分享:
分享到微信朋友圈
X
综述
益生菌治疗精神疾病的理论基础和MRI研究进展
张淼 周菁 武肖玲 李中林 邹智 李永丽

Cite this article as: ZHANG M, ZHOU J, WU X L, et al. Theoretical basis and MRI research progress of probiotics in the treatment of mental diseases[J]. Chin J Magn Reson Imaging, 2024, 15(1): 179-183.本文引用格式:张淼, 周菁, 武肖玲, 等. 益生菌治疗精神疾病的理论基础和MRI研究进展[J]. 磁共振成像, 2024, 15(1): 179-183. DOI:10.12015/issn.1674-8034.2024.01.030.


[摘要] 肠道微生物(gut microbiota, GM)通过脑-肠轴作用于大脑,在精神疾病的发生、发展中起重要作用。而益生菌可以通过维持GM稳态和肠道屏障的完整性对大脑产生有益作用进而改善精神疾病引起的负面生理影响。利用MRI技术可以观察到益生菌治疗精神疾病时,宿主的大脑功能、结构的变化。本文总结了基于MRI技术评估益生菌通过作用于脑-肠-微生物轴进而治疗精神疾病(抑郁症、精神分裂症、孤独症谱系障碍、强迫症、焦虑症)的研究近况,为精神疾病的治疗提供了新思路和客观的脑影像学依据。
[Abstract] Gut microbiota (GM) acts on the brain through the brain-gut axis and plays an important role in the occurrence and development of mental diseases. Probiotics can have beneficial effects on the brain by maintaining GM homeostasis and intestinal barrier integrity, thus ameliorating the negative physiological effects caused by mental illness. MRI can be used to observe changes in the function and structure of the host brain when probiotics treat psychiatric disorders.This paper summarizes the recent research on the evaluation of probiotics in the treatment of mental disorders (depression, schizophrenia, autism spectrum disorder, obsessive compulsive disorder, anxiety disorder) by acting on brain-gut-microbiome axis based on MRI. It provides a new idea and objective brain imaging basis for the treatment of mental diseases.
[关键词] 精神疾病;磁共振成像;益生菌;脑-肠-微生物轴
[Keywords] mental disease;magnetic resonance imaging;probiotics;the brain-gut-microbiome axis

张淼 1   周菁 2   武肖玲 3   李中林 1   邹智 1   李永丽 2*  

1 郑州大学人民医院/河南省人民医院医学影像科,郑州 450003

2 郑州大学人民医院/河南省人民医院健康管理科,郑州 450003

3 河南省人民医院/郑州大学人民医院核医学科,郑州 450003

通信作者:李永丽,E-mail:shyliyongli@126.com

作者贡献声明::张淼、周菁、武肖玲、李中林、邹智、李永丽均参与了论文的研究构思和设计以及资料收集、整理、分析和解释,参与了论文撰写和重要内容修改,并对最终发表的论文版本进行审阅;李永丽、武肖玲、李中林、邹智、周菁获得了国家科学自然基金项目、河南省中青年卫生健康科技创新人才项目、河南省科技攻关项目的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82071884 河南省科技攻关项目 222102310198 河南省中青年卫生健康科技创新人才项目 YXKC2020004
收稿日期:2023-08-31
接受日期:2023-12-08
中图分类号:R445.2  R749 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.01.030
本文引用格式:张淼, 周菁, 武肖玲, 等. 益生菌治疗精神疾病的理论基础和MRI研究进展[J]. 磁共振成像, 2024, 15(1): 179-183. DOI:10.12015/issn.1674-8034.2024.01.030.

0 引言

       人体肠道内存在着非常复杂的肠道微生物(gut microbiota, GM),它由栖息于小肠和大肠的超过100万亿个微生物细胞组成,主要由细菌占主导地位,也包括病毒、噬菌体、真菌在内[1]。GM通过调节脑-肠轴使肠道与中枢神经系统保持同步[2]。因此,GM紊乱可以影响宿主的心理健康和行为,在精神疾病发病机制中起到重要作用。众所周知,精神疾病对个人生活质量以及社会经济负担都造成了重大负担,但由于其病因错综复杂,发病机制不清,现有的治疗方法单一、疗效欠佳,因此,需要开发更加安全、创新、有效的治疗手段。动物实验和临床研究均表明,破坏GM稳态会损害宿主的身心健康[3, 4],这说明GM紊乱可能是宿主对精神疾病易感性的基础[5, 6]。而益生菌在改善宿主肠道微生态平衡、提高宿主身心健康水平等方面发挥有益作用,提示我们可以通过特定的益生菌补充剂靶向地治疗一些精神疾病(抑郁症、精神分裂症、孤独症谱系障碍、强迫症、焦虑症)。近年来,MRI技术作为一项无创、安全的检查技术,已成功应用于各种精神疾病,并取得了突破性的成果。有研究将GM测序技术和MRI技术结合发现了与GM相关的脑影像特征。但是基于MRI技术阐明特定益生菌补充剂作用于脑-肠-微生物轴进而靶向治疗精神疾病的机制还有待扩展研究。本文总结了益生菌通过作用于脑-肠-微生物轴进而治疗精神疾病(抑郁症、精神分裂症、孤独症谱系障碍、强迫症、焦虑症)的研究近况,并探究益生菌基于MRI技术防治精神疾病的潜力与可能。

