分享:
分享到微信朋友圈
X
述评
磁共振对比剂临床应用及进展
梁长虹

梁长虹.磁共振对比剂临床应用及进展.磁共振成像, 2014, 5(S1):37-42. DOI:10.3969/j.issn.1674-8034.2014.05.S1.008.


[摘要] 磁共振对比剂的应用极大地拓展了磁共振成像技术的临床适用范围,在临床常规检查中,对病灶的检出、定性和治疗疗效的评估有非常重要的价值。与其他影像检查方法比较,磁共振对比剂赋予了磁共振成像在多个系统或脏器的特殊检查优势,是临床诊断可以依赖的有效而特异的检查手段之一。科技的发展,又为丰富磁共振对比剂的功能和使用范围提供了发展的空间。本文就目前磁共振对比剂的临床使用现状及进展做个简要总结回顾。
[Abstract] Introduction of magnetic resonance imaging contrast agents broadens greatly the clinical application of magnetic resonance imaging in daily practice including lesion detection, characterization and evaluation of therapy response. As compared to other imaging modalities, contrast-enhanced magnetic resonance imaging holds a lot of unique advantages in various systems or organs and is widely used as a reliable imaging method in clinical settings. Recenly, development in technology would provide contrast agents with multiple function and further clinical implication. In this pictoral essay, we would brief about the current clinical application of magnetic resonance imaging contrast agents and future direction.
[关键词] 磁共振对比剂;临床应用;进展
[Keywords] Magnetic resonance imaging contrast agent;Clinical application;Progress

梁长虹* 广东省人民医院广东省医学科学院放射科广州 510080

通讯作者:梁长虹,E-mail: cjr.lchh@vip.163.com


收稿日期:2014-08-15
接受日期:2014-09-25
中图分类号:R445.2 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2014.05.S1.008
梁长虹.磁共振对比剂临床应用及进展.磁共振成像, 2014, 5(S1):37-42. DOI:10.3969/j.issn.1674-8034.2014.05.S1.008.

       磁共振成像技术因具有多序列、多参数和多平面成像以及良好的软组织分辨力,可以获得较多信息等优点,已经成为临床实践中最常用影像检查手段之一。磁共振对比剂的应用更是极大地拓展了磁共振成像技术的临床适用范围[1, 2]。磁共振对比增强的基本原理是通过改变内、外界弛豫效应和磁化率效应间接地改变组织的信号强度,从而达到提高不同组织间信号差异的目的。目前,临床使用的磁共振对比剂种类繁多,可按照不同的分类方式加以区分:按引入体内方式分为血管内对比剂(最为广泛的使用方式)和口服对比剂(消化道内使用);按增强类型分为阳性对比剂和阴性造影剂;按生物学分布分为细胞外间隙非特异性分布对比剂、血池分布对比剂和和细胞特异性对比剂等。其中,以含钆的细胞外间隙非特异性分布对比剂的临床应用最多[3]

       现在,磁共振钆对比增强扫描已逐步成为全身多系统、多脏器的临床常规检查方法,有非常重要的临床价值。

       首先,在病灶检出方面,磁共振增强扫描可以显著增加病灶的检出率[4]图1)。比如,在临床工作中,肺癌患者往往发生脑部转移,进行头部MR增强扫描有利于确定颅内是否有转移瘤,转移灶部位和数目等;同样,肝占位性病灶的检出中,磁共振增强扫描也有非常重要的价值,一方面可以采用非特异性磁共振对比剂,根据强化程度发现病灶和根据增强强化模式对病灶进行定性诊断[5]图2);另一方面,采用肝细胞特异性对比剂,使正常细胞强化,发现肝内是否有转移或非肝细胞源性病变,或判断病灶是否肝细胞来源?[6]图3图4)。在疾病的疗效评价中,磁共振增强扫描也有非常重要的价值[7]

