with survival outcomes in triple-negative breast cancer patients[J]. Breast Cancer, 2022, 29(1): 164-173. DOI: 10.1007/s12282-021-01294-1.
[10]
LU H C, YIN J D. Texture analysis of breast DCE-MRI based on intratumoral subregions for predicting HER2 2+ status[J/OL]. Front Oncol, 2020, 10: 543 [2023-05-04]. https://pubmed.ncbi.nlm.nih.gov/32373531/. DOI: 10.3389/fonc.2020.00543.
[11]
JIANG Z J, SONG L R, LU H C, et al. The potential use of DCE-MRI texture analysis to predict HER2 2+ status[J/OL]. Front Oncol, 2019, 9: 242 [2023-05-04]. https://pubmed.ncbi.nlm.nih.gov/31032222/. DOI: 10.3389/fonc.2019.00242.
[12]
CAO K, ZHAO B, LI X T, et al. Texture analysis of dynamic contrast-enhanced MRI in evaluating pathologic complete response (pCR) of mass-like breast cancer after neoadjuvant therapy[J/OL]. J Oncol, 2019, 2019: 4731532 [2023-05-04]. https://pubmed.ncbi.nlm.nih.gov/31949430/. DOI: 10.1155/2019/4731532.
[13]
HENDERSON S, PURDIE C, MICHIE C, et al. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer[J]. Eur Radiol, 2017, 27(11): 4602-4611. DOI: 10.1007/s00330-017-4850-8.
[14]
EUN N L, KANG D, SON E J, et al. Texture analysis using machine learning-based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy[J]. Eur Radiol, 2021, 31(9): 6916-6928. DOI: 10.1007/s00330-021-07816-x.
[15]
陈永升, 孙胜君, 于晓军, 等. 不同分子亚型乳腺癌3.0 T MRI影像表现分析[J]. 磁共振成像, 2021, 12(2): 24-28. DOI: 10.12015/issn.1674-8034.2021.02.006.
CHEN Y S, SUN S J, YU X J, et al. 3.0 T MRI features of breast cancer in different molecular types[J]. Chin J Magn Reson Imag, 2021, 12(2): 24-28. DOI: 10.12015/issn.1674-8034.2021.02.006.
[16]
COATES A S, WINER E P, GOLDHIRSCH A, et al. Tailoring therapies: improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015[J]. Ann Oncol, 2015, 26(8): 1533-1546. DOI: 10.1093/annonc/mdv221.
[17]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[18]
SUTTON E J, DASHEVSKY B Z, OH J H, et al. Breast cancer molecular subtype classifier that incorporates MRI features[J]. J Magn Reson Imaging, 2016, 44(1): 122-129. DOI: 10.1002/jmri.25119.
[19]
CANCER GENOME ATLAS NETWORK. Comprehensive molecular portraits of human breast tumours[J]. Nature, 2012, 490(7418): 61-70. DOI: 10.1038/nature11412.
[20]
ELLIS M J, DING L, SHEN D, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition[J]. Nature, 2012, 486(7403): 353-360. DOI: 10.1038/nature11143.
[21]
PEROU C M, SØRLIE T, EISEN M B, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-752. DOI: 10.1038/35021093.
[22]
SUN X R, HE B, LUO X, et al. Preliminary study on molecular subtypes of breast cancer based on magnetic resonance imaging texture analysis[J]. J Comput Assist Tomogr, 2018, 42(4): 531-535. DOI: 10.1097/RCT.0000000000000738.
[23]
TSAI W C, CHANG K M, KAO K J. Dynamic contrast enhanced MRI and intravoxel incoherent motion to identify molecular subtypes of breast cancer with different vascular normalization gene expression[J]. Korean J Radiol, 2021, 22(7): 1021-1033. DOI: 10.3348/kjr.2020.0760.
[24]
黄峻琳, 林青, 崔春晓, 等. 青年女性乳腺癌的影像学特征与免疫组织化学分子亚型相关性分析[J]. 中国癌症杂志, 2020, 30(10): 812-820. DOI: 10.19401/j.cnki.1007-3639.2020.10.013.
HUANG J L, LIN Q, CUI C X, et al. Correlation between imaging features and molecular subtypes in very young women with breast cancer[J]. China Oncol, 2020, 30(10): 812-820. DOI: 10.19401/j.cnki.1007-3639.2020.10.013.
[25]
SHENG W Y, XIA S L, WANG Y R, et al. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning[J/OL]. Front Oncol, 2022, 12: 964605 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/36172153/. DOI: 10.3389/fonc.2022.964605.
[26]
郭俊字, 黎骋. 乳腺癌不同分子分型的临床病理特征及预后分析[J]. 医学理论与实践, 2017, 30(3): 421-423. DOI: 10.19381/j.issn.1001-7585.2017.03.065.
GUO J Z, LI C. Clinicopathological characteristics and prognosis analysis of different molecular typing of breast cancer[J]. J Med Theory Pract, 2017, 30(3): 421-423. DOI: 10.19381/j.issn.1001-7585.2017.03.065.
[27]
汪玲, 潘华锋, 李琰. 不同分子分型乳腺癌临床病理特征及预后分期分析[J]. 临床外科杂志, 2019, 27(3): 231-234. DOI: 10.3969/j.issn.1005-6483.2019.03.017.
WANG L, PAN H F, LI Y. Analysis of staging and clinicopathological characteristics of different molecular subtypes with prognostic staging[J]. J Clin Surg, 2019, 27(3): 231-234. DOI: 10.3969/j.issn.1005-6483.2019.03.017.