1 脑-肠-微生物轴

       肠道与中枢神经系统(central nervous system, CNS)之间的通讯网络复杂,由肠神经系统(enteric nervous system, ENS)、交感神经和副交感神经构成的自主神经系统、免疫系统(细胞因子、趋化因子)和内分泌系统(下丘脑-垂体-肾上腺轴)构成[7, 8]。GM作为脑-肠-微生物轴(the brain-gut-microbiome axis, MBGA)的重要角色之一,可以刺激ENS产生神经信号、激素信号和免疫信号并通过自主神经系统等传递到CNS,经过相关高级脑区的整合之后发送指令到自主神经系统作用于肠道等外周器官,实现脑-肠轴双向交流。除了神经通路以外,激素和体液信号分子也参与了这种交流[7, 8]。研究发现,GM可以通过调节循环色氨酸[9]、γ-氨基丁酸(γ-aminobutyric acid, GABA)[10]、丁酸盐[11]和短链脂肪酸(short chain fatty acid, SCFA)[12]等代谢物质以及血脑屏障(blood brain barrier, BBB)的通透性和外周免疫细胞和脑胶质细胞的激活进而导致精神疾病的发生和发展[13, 14]。这些研究为精神疾病的解析提供了新的切入点,也为精神疾病的治疗提供了新的靶点。

2 益生菌作用于MGBA治疗精神疾病

       肠道屏障与BBB可以阻止肠道内菌群有害代谢物、腔内抗原和毒素等进入循环系统,而压力和不健康饮食等因素会破坏GM组成和屏障的完整性,导致“渗漏”使肠腔内有害成分发生易位进而增加精神疾病的易感性[15]。像抑郁症、精神分裂症、孤独症谱系障碍、焦虑症、强迫症等精神类疾病,目前已经被发现和GM紊乱存在着密切的关系,这也为精神疾病的治疗提供了新的方向。益生菌是指对宿主有益的活性微生物,可以定植于人体内,并且产生确切健康功效、发挥有益作用的活性微生物的总称。有研究发现,复合益生菌不仅可以调节改善GM的组成、缓解肠渗漏导致的机体炎症水平上升和以紧密连接成分表达减少为特征的肠屏障功能障碍,还可以维持BBB的完整性、调节微生物代谢物质等继而减轻精神疾病患者的神经炎性效应[16, 17]。本节主要以GM和MBGA为切入点,根据现有的研究探讨了益生菌在精神疾病发生和防治中的作用。

2.1 抑郁症

       抑郁症是一种精神障碍疾病,以显著且持久的情绪低落、兴趣缺失、迟钝和躯体异常等症状为主要临床表现,严重干扰了日常生活。大量研究从多个角度支持了GM通过MBGA参与抑郁症发病机制这一观点,例如肠道屏障破坏、GM紊乱、神经递质系统失调、神经可塑性功能降低、免疫系统异常、下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal axis, HPA)轴功能异常等[18, 19, 20]。动物实验发现,丁酸梭菌能够通过刺激脑源性神经性营养因子(brain-derived neurotrophic factor, BDNF)分泌等途径改善动物抑郁[21]。鼠李糖乳杆菌JB1通过调节谷氨酰胺-谷氨酸/γ-氨基丁酸循环使抑郁样障碍大鼠模型中应激诱导行为的减少[22]。临床试验研究方面,AKKASHEH等[23]发现重度抑郁症患者通过补充嗜酸乳杆菌、干酪乳杆菌和两歧双歧杆菌的混合益生菌改善了抑郁相关量表的评分。类似地,KAZEMI等[24]发现,抑郁症患者服用复合益生菌(长双歧杆菌和瑞士乳杆菌)后,其贝克抑郁量表(Beck Depression Inventory, BDI)评分有所改善。此外,有研究表明,与单一菌株的益生菌相比,多菌株益生菌在减少抑郁症状方面有更多的好处[25]。目前已有多个临床研究证明可用益生菌改善抑郁症患者的症状,益生菌具有依从性高、安全性高、无严重不良反应等优点。然而益生菌作用于MBGA的改善抑郁症的具体作用机制还有待探究,未来可分离并鉴定关键菌株为促进以益生菌治疗抑郁症的精准医学发展提供参考。

