分享:
分享到微信朋友圈
X
技术研究
乳腺1H磁共振波谱(续)

张卫军,付彩霞.乳腺1H磁共振波谱.磁共振成像, 2011, 2(5): 368-372. DOI:10.3969/j.issn.1674-8034.2011.05.010.


[摘要] 对比增强MRI已经成为重要的乳腺成像手段,但是该手段并不总能提供确切的病理。在动态增强MRI基础上增加活体MRS的初步研究显示的结果很具前景,越来越多的研究小组将MRS加入乳腺MR扫描协议。本文阐明了进行MRS检查的预期检查结果,并列举了其中的一些缺陷。
[Abstract] Contrast-enhanced MRI has gained acceptance as an important breast imaging modality. However, it does not always provide a definitive pathology. Initial studies where in vivo proton MR spectroscopy has been added as an adjunct to dynamic contrast-enhanced MR imaging of the breast have shown promising results and a growing number of research groups are incorporating the technique into their breast MR protocols. The aim of this article is to illustrate the expected examination results and outline some of the pitfalls associated with undertaking a breast MRS examination.
[关键词] 磁共振成像;磁共振波谱学;乳腺
[Keywords] Magnetic resonance imaging;Magnetic resonance spectroscopy;Breast

通讯作者:张卫军,E-mail: weijun.zhang@siemens.com


第一作者简介:
        张卫军(1974-),女,医学博士,西门子(深圳)磁共振有限公司MR应用专家。

收稿日期:2011-06-05
接受日期:2011-07-08
中图分类号:R445.2; R737.9 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2011.05.010
张卫军,付彩霞.乳腺1H磁共振波谱.磁共振成像, 2011, 2(5): 368-372. DOI:10.3969/j.issn.1674-8034.2011.05.010.

       (上接第4期第299页)

2.1.6 扫描前准备

       MRS中,峰的线宽依赖于固有的T2驰豫时间以及区域内的磁场均匀性。固有T2驰豫的线宽通常来说小于1 Hz,而不均场(局部匀场不佳)造成的线宽可能为5~10 Hz。在波谱采集种,为了获得理想的波谱分辨率和信噪比(SNR),MR采集参数是根据病人情况调节的。高质量乳腺MRS的两个重要的参数是扫描前调谐和匀场,花费必要的时间达到ROI更好地匀场,保证做好扫描前的所有准备。

       (1)匀场:匀场即将局部B0场尽可能调节至均匀。局部匀场对于辨别和显示需要观察的峰非常关键。局部匀场质量还直接影响参考峰的精确性,因此影响观察到的胆碱信号的配准。由于乳腺MRS检查中相邻组织磁化率的固有差异(例如:含气的胸部、呼吸运动),常常需要手动匀场以获得理想的MRS结果。

       (2)扫描前频率调谐(见图10)。

图10  扫描前频率调谐。乳腺癌患者,1H单体素波谱,PRESS序列采集,TR=2000 ms, TE=135 ms。10A:对比增强图像显示15 mm×12 mm×14 mm体素位于一小导管癌上,包括部分脂肪组织;10B:压水波谱,出现异常共振峰;10C:未压水参考波谱显示脂水比率接近11,导致扫描前调谐错误地将在1.3 ppm的脂峰(幅度最高的峰)识别为水,并在错误的频率压水。结果导致B内显示的异常波谱
Fig 10  Prescan frequency adjustment. Proton single-voxel spectrum acquired with the PRESS sequence (repetition time (TR) 2000 ms, echo time (TE) 135 ms) in a breast cancer patient. Fig 10A: Contrast-enhanced image demonstrates a 15 mm×12 mm×14 mm voxel surrounding a small ductal cancer with included surrounding adipose tissue. Fig 10B: Water suppressed spectrum with unusual appearance of resonances. Fig 10C: Non-water suppressed reference spectrum demonstrates lipid-water ratio of approximately 11 which resulted in the prescan adjustment wrongly assigning the lipid resonance at 1.3 ppm (the highest amplitude peak) as the water and thus applying water suppression at the wrong frequency. The result was the abnormal appearing spectrum in B).