       除上述的常规应用外,磁共振增强扫描还有以下方面的特殊运用价值。

图1  脑内转移瘤MR扫描。平扫T1WI(图1A)未见明确病灶。T1WI增强扫描(图1B)显示左侧侧脑室后角旁明显强化转移灶
图2  肝胆管细胞癌磁共振增强扫描。增强扫描动脉期显示病灶边缘呈花环状轻度强化,周边见一过性灌注异常。图2A:门脉期显示肿瘤强化程度和范围较前增加,内部见条状分隔和实性部分。图2B:延迟期肿瘤内强化范围进一步加大,慢进慢出和延迟强化是胆管细胞癌强化特点
图3  肝细胞癌,使用Gd-EOB-DTPA对比剂磁共振增强扫描。图3A动脉期显示肝右叶小肝癌,边界欠清。图3B门脉期显示病灶仍呈相对高信号。图3C肝细胞期显示病灶呈相对低信号,边界显示清楚
图4  结肠癌肝转移,使用Gd-BOPTA对比剂磁共振增强扫描。图4A增强扫描动脉期肝右叶显示一较大环形强化病灶。图4B肝细胞期显示动脉期未显示的小病灶,呈相对低信号
图5  心肌梗塞患者磁共振灌注扫描。图5A心肌灌注成像显示后间隔和下壁负荷态首过灌注减低。图5B相应区域延迟强化
Fig. 1  MRI of brain metastasis. There is no visible lesion on T1WI (Fig. 1A). Contrast-enhanced T1WI (Fig. 1B) shows a obviously enhanced lesion located beside the left posterior horn of lateral ventricle.
Fig. 2  Contrast-enhanced MRI of hepatocholangiocarcinoma. Fig. 2A On the arterial phase, the tumor shows mild chaplet enhancement, the transient abnormal perfusion in the surrounding liver parenchyma. Fig. 2B The tumor shows increased enhancement degree and range on the portal venous phase, and the separation and solid component is present. Fig. 2C The delayed phase shows enhancement degree and range is futher expanded, delayed enhancement is the feature of cholangiocarcinoma.
Fig. 3  Contrast-enhanced MRI of hepatocellular carcinoma with Gd-EOB-DTPA. Fig. 3A On arterial phase, it shows a small hepatocellular carcinoma with ill-defined boundary in the right lobe. Fig. 3B It is still relatively high signal on portal venous phase. Fig. 3C The tumor shows the relatively low signal on the hepatic cell stage, and the boundary displays clear.
Fig. 4  Contrast-enhanced MRI of hepatic metastasis of colon cancer with enhanced Gd-BOPTA. Fig. 4A It shows a large lesion with ring enhancement on the right lobe on the hepatic arterial phase. Fig. 4B A relatively low signal small lesion is demonstrated on the hepatic cell stage, which is not displayed on the hepatic arterial phase.
Fig. 5  MR perfusion in patient with myocardial infarct. Fig. 5A First pass shows a fixed defect on inferoseptal, inferior, and inferolateral wall. Fig. 5B Delayed-enhancement present in the corresponding area.

1 心血管系统应用

       磁共振对比剂在心脏磁共振的运用旨在进一步提高磁共振在心肌缺血、心肌梗死和心肌活力评估以及血管显影等方面的能力[8]

       磁共振心肌灌注成像对心肌缺血的诊断的效能与PET心肌灌注扫描有很好的相关性,而且其敏感性和特异性也与之相似,甚至更优[9],常需与药物负荷实验相结合(图5)。研究表明磁共振心肌灌注显示心内膜下心肌缺血,从而反映心脏微血管障碍等病理生理状态,解决了常规冠状动脉造影无法解决的难题[10]

       磁共振延迟增强扫描心肌成像目前被认为是探测心肌梗死最准确的方法[10]。病理研究证实,心室心肌梗死的部位和大小与磁共振对比剂延迟增强扫描的异常强化区一致对应[11]。此外,磁共振心肌延迟扫描显影还能分辨出SPECT和PET不能分辨的心内膜下心肌梗塞[12](图6)。通过判断心肌异常延迟强化的位置和分布特征,磁共振心肌延迟扫描显影可用于判断不同类型的非梗死型心肌[11]