2.2 精神分裂症

       精神分裂症(schizophrenia, SCZ)是一种病因不明的复杂精神疾病。研究表明,SCZ患者肠道屏障功能障碍的发生率更高,细菌移位增加,并经常合并胃肠道症状[26]。研究发现SCZ患者血清色氨酸水平较低,犬尿喹啉酸水平较高。因此,色氨酸-犬尿氨酸代谢的改变可能是肠道菌群与SCZ[27, 28]发病机制之间的重要联系。NGUYEN等[29]研究了长期患病的SCZ患者瘤胃球菌科丰度的增加与阴性症状的严重程度降低相关。LI等[30]研究发现,琥珀酸弧菌属和棒状杆菌与SCZ症状的严重程度相关,可能为SCZ的诊断提供一些新的生物标志物。此外,接受SCZ微生物组粪便移植的小鼠在海马中具有较低的谷氨酸,较高的谷氨酰胺和较高的GABA,并表现出SCZ相关的行为[31]。基于这些研究,GM组成与SCZ之间很可能存在一种关系。在一项随机、双盲、安慰剂对照研究中,给予SCZ患者含有乳酸杆菌和两歧双歧杆菌复合益生菌和维生素D联合治疗12周,改善SCZ患者阳性和阴性症状量表评分,增强了血浆的抗氧化能力,减轻了炎症。但是,研究没有确定治疗对肠道菌群的影响以及尚不确定哪个组分(益生菌或维生素D或两者兼有)改善了SCZ患者的症状[32]。在另一项研究中,OKUBO等[33]发现4周的短双歧杆菌A-1的摄入降低了SCZ患者焦虑和抑郁症状的严重程度。运用益生菌来治疗精神分裂症及其共病症状具有一定的前景,但是目前在SCZ患者中运用益生菌干预手段的人群研究仍处于早期阶段,还需要更多临床试验来探索益生菌在SCZ中的最佳治疗剂量、治疗周期及其作用机制。

2.3 孤独症谱系障碍

       孤独症谱系障碍(autism spectrum disorder, ASD)是一组以社会交往障碍、语言和非语言交流障碍、重复和刻板为特征的神经发育障碍。ASD患者通常伴有GM失调和其他胃肠道症状(如腹泻、腹痛、腹胀、呕吐、便秘等)[34]。过往研究发现ASD[35, 36]个体的细菌多样性降低并且胃肠道症状的严重程度[37]、脱磷孤菌属的丰度增加[38]与ASD相关症状的严重程度之间存在相关性。另外,促炎性梭状芽孢杆菌和抗炎性双歧杆菌之间的生长失衡可能是ASD发生的危险因素之一。LIU等[39]发现调节丁酸产生菌(包括真细菌、瘤胃菌科、丹毒丝菌科和毛螺菌科)对孤独症患者有益。多个研究证实了单株或者多菌株益生菌的补充剂能够改善ASD患者的症状和胃肠道症状[40, 41, 42, 43],以及伴随着肠道中有益菌群丰度的提高[44]。益生菌疗法能有效改善ASD儿童的临床症状,但是ASD是复杂性疾病, 人体本身以及孕期母体健康的GM功能和结构对人体生命早期的神经发育至关重要。未来研究需要纳入与遗传变异相关的因素,深入研究GM对ASD的影响机制有助于为临床治疗提供可靠的干预靶点。

2.4 强迫症

       强迫症(obsessive-compulsive disorder, OCD)是一种慢性心理健康障碍,其特征是存在侵入性和持续性的想法,是个体为平息这些想法而被迫执行的重复行为或心理行为[45]。研究发现OCD患者的GM的α多样性降低[46]、产生丁酸盐的菌属的相对丰度减低以及炎症(血浆C反应蛋白)水平升高[47]。SANIKHANI等[48]发现干酪乳杆菌改善OCD大鼠的强迫症状,并伴随着脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)表达水平升高。GHUGE等[49]发现多菌株益生菌可以重塑大鼠GM稳态进而改善喹吡罗诱导的OCD症状。益生菌作用于MGBA轴可改善OCD相关症状,但是现有研究还停留在动物实验,未来还需开展高质量的临床研究,探索益生菌的疗效及相关作用机制,并为临床防治OCD提供有效的手段。