[28]
OHYU S, TOZAKI M, SASAKI M, et al. Combined use of texture features and morphological classification based on dynamic contrast-enhanced MR imaging: differentiating benign and malignant breast masses with high negative predictive value[J]. Magn Reson Med Sci, 2022, 21(3): 485-498. DOI: 10.2463/mrms.mp.2020-0160.
[29]
邓义, 杨壁然, 刘志强, 等. 磁共振增强图像三维纹理分析对乳腺良恶性病变的鉴别诊断价值[J]. 放射学实践, 2019, 34(4): 436-439. DOI: 10.13609/j.cnki.1000-0313.2019.04.014.
DENG Y, YANG B R, LIU Z Q, et al. Three-dimensional texture analysis of contrast enhanced magnetic resonance imaging in the differential diagnosis of benign and malignant breast lesions[J]. Radiol Pract, 2019, 34(4): 436-439. DOI: 10.13609/j.cnki.1000-0313.2019.04.014.
[30]
夏旭东, 段成洲, 王功夏, 等. MRI纹理分析预测乳腺癌腋窝淋巴结转移[J]. 中国医学影像技术, 2021, 37(4): 531-536. DOI: 10.13929/j.issn.1003-3289.2021.04.013.
XIA X D, DUAN C Z, WANG G X, et al. Prediction of axillary lymph node metastasis of breast cancer with MRI texture analysis[J]. Chin J Med Imag Technol, 2021, 37(4): 531-536. DOI: 10.13929/j.issn.1003-3289.2021.04.013.
[31]
王铭, 王秀兰, 张继, 等. 基于Tirm序列纹理特征联合TIC曲线鉴别乳腺良恶性病变的价值[J]. 磁共振成像, 2021, 12(6): 83-87. DOI: 10.12015/issn.1674-8034.2021.06.016.
WANG M, WANG X L, ZHANG J, et al. The value of identifying benign and malignant breast lesions based on the texture feature of Tirm sequence combined with time-intensity curve[J]. Chin J Magn Reson Imag, 2021, 12(6): 83-87. DOI: 10.12015/issn.1674-8034.2021.06.016.
[32]
DU T M, ZHAO H D. Texture analysis of enhanced MRI and pathological slides predicts EGFR mutation status in breast cancer[J/OL]. Biomed Res Int, 2022, 2022: 1376659 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/35663041/. DOI: 10.1155/2022/1376659.
[33]
FAN X H, XIE N, CHEN J W, et al. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer[J/OL]. Front Oncol, 2022, 12: 839621 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/35198452/. DOI: 10.3389/fonc.2022.839621.
[34]
成娟, 梁轩, 郑森爽, 等. 基于Lasso Logistic回归模型的乳腺癌高风险人群筛查利用相关因素研究[J]. 中华疾病控制杂志, 2018, 22(6): 551-554, 559. DOI: 10.16462/j.cnki.zhjbkz.2018.06.003.
CHENG J, LIANG X, ZHENG S S, et al. Predictors of breast cancer screening utilization among female at high risk of developing breast cancer: application of a Lasso Logistic model[J]. Chin J Dis Contr Prev, 2018, 22(6): 551-554, 559. DOI: 10.16462/j.cnki.zhjbkz.2018.06.003.
[35]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[36]
薛珂, 丁莹莹, 孙诗昀, 等. 利用MR动态增强纹理分析评估不同分子亚型乳腺癌异质性[J]. 医学影像学杂志, 2020, 30(2): 221-226.
XUE K, DING Y Y, SUN S Y, et al. Dynamic contrast-enhanced MR texture analysis for assessment of heterogeneity of different molecular subtypes of breast cancer[J]. J Med Imag, 2020, 30(2): 221-226.
[37]
HOLLI-HELENIUS K, SALMINEN A, RINTA-KIIKKA I, et al. MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes-a feasibility study[J/OL]. BMC Med Imaging, 2017, 17(1): 69 [2023-05-05]. https://pubmed.ncbi.nlm.nih.gov/29284425/. DOI: 10.1186/s12880-017-0239-z.
[38]
XIE T W, ZHAO Q F, FU C X, et al. Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging[J]. Eur Radiol, 2019, 29(5): 2535-2544. DOI: 10.1007/s00330-018-5804-5.
[39]
GRIMM L J, ZHANG J, MAZUROWSKI M A. Computational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms[J]. J Magn Reson Imaging, 2015, 42(4): 902-907. DOI: 10.1002/jmri.24879.
[40]
马晓雯. 基于乳腺DCE-MRI的影像组学特征预测乳腺癌分子分型的初步研究[D]. 沈阳: 中国医科大学, 2019. DOI: 10.27652/d.cnki.gzyku.2019.001109.
MA X W. Preliminary study on the prediction of breast cancer molecular typing based on the imaging features of breast DCE-MRI[D]. Shenyang: China Medical University, 2019. DOI: 10.27652/d.cnki.gzyku.2019.001109.
[41]
WU J, SUN X L, WANG J, et al. Identifying relations between imaging phenotypes and molecular subtypes of breast cancer: model discovery and external validation[J]. J Magn Reson Imaging, 2017, 46(4): 1017-1027. DOI: 10.1002/jmri.25661.

上一篇 基于T1 mapping序列的定量参数鉴别肺癌病理类型的应用研究
下一篇 特发性肉芽肿性乳腺炎磁共振乳腺水肿表现及相关因素分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2