       此外,磁共振对比剂的使用也使得磁共振冠状动脉成像成为可能及能较好地显示心脏畸形血管改变(图7)及大血管病变。

图6  心肌梗塞患者,动态增强MR显示左室游离壁心内膜下延迟强化
图7  动脉导管未闭患者,增强MR显示动脉导管或导管样侧枝供应肺动脉
图8  分支型胰腺导管内乳头状黏液肿瘤, Secretin-MR显示分支型IPMN,胰腺外分泌功能正常(十二指肠水平段显影)
图9  女68岁走路不稳10天。图9A轴位双回波T1WI示基底动脉左前壁斑块(箭)。图9B增强扫描T1WI短轴位示基底动脉斑块明显强化(箭)
图10  经病理证实的肝右叶肝细胞癌患者的TACE治疗后图像。图10A T2WI图像上肿瘤呈不均匀高信号;图10B在DCE动态增强的动脉期,肝癌内见明显强化的存活肿瘤组织,伴有无强化的坏死区;图10C Ktrans图显示存活肿瘤血管通透性较正常肝实质低,而坏死区无色彩填充,提示其内无血管
Fig. 6  A patient with myocardial infarct, dynamic enhanced MR showed subendocardial delayed-enhancement on left ventricular free wall.
Fig. 7  A Patient with Patent ductus arteriosus, contrast enhanced MR shows arterial catheter or catheter like lateral branch supply for pulmonary artery.
Fig. 8  Branched IPMN, Secretin-MR manifests normal pancreatic exocrine function(horizontal segment of duodenal is present).
Fig. 9  A 68-year-old female patient suffers from walking unsteadily for 10 days. Fig. 9A Axial duel-echo noncontrast T1WI at the site of stenoses demonstrates an atherosclerotic plaque at left anterior wall of the basal artery (arrow). Fig. 9B Short-axis postcontrast T1WI shows strong enhancement for the plaque (arrow).
Fig. 10  Post-TACE images of one patient with hepatocellular carcinoma in the right liver lobe. Fig. 10A On T2WI image,the tumor shows heterogeneous hyperintensity. Fig. 10B HCC shows intense-enhanced viable area associated with non-enhanced necrotic area during the arterial phase of dynamic contrast enhancement(DCE) imaging. Fig. 10C Ktrans map demonstrates viable tumor has decreased capillary permeability compared with nomal hepatic parenchyma, and the necrotic area display no color indicating no vessels.

2 腹部应用

       相对于其他脏器来说,肝脏磁共振对比剂的新进展、新应用技术发展最为深入。

       非特异性细胞外分布的钆对比剂主要通过三维采集动态增强扫描发现病变和根据病灶增强模式,判断病变性质。

       针对肝细胞特异性吸收的对比剂(Mn-DPDP、Gd-BoPTA和Gd-EOB-DTPA)[6]图3图4),正常肝细胞通过不同的机制摄取对比剂进入肝细胞内,且分泌进入毛细胆管,而无正常肝细胞的病灶则不摄取,因而增加了病灶和正常肝组织间的信号对比,提高了检出率或判断病灶是否来源肝细胞;同时,根据对比剂摄取的多少(通过信号间接判断),还可判断肝细胞癌的分化程度或肝功能状态[6]。除此之外,还可用于胆系显影[13]

       超顺磁氧化铁(如,Ferumoxides和Resovist等)是针对网状内皮系统特异性对比剂,枯否氏细胞靶向摄取对比后,T2WI或T2*WI显示可以显著降低正常肝脏背景信号,无枯否氏细胞的病灶信号不降低,因而可以提高病灶的检出率[2];含有具有功能的枯否氏细胞病变同样产生信号降低。

       肠促胰泌素(secretin)可以用于促进胰液分泌,采用动态MRCP可以显示胰管病变状态(图8[14]

3 血管成像和动脉粥样斑块定性应用

       尽管随着磁共振硬件和序列技术的发展,磁共振非对比血管成像技术得到了长足的发展,但对于扫描范围长、血管走行不规则、空间分辨率要求高的脏器(如肝脏血管系统),磁共振对比增强血管成像仍是首选[15, 16](图9)。

       而对于动脉粥样斑块(如颈动脉斑块),区分斑块为易损斑块还是稳定斑块,对于临床处理方法的选择有非常重要的价值[17]。研究证实,磁共振对比增强技术可以用于判断动脉粥样斑块的性质,但其特异性还需要进一步证实及技术的进步加以提高[18]