2.5 焦虑症

       焦虑症的症状包括担忧、社交、恐惧、意外触发的惊恐发作、预期性焦虑和回避行为。研究发现焦虑症患者GM紊乱,比如促炎菌属增高、产生短链脂肪酸的细菌(例如粪杆菌属)降低[20]。NEEDHAM等[50]发现肠道产生的4-乙基苯硫酸盐可以损害小鼠的少突胶质细胞成熟并导致其焦虑行为。一项纳入156名亚健康的人群研究发现,食用益生菌可以改善受试者的焦虑情绪并伴随着血清中的炎症水平(白细胞介素6)降低[51]。SALLEH等[52]发现食用益生菌不仅能降低运动员的焦虑、压力,还能提高运动有氧能力。抑郁症和焦虑症发病机制密切相关、临床上两者常常同时出现,不同年龄阶段菌群组成和多样性也不同,因此综合多因素、多学科合作研究是一个趋势,需验证益生菌综合疗效并指导个体化治疗。

3 探究基于MRI技术益生菌防治精神疾病的潜力

       功能磁共振成像(functional MRI, fMRI)作为一项具有安全无创、可重复性高、可全脑成像等多种优点的检查技术,为精神疾病的发生机制探索和临床评估提供了关键的技术手段并取得一系列的成果和突破。fMRI主要通过血氧水平依赖(blood oxygen level-dependent, BOLD)信号来测量神经活动,分为任务态fMRI(task-based fMRI)和静息态fMRI(resting state fMRI,rs-fMRI)两种方式。当被检查者在被给予视觉、听觉或其他刺激时,任务态fMRI可以观察到被检查者相应脑区神经元活动变化。一些利用任务态fMRI技术的研究考察了GM与负性刺激诱发的情绪之间的联系。例如,与对照组相比,TILLISCH等[53]发现食用多菌株发酵乳制品的健康女性在面对情绪面孔注意任务时,初级内脏感觉和躯体感觉皮层的BOLD信号降低,这表明了食用益生菌会影响控制情绪和感觉中枢处理的大脑区域的活动。BAGGA等[54]发现,与对照组相比,服用益生菌的健康女性在情绪决策任务和情绪识别记忆任务中扣带回、楔前叶、下顶叶、丘脑和海马旁回的BOLD信号存在差异,并且服用益生菌对其情绪与记忆行为产生了积极影响。PAPALINI等[55]使用fMRI技术研究了健康女性摄入益生菌后对情绪反应、认知控制任务相关的大脑功能的变化,发现给予益生菌可以缓冲压力情况下对认知的不利影响。扩散张量成像(diffusion tensor imaging, DTI)是通过量化水分子在组织中的微观运动,可以更细微地反映白质内神经纤维结构完整性。一项利用DTI的随机双盲对照研究发现,益生菌、益生元等混合物对维持早产儿的白质微观结构完整性有益[56]。磁共振波谱(magnetic resonance spectroscopy, MRS)可以测量脑内多种神经代谢物质水平。在一项运用MRS技术的研究中发现,摄入鼠李糖杆菌JB-1的健康小鼠脑内谷氨酸、N-乙酰天门冬氨酸和GABA水平增加[57],表明益生菌调节脑内神经物质代谢水平,使益生菌转化为临床治疗神经精神疾病成为可能。这几项研究的结果表明,食用益生菌可以调节体内对负性情绪刺激的反应、缓冲压力的负面影响、提高认知水平、影响大脑功能及结构,也为益生菌的防治精神疾病奠定了基础。YAMANBAEVA等[58]利用fMRI及DTI技术发现食用益生菌可以改善抑郁症患者的抑郁症状,并伴随着边缘系统和颞极之间的功能连接的改变还发现益生菌维持了抑郁症患者双侧钩状束的平均扩散率。ASAOKA等[59]利用基于体素的阿尔茨海默病分析系统发现短双歧杆菌MCC1274可以改善老年人群的认知障碍、抑制脑萎缩的进展。由此可见,多模态MRI技术在检测大脑功能、结构、神经代谢物质多个方面均有优势,可以从多个角度为益生菌防治精神疾病提供脑依据,未来可将多模态神经MRI技术与GM组成、代谢物质等综合纳入分析,探索益生菌作用于MBGA治疗精神疾病的具体途径,从而指导个体精准化治疗。