2.1.7 频率确认

       在扫描前准备,在预扫描阶段MR系统会常规将最高的峰认作水峰。乳腺MRS时则有可能认错水峰,使最后的谱出现伪影。该情况可以通过"频率确认"选项避免,用户有机会确认MR系统是否选择正确的峰进行压水。

2.2 其他影响因素

2.2.1 对比剂

       已经发现一些含钆的MR对比剂可以影响乳腺肿瘤的波谱[10],另一些则可以接受[11]。见图11

图11  对比剂。乳腺腺癌植入的雌性大鼠,1H单体素波谱,TR=2000 ms, TE=144 ms。11A:大鼠后腿对比前图像显示肿瘤;11B:对比增强后显示摄取对比剂;11C:注射对比剂前的谱;11D:注射对比剂后15 min后的谱。发现注射该对比剂后Cho信号明显下降。(引自文献[11])。
Fig 11  Contrast agents. Proton single-voxel spectrum (repetition time (TR) 2000 ms, echo time (TE) 144 ms, collected from mammary adenocarcinoma implanted in female Fischer rat. Fig 11A: Pre-contrast image demonstrates tumor on rat hind limb. Fig 11B: Contrast-enhanced image demonstrates uptake of contrast agent. Fig 11C: Localized spectrum collected prior to injection of contrast media. Fig 11D: Localized spectrum collected 15 min after the injection of contrast media. There is a significant reduction in Cho signal following the administration of this particular contrast agent. (Adapted from Lenkinski, et al. [11]).

2.2.2 呼吸运动

       乳腺MRS采集过程中的呼吸运动导致B0磁场变形,致使采集过程中频率漂移[12]。在进行累加平均之前对单次采集数据分别进行频率校正,可以提高谱的分辨率。见图12

图12  对呼吸导致的伪影进行补偿。1H单体素波谱采集,PRESS序列,TR=2000 ms,TE=135 ms,乳腺癌患者。12A:未压水波谱,未校正呼吸导致的频率漂移时,水峰FWHM为20 Hz;12B:未压水波谱,频率漂移校正后,水峰FWHM为16 Hz
Fig 12  Compensation for respiratory induced artifact. Proton single-voxel spectrum acquired with the PRESS sequence (TR: 2000 ms, TE: 135 ms) in a breast cancer patient. Fig 12A: Non-water suppressed spectrum with FWHM of the water peak=20 Hz without correction of frequency shifts due to respiration. Fig 12B: Non-water suppressed spectrum with FWHM of the water peak=16 Hz following correction of frequency shifts.

2.2.3 信噪比(SNR)

       MRS采集时,需要充分的SNR来探测及判定目标MRS信号。乳腺MRS,含胆碱代谢物的信号通常很小要求高SNR进行谱的采集,以获得胆碱信号的精确描述,显示其MRS特点(例如:化学位移、信号积分)。见图13

图13  SNR:采集时间的影响。1H单体素MRS,PRESS序列,TR=2000 ms, TE=135 ms,乳腺癌患者。13A:体素7 mm×15 mm×10 mm,平均128次,胆碱峰可见但几乎隐藏在背景噪声水平中。13B:体素大小和位置相同,平均256次。胆碱信号清晰可辨且高于背景噪声水平
Fig 13  Signal-to-noise ratio, effect of acquisition time. Proton single-voxel spectrum acquired with the PRESS sequence (TR: 2000 ms, TE: 135 ms) in a breast cancer patient. Fig 13A: Spectrum acquired from a 7 mm×15 mm×10 mm voxel with 128 signal averages. A choline resonance is visible but barely above the background noise level. Fig 13B. Spectrum acquired from the same location with the same voxel dimensions but with 256 signal averages. Choline signal is now clearly discernible above the background noise level.

2.2.4 病人运动

       如同所有MR技术,病人运动会降低扫描的诊断可靠性。共振峰的变形可判断为运动伪影,常常单个共振峰出现双峰表现。见图14

图14  1H MRS,PRESS序列,TR=2000 ms, TE=135 ms,乳腺癌患者。14A:未压水波谱,显示水、脂峰变形(双峰),符合病人运动表现。14B:与A图相同,0.5~2 ppm处为0.9和1.3 ppm处变形的脂峰。14C:同样,自2.5至4 ppm处显示3.2 ppm胆碱峰的变形和频率漂移
Fig 14  Proton single-voxel spectrum acquired with the PRESS sequence (TR: 2000 ms, TE: 135 ms) in a breast cancer patient. Fig 14A: Non-water suppressed spectrum demonstrating distortion (double peaks) of water and lipid resonances consistent with gross patient movement. Fig 14B: Same spectrum as in Fig 14A, displayed from 0.5 to 2.0 ppm demonstrating distortion of the lipid resonances at 0.9 and 1.3 ppm. Fig 14C: Same spectrum as in Fig 14A & Fig 14B displayed from 2.5 to 4.0 ppm demonstrating distortion and frequency shifting of the choline resonance at 3.2 ppm.