4 影像生物标志

       磁共振对比剂的最具潜力的应用之一是磁共振动态对比增强技术(dynamic contrast enhancement, DCE)。DCE技术是一种基于追踪血管内注射的低分子量对比剂的药代动力学特征来评估组织(包括肿瘤)微血管环境的技术[19],能定量评估组织的血容量、血流量和内皮通透性等微循环情况。根据DCE数据,通过适当的数学模型可得到多个反映局部组织微环境特征的定量参数,即影像生物标志(imaging biomarker)。DCE影像生物标志包括半定量和定量标志,前者如血液标准化钆浓度曲线下初始面积(IAUGCBN,通常用前60 s的数据,即IAUGCBN60),该影响生物标志计算简单、可重复性好,但与组织的生理学情况(如灌注、通透性和渗漏容积)相关性不高。因此,研究中常用两室模型(如Tofts模型)计算定量影像生物标志,包括:血管(血浆)空间容积分数(Vp)、血管外细胞外空间容积分数(Ve)、对比剂从血管(血浆)空间渗漏到血管外细胞外空间的转运系数(Ktrans)、对比剂从血管外细胞外空间返回到血管(血浆)空间的速率常数(Kep)等[20](图10)。研究显示,除了用于病灶检出和定性外[21],影像生物标志还能评价肿瘤药物的治疗反应,并对疾病预后进行预测[22]。但由于DCE受到的影响因素众多,还需要进一步研究和规范,提高DCE的可重复性,并明确不同影像生物标志在不同病灶定性和不同治疗方法疗效评估中的价值。

5 肺部应用

       尽管磁共振成像技术已经得到了长足发展,但在肺部的应用由于受到肺组织缺乏氢质子和严重磁敏感伪影等的影响,其应用大大受到限制。使用传统的血管内对比剂,磁共振增强扫描在肺部的应用仍缺乏临床价值和应用前景。已有基础研究和临床实验证实,使用超极化惰性气体(如He-3或Xe-129),可以实现肺的磁共振成像(图11)。肺超极化惰性气体磁共振成像方法包括:(1)静态(或动态)肺通气成像;(2)磁共振扩散加权成像;(3)磁共振追踪标记成像;(4)氧敏感成像;和(5) He-129扩散相成像[23]

       通过这些成像方法,可以对慢性阻塞性肺气肿、哮喘、肺囊性纤维化等肺内病变的部位、严重程度、转归和治疗疗效进行评估;其中,通过Xe-129扩散相成像,还可以测量肺组织的氧分压、肺泡换气效率等[24]。尽管肺超极化惰性气体磁共振成像有非常好的临床价值,但受到惰性气体超极化设备匮乏和He-3稀缺、价格昂贵等影响,其临床应用目前有限。由于Xe-129相对获取容易,具有心脏和神经保护功能,除了具有He-3肺磁共振成像的优点外,还能通过扩散相成像获得肺内氧分压和肺泡换气效率,因此在未来的肺磁共振超极化惰性气体成像中具有较高的应用前景[25]

图11  磁共振He-3超级化肺静态通气成像
Fig. 11  Pulmonary static ventilation Images of Hyperpolarized 3He MR.

6 磁共振对比剂的发展展望

       现代医疗的模式倡导精准医疗,而精准医疗需要精准影像。因此。有必要进一步研究和开发具有组织特异性的磁共振对比剂,提高疾病的早期检出和定性,并能对疾病进行准确分期或分级(如肿瘤的分期、分级和颈动脉粥样斑块的定性等),还可以对治疗疗效进行准确的量化评估。

       纳米科学的发展和一站式医疗模式的倡导和普及,除了充分挖掘磁共振对比剂的诊断价值外,还使得研发具有诊断显像和治疗功能的一体化新型磁共振对比剂成为可能[26]。目前很多具有组织特异性及诊疗一体化磁共振对比剂还处于基础研究和临床前期实验阶段[27, 28],距离用于人体磁共振增强还有一段很长的路要走。但随着时间推移和对比剂科学研究的深入,相信可以突破目前磁共振对比剂的局限性,在疾病诊断和疗效评估中,磁共振对比剂更具组织特异性和高度的精准性,兼具影像诊断和治疗功能,为疾病的诊疗带来光明的应用前景。