4 结语与展望

       如上所述,GM紊乱与精神疾病的发生发展密切相关,在精神疾病患者中也经常观察到GM产生的代谢物异常,一些GM产生的代谢物质可能与精神疾病的发展和症状的严重程度相关。益生菌作用于MBGA可以缓解精神疾病引起的免疫、神经内分泌的紊乱以及改善精神疾病相关症状,具有很好的治疗潜力。然而,目前有关GM和精神疾病的基础研究以及临床研究还停留在现象学或相关性描述水平,未能对因果关系及具体影响精神疾病的神经机制进行探索。应用MRI技术为探索益生菌防治精神疾病神经生物学机制提供功能、结构、代谢多个维度的先进技术支持,这有助于提高我们对益生菌作用于MBGA治疗精神疾病的理解。对潜在机制更深入的了解也将有助于完善未来益生菌补充剂的临床使用。然而,目前基于各种MRI技术评估益生菌治疗精神疾病的临床研究较少,需要大样本、重复的验证以及结合动物实验研究,纳入反映GM与大脑结构与功能、代谢之间联系的生物学标志物进而阐明益生菌治疗精神疾病的确切机制。

[1]
TRAKMAN G L, FEHILY S, BASNAYAKE C, et al. Diet and gut microbiome in gastrointestinal disease[J]. J Gastroenterol Hepatol, 2022, 37(2): 237-245. DOI: 10.1111/jgh.15728.
[2]
DOHNALOVÁ L, LUNDGREN P, CARTY J R E, et al. A microbiome-dependent gut-brain pathway regulates motivation for exercise[J]. Nature, 2022, 612(7941): 739-747. DOI: 10.1038/s41586-022-05525-z.
[3]
ZHENG D, LIWINSKI T, ELINAV E. Interaction between microbiota and immunity in health and disease[J]. Cell Res, 2020, 30(6): 492-506. DOI: 10.1038/s41422-020-0332-7.
[4]
BERDING K, VLCKOVA K, MARX W, et al. Diet and the microbiota-gut-brain axis: Sowing the seeds of good mental health[J]. Adv Nutr, 2021, 12(4): 1239-1285. DOI: 10.1093/advances/nmaa181.
[5]
CHERNIKOVA M A, FLORES G D, KILROY E, et al. The brain-gut-microbiome system: Pathways and implications for autism spectrum disorder[J/OL]. Nutrients, 2021, 13(12): 4497 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/34960049/. DOI: 10.3390/nu13124497.
[6]
SORBONI S G, MOGHADDAM H S, JAFARZADEH-ESFEHANI R, et al. A comprehensive review on the role of the gut microbiome in human neurological disorders[J/OL]. Clin Microbiol Rev, 2022, 35(1): e0033820 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8729913/. DOI: 10.1128/cmr.00338-20.
[7]
MAYER E A, NANCE K, CHEN S. The gut-brain axis[J]. Annu Rev Med, 2022, 73: 439-453. DOI: 10.1146/annurev-med-042320-014032.
[8]
AGIRMAN G, YU K B, HSIAO E Y. Signaling inflammation across the gut-brain axis[J]. Science, 2021, 374(6571): 1087-1092. DOI: 10.1126/science.abi6087.
[9]
GAO K, MU C L, FARZI A, et al. Tryptophan metabolism: A link between the gut microbiota and brain[J]. Adv Nutr, 2020, 11(3): 709-723. DOI: 10.1093/advances/nmz127.
[10]
AHMED H, LEYROLLE Q, KOISTINEN V, et al. Microbiota-derived metabolites as drivers of gut-brain communication[J/OL]. Gut Microbes, 2022, 14(1): 2102878 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341364/. DOI: 10.1080/19490976.2022.2102878.
[11]
NIKOLOVA V L, SMITH M R B, HALL L J, et al. Perturbations in gut microbiota composition in psychiatric disorders: A review and meta-analysis[J]. JAMA Psychiatry, 2021, 78(12): 1343-1354. DOI: 10.1001/jamapsychiatry.2021.2573.
[12]
IKEDA T, NISHIDA A, YAMANO M, et al. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases[J/OL]. Pharmacol Ther, 2022, 239: 108273 [2023-08-31]. https://linkinghub.elsevier.com/retrieve/pii/S1043-6618(21)00424-2. DOI: 10.1016/j.pharmthera.2022.108273.
[13]
SOCALA K, DOBOSZEWSKA U, SZOPA A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders[J/OL]. Pharmacol Res, 2021, 172: 105840 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/34450312/. DOI: 10.1016/j.phrs.2021.105840.
[14]
MOU Y, DU Y, ZHOU L, et al. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging[J/OL]. Front Immunol, 2022, 13: 796288 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021448/. DOI: 10.3389/fimmu.2022.796288.
[15]
GÓRALCZYK-BIŃKOWSKA A, SZMAJDA-KRYGIER D, KOZŁOWSKA E. The microbiota-gut-brain axis in psychiatric disorders[J/OL]. Int J Mol Sci, 2022, 23(19): 11245 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9570195/. DOI: 10.3390/ijms231911245.