2.2.5 干预后MRS

       (1)穿刺活检:穿刺活检引起组织损伤及流血,如图15。出血在1.2 ppm处出现一宽峰,难以或不可能进行谱的识别。

       (2)放置磁性夹:外科为了定位肿瘤而放置了磁性夹后,对乳腺病灶进行活体MRS扫描,会导致一宽波。夹子使匀场难以或不可能进行。现在有非磁性的夹子可以采用。

图15  左侧:乳腺病灶穿刺活检后出现在亚甲基区的谱;右侧:病灶切除后见病灶内出血
Fig 15  Left: Methylene region of the spectrum from a breast lesion following a core biopsy. Right: The excised tumor obtained intraoperatively with bleeding and bruising.

3 应用实例

       监测治疗,见图16

图16  通过MRI和定量1H MRS监测乳腺癌术前化疗的病理反应。采用MRS显示肿瘤复发后处胆碱信号增加。图16A:显示所选择的体素;图16B:增强后显示病灶增强;图16C:胆碱图;图16D:MRS显示tCho升高;图16E:动态MR所获得的信号强度时间曲线。(引自Baek等[13]
Fig 16  Where they monitor predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative proton MR spectroscopy. Here they use the MRS method effectively to show that the choline signal is increasing in intensity with tumor recurrence. Fig 16A: Showing selected voxel. Fig 16B: Post-contrast images demonstrating contrast-media enhancement. Fig 16C: Choline map. Fig 16D: MRS with increased tCho. Fig 16E: Corresponding signal-intensity time curve derived from dynamic MR exam (Adapted from Baek et al [13])

4 总结

       早期的乳腺MRS报告应用在大于等于1.5 cm×1.5 cm×1.5 cm的较大肿瘤。然而,MRI经常探测到较小的病灶(3~15mm),为了使1H MRS更稳定,能用于诊断,需要注意如下问题。如果成功进行MRS扫描,动态T1W MRI联合乳腺MRS将进一步提高诊断准确性。

       进行MRS扫描,需要考虑的问题包括:(1)MRS检查需要在放置定位金属夹以及穿刺活检之前进行。(2)肿瘤尺寸大于等于8 mm以保证化学成分测量的稳定性,进而得到可诊断的信号。(3)匀场是成功扫描的重要一环。(4)用于诊断的共振峰包括tCho的相对定量可以通过使用4、7或者16通道线圈来测量。(5)当采用该方法进行明确诊断或检测治疗时,波谱需要准确的参考信号。(6)一些肿瘤的病理是混杂性的。

[1]
Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin, 2007, 57(2): 75-89.
[2]
Lehman CD, Gatsonis C, Kuhl CK, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med, 2007, 356(13): 1295-1303.
[3]
Stanwell P, Gluch L, Clark D, et al. Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5T. Eur Radiol, 2005, 15(5): 1037-1043.
[4]
Bolan PJ, Meisamy S, Baker EH, et al. In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn Reson Med, 2003, 50(6): 1134-1143.
[5]
Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo 1H MR spectroscopy - A pilot study at 4 T. Radiology, 2004, 233(2): 424-431.
[6]
Baek HM, Chen JH, Yu HJ, et al. Detection of choline signal in human breast lesions with chemical-shift imaging. J Magn Reson Imaging, 2008, 27(5): 1114-1121.
[7]
Stanwell P, Mountford C. In vivo proton MR spectroscopy of the breast. Radiographicsm, 2007, 27 (Suppl 1): S253-S266.
[8]
Bolan PJ, DelaBarre L, Baker EH, et al. Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med, 2002, 48(2): 215-222.
[9]
Kvistad KA, Bakken IJ, Gribbestad IS, et al. Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging, 1999, 10(2): 159-164.
[10]
Joe BN, Chen VY, Salibi N, et al. Evaluation of 1H-magnetic resonance spectroscopy of breast cancer pre- and postgadolinium administration. Invest Radiol, 2005, 40(7): 405-411.
[11]
Lenkinski RE, Wang X, Elian M, et al. Interaction of gadolinium-based MR contrast agents with choline: implications for MR spectroscopy (MRS) of the breast. Magn Reson Med, 2009, 61(6): 1286-1292.
[12]
Bolan PJ, Henry PG, Baker EH, et al. Measurement and correction of respiration-induced B0 variations in breast 1H MRS at 4 Tesla. Magn Reson Med, 2004, 52(6): 1239-1245.
[13]
Baek HM, Chen JH, Nie K, et al. Predicting Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer by Using MR Imaging and Quantitative 1H MR Spectroscopy. Radiology, 251(3): 653-662.

上一篇 磁共振扩散加权成像在胰腺癌诊断中的价值
下一篇 功能磁共振成像临床应用研究论文审稿中常见的问题
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2