[16]
NAVARRO-TAPIA E, ALMEIDA-TOLEDANO L, SEBASTIANI G, et al. Effects of microbiota imbalance in anxiety and eating disorders: Probiotics as novel therapeutic approaches[J/OL]. Int J Mol Sci, 2021, 22(5): 2351 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956573/. DOI: 10.3390/ijms22052351.
[17]
BORKENT J, IOANNOU M, LAMAN J D, et al. Role of the gut microbiome in three major psychiatric disorders[J]. Psychol Med, 2022, 52(7): 1222-1242. DOI: 10.1017/s0033291722000897.
[18]
FOSTER J A, BAKER G B, DURSUN S M. The relationship between the gut microbiome-immune system-brain axis and major depressive disorder[J/OL]. Front Neurol, 2021, 12: 721126 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508781/. DOI: 10.3389/fneur.2021.721126.
[19]
MŁYNARSKA E, GADZINOWSKA J, TOKAREK J, et al. The role of the microbiome-brain-gut axis in the pathogenesis of depressive disorder[J/OL]. Nutrients, 2022, 14(9): 1921 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9105444/. DOI: 10.3390/nu14091921.
[20]
SIMPSON C A, DIAZ-ARTECHE C, ELIBY D, et al. The gut microbiota in anxiety and depression - A systematic review[J/OL]. Clin Psychol Rev, 2021, 83: 101943 [2023-08-31]. https://linkinghub.elsevier.com/retrieve/pii/S0272-7358(20)30131-8. DOI: 10.1016/j.cpr.2020.101943.
[21]
SUN J, WANG F, HU X, et al. Clostridium butyricum attenuates chronic unpredictable mild stress-induced depressive-like behavior in mice via the gut-brain axis[J]. J Agric Food Chem, 2018, 66(31): 8415-8421. DOI: 10.1021/acs.jafc.8b02462.
[22]
KOCHALSKA K, OAKDEN W, SŁOWIK T, et al. Dietary supplementation with Lactobacillus rhamnosus JB-1 restores brain neurochemical balance and mitigates the progression of mood disorder in a rat model of chronic unpredictable mild stress[J]. Nutr Res, 2020, 82: 44-57. DOI: 10.1016/j.nutres.2020.06.019.
[23]
AKKASHEH G, KASHANI-POOR Z, TAJABADI-EBRAHIMI M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial[J]. Nutrition, 2016, 32(3): 315-320. DOI: 10.1016/j.nut.2015.09.003.
[24]
KAZEMI A, NOORBALA A A, AZAM K, et al. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial[J]. Clin Nutr, 2019, 38(2): 522-528. DOI: 10.1016/j.clnu.2018.04.010.
[25]
GOH K K, LIU Y W, KUO P H, et al. Effect of probiotics on depressive symptoms: A meta-analysis of human studies[J/OL]. Psychiatry Res, 2019, 282: 112568 [2023-08-31]. https://linkinghub.elsevier.com/retrieve/pii/S0165-1781(19)31215-6. DOI: 10.1016/j.psychres.2019.112568.
[26]
FAN Y, GAO Y, MA Q, et al. Multi-omics analysis reveals aberrant gut-metabolome-immune network in schizophrenia[J/OL]. Front Immunol, 2022, 13: 812293 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927969/. DOI: 10.3389/fimmu.2022.812293.
[27]
ZHU F, GUO R, WANG W, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice[J]. Mol Psychiatry, 2020, 25(11): 2905-2918. DOI: 10.1038/s41380-019-0475-4.
[28]
ZHU F, JU Y, WANG W, et al. Metagenome-wide association of gut microbiome features for schizophrenia[J/OL]. Nat Commun, 2020, 11(1): 1612 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/32235826/. DOI: 10.1038/s41467-020-15457-9.
[29]
NGUYEN T T, KOSCIOLEK T, MALDONADO Y, et al. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects[J]. Schizophr Res, 2019, 204: 23-29. DOI: 10.1016/j.schres.2018.09.014.
[30]
LI S, ZHUO M, HUANG X, et al. Altered gut microbiota associated with symptom severity in schizophrenia[J/OL]. PeerJ, 2020, 8: e9574 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395597/. DOI: 10.7717/peerj.9574.
[31]
ZHENG P, ZENG B, LIU M, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice[J/OL]. Sci Adv, 2019, 5(2): eaau8317 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/30775438/. DOI: 10.1126/sciadv.aau8317.
[32]
GHADERI A, BANAFSHE H R, MIRHOSSEINI N, et al. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients[J/OL]. BMC Psychiatry, 2019, 19(1): 77 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383260/. DOI: 10.1186/s12888-019-2059-x.
[33]
OKUBO R, KOGA M, KATSUMATA N, et al. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study[J]. J Affect Disord, 2019, 245: 377-385. DOI: 10.1016/j.jad.2018.11.011.
[34]
SETTANNI C R, BIBBÒ S, IANIRO G, et al. Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota[J]. Expert Rev Gastroenterol Hepatol, 2021, 15(6): 599-622. DOI: 10.1080/17474124.2021.1869938.
[35]
TANIYA M A, CHUNG H J, MAMUN A AL, et al. Role of gut microbiome in autism spectrum disorder and its therapeutic regulation[J/OL]. Front Cell Infect Microbiol, 2022, 12: 915701 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355470/. DOI: 10.3389/fcimb.2022.915701.
[36]
DING X, XU Y, ZHANG X, et al. Gut microbiota changes in patients with autism spectrum disorders[J]. J Psychiatr Res, 2020, 129: 149-159. DOI: 10.1016/j.jpsychires.2020.06.032.
[37]
KORTENIEMI J, KARLSSON L, AATSINKI A. Systematic review: Autism spectrum disorder and the gut microbiota[J]. Acta Psychiatr Scand, 2023, 148(3): 242-254. DOI: 10.1111/acps.13587.
[38]
TOMOVA A, HUSAROVA V, LAKATOSOVA S, et al. Gastrointestinal microbiota in children with autism in Slovakia[J]. Physiol Behav, 2015, 138: 179-187. DOI: 10.1016/j.physbeh.2014.10.033.
[39]
LIU S, LI E, SUN Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder[J/OL]. Sci Rep, 2019, 9(1): 287 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625580/. DOI: 10.1038/s41598-018-36430-z.
[40]
GUIDETTI C, SALVINI E, VIRI M, et al. Randomized double-blind crossover study for evaluating a probiotic mixture on gastrointestinal and behavioral symptoms of autistic children[J/OL]. J Clin Med, 2022, 11(18): 5263 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504504/. DOI: 10.3390/jcm11185263.
[41]
LIGEZKA A N, SONMEZ A I, CORRAL-FRIAS M P, et al. A systematic review of microbiome changes and impact of probiotic supplementation in children and adolescents with neuropsychiatric disorders[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 108: 110187 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138744/. DOI: 10.1016/j.pnpbp.2020.110187.
[42]
TAN Q, ORSSO C E, DEEHAN E C, et al. Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: A systematic review[J]. Autism Res, 2021, 14(9): 1820-1836. DOI: 10.1002/aur.2560.
[43]
ZHANG L, XU Y, LI H, et al. The role of probiotics in children with autism spectrum disorders: A study protocol for a randomised controlled trial[J/OL]. PLoS One, 2022, 17(2): e0263109 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870536/. DOI: 10.1371/journal.pone.0263109.
[44]
WANG Y, LI N, YANG J J, et al. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder[J/OL]. Pharmacol Res, 2020, 157: 104784 [2023-08-31]. https://linkinghub.elsevier.com/retrieve/pii/S1043-6618(19)32656-8. DOI: 10.1016/j.phrs.2020.104784.
[45]
PAMPALONI I, MARRIOTT S, PESSINA E, et al. The global assessment of OCD[J/OL]. Compr Psychiatry, 2022, 118: 152342 [2023-08-31]. https://linkinghub.elsevier.com/retrieve/pii/S0010-440X(22)00048-7. DOI: 10.1016/j.comppsych.2022.152342.
[46]
DOMèNECH L, WILLIS J, ALEMANY-NAVARRO M, et al. Changes in the stool and oropharyngeal microbiome in obsessive-compulsive disorder[J/OL]. Sci Rep, 2022, 12(1): 1448 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795436/. DOI: 10.1038/s41598-022-05480-9.
[47]
TURNA J, GROSMAN KAPLAN K, ANGLIN R, et al. The gut microbiome and inflammation in obsessive-compulsive disorder patients compared to age- and sex-matched controls: a pilot study[J]. Acta Psychiatr Scand, 2020, 142(4): 337-347. DOI: 10.1111/acps.13175.
[48]
SANIKHANI N S, MODARRESSI M H, JAFARI P, et al. The effect of lactobacillus casei consumption in improvement of obsessive-compulsive disorder: an animal study[J]. Probiotics Antimicrob Proteins, 2020, 12(4): 1409-1419. DOI: 10.1007/s12602-020-09642-x.
[49]
GHUGE S, RAHMAN Z, BHALE N A, et al. Multistrain probiotic rescinds quinpirole-induced obsessive-compulsive disorder phenotypes by reshaping of microbiota gut-brain axis in rats[J/OL]. Pharmacol Biochem Behav, 2023, 232: 173652 [2023-08-31]. https://linkinghub.elsevier.com/retrieve/pii/S0091-3057(23)00139-9. DOI: 10.1016/j.pbb.2023.173652.
[50]
NEEDHAM B D, FUNABASHI M, ADAME M D, et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice[J]. Nature, 2022, 602(7898): 647-653. DOI: 10.1038/s41586-022-04396-8.
[51]
LEE H J, HONG J K, KIM J K, et al. Effects of probiotic NVP-1704 on mental health and sleep in healthy adults: An 8-week randomized, double-blind, placebo-controlled trial[J/OL]. Nutrients, 2021, 13(8): 2660 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398773/. DOI: 10.3390/nu13082660.
[52]
SALLEH R M, KUAN G, AZIZ M N A, et al. Effects of probiotics on anxiety, stress, mood and fitness of badminton players[J/OL]. Nutrients, 2021, 13(6): 1783 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225117/. DOI: 10.3390/nu13061783.
[53]
TILLISCH K, LABUS J, KILPATRICK L, et al. Consumption of fermented milk product with probiotic modulates brain activity[J/OL]. Gastroenterology, 2013, 144(7): 1394-1401, 1401 e1-e4 [2023-08-31]. https://pubmed.ncbi.nlm.nih.gov/23474283/. DOI: 10.1053/j.gastro.2013.02.043.
[54]
BAGGA D, AIGNER C S, REICHERT J L, et al. Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers[J]. Eur J Nutr, 2019, 58(5): 1821-1827. DOI: 10.1007/s00394-018-1732-z.
[55]
PAPALINI S, MICHELS F, KOHN N, et al. Stress matters: Randomized controlled trial on the effect of probiotics on neurocognition[J/OL]. Neurobiol Stress, 2019, 10: 100141 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430409/. DOI: 10.1016/j.ynstr.2018.100141.
[56]
HORTENSIUS L M, VAN DEN HOOVEN E H, DUDINK J, et al. NutriBrain: protocol for a randomised, double-blind, controlled trial to evaluate the effects of a nutritional product on brain integrity in preterm infants[J/OL]. BMC Pediatr, 2021, 21(1): 132 [2023-08-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968155/. DOI: 10.1186/s12887-021-02570-x.
[57]
JANIK R, THOMASON L A M, STANISZ A M, et al. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate[J]. Neuroimage, 2016, 125: 988-995. DOI: 10.1016/j.neuroimage.2015.11.018.
[58]
YAMANBAEVA G, SCHAUB A C, SCHNEIDER E, et al. Effects of a probiotic add-on treatment on fronto-limbic brain structure, function, and perfusion in depression: Secondary neuroimaging findings of a randomized controlled trial[J]. J Affect Disord, 2023, 324: 529-538. DOI: 10.1016/j.jad.2022.12.142.
[59]
ASAOKA D, XIAO J, TAKEDA T, et al. Effect of probiotic bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: Results of a 24-week randomized, double-blind, placebo-controlled trial[J]. J Alzheimers Dis, 2022, 88(1): 75-95. DOI: 10.3233/jad-220148.

上一篇 静息态功能磁共振对阿尔茨海默病早期诊断的研究进展
下一篇 扩散MRI技术在颞叶癫痫中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2