[1]
Ashton E, Riek J. Advanced MR techniques in multicenter clinical trials. Journal of magnetic resonance imaging. JMRI, 2013, 37(4):761-769.
[2]
Bartolozzi C. MR of the liver: from breakthrough to clinical application. Abdominal imaging, 2012, 37(2):154.
[3]
Ferre JC, Shiroishi MS, Law M. Advanced techniques using contrast media in neuroimaging. Magnetic resonance imaging clinics of North America, 2012, 20(4):699-713.
[4]
Romano A, Rossi Espagnet MC, Calabria LF, et al. Clinical applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain tumours. La Radiologia medica, 2012, 117(3):445-460.
[5]
Lee JH, Park MJ, Kim JK, et al. Assessment of angiogenesis of hepatocellular carcinoma using dynamic contrast enhanced MR and histopathologic correlation in an experimental rat model. Hepato-gastroenterology, 2014, 61(130):447-452.
[6]
Burke C, Alexander Grant L, Goh V, et al. The role of hepatocyte-specific contrast agents in hepatobiliary magnetic resonance imaging. Seminars in ultrasound, CT, and MR, 2013, 34(1):44-53.
[7]
Salvaggio G, Furlan A, Agnello F, et al. Hepatocellular carcinoma enhancement on contrast-enhanced CT and MR imaging: response assessment after treatment with sorafenib: preliminary results. La Radiologia medica, 2014, 119(4):215-221.
[8]
Yin G, He GJ, Zhao SH. Cardiovascular magnetic resonance imaging:Part III--The clinical applications of cardiovascular magnetic resonance. Chin J Magn Reson Imaging, 2013, 4(6):450-458.
尹刚,贺光军,赵世华.心血管MRI三部分——心血管磁共振临床应用概述.磁共振成像, 2013, 4(6):450-458.
[9]
Christiansen JP, Karamitsos TD, Myerson SG, et al. Stress perfusion imaging using cardiovascular magnetic resonance: a review. Heart, lung & circulation, 2010, 19(12):697-705.
[10]
Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology, 2011, 261(2):358-374.
[11]
Ibrahim T, Bulow HP, Hackl T, et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. Journal of the American College of Cardiology, 2007, 49(2):208-216.
[12]
Vogel-Claussen J, Rochitte CE, Wu KC, et al. Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics : a review publication of the Radiological Society of North America, Inc, 2006, 26(3):795-810.
[13]
Lee SW, Cha SH, Chung HH, et al. Functional magnetic resonance cholangiography with Gd-EOB-DTPA: a study in healthy volunteers. Magnetic resonance imaging, 2014, 32(4):385-391.
[14]
Mensel B, Messner P, Mayerle J, et al. Secretin-stimulated MRCP in volunteers: assessment of safety, duct visualization, and pancreatic exocrine function. AJR American journal of roentgenology. 2014, 202(1):102-108.
[15]
Huang L, Han R, Sun ZY, et al. Clinical application of three-dimensional MR angiography using time-resolved imaging of contrast kinetics. Chin J Magn Reson Imaging, 2014, 5(2):144-147.
黄璐,韩瑞,孙子燕,等.三维时间分辨对比动态增强MR血管成像的临床应用.磁共振成像, 2014, 5(2):144-147.
[16]
Zhang J, Zhao XE, Wu H, et al. Application of three-dimensional dynamic contrast-enhanced magnetic resonance angiography in diagnosing lower extremity arterial disease in patients with diabetic foot. Chin J Magn Reson Imaging, 2014, 5(2):126-131.
张继,赵小二,吴慧,等.三维动态增强MR血管造影在糖尿病足下肢动脉病变中的应用研究.磁共振成像, 2014, 5(2):126-131.
[17]
Phinikaridou A, Andia ME, Lacerda S, et al. Molecular MRI of atherosclerosis. Molecules, 2013, 18(11):14042-14069.
[18]
Korn A, Bender B, Brodoefel H, et al. Grading of Carotid Artery Stenosis in the Presence of Extensive Calcifications: Dual-Energy CT Angiography in Comparison with Contrast-Enhanced MR Angiography. Clin Neuroradiol, DOI:
[19]
Shin KE, Ahn KJ, Choi HS, et al. DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma. Clinical radiology, 2014, 69(6):e264-272.
[20]
Armbruster M, Sourbron S, Haug A, et al. Evaluation of neuroendocrine liver metastases: a comparison of dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography/computed tomography. Investigative radiology, 2014, 49(1):7-14.
[21]
Huo L, Yan S, Wang J, et al. The value of quantitative dynamic-enhanced MRI in evaluating extra-ocular muscle involvement in patients with chronic thyroid-associated ophthalmopathy. Chin J Magn Reson Imaging, 2014, 5(1):30-34.
霍蕾,闫铄,王健,等.定量动态增强MRI对评价慢性期甲状腺相关眼病眼外肌受累的价值.磁共振成像, 2014, 5(1):30-34.
[22]
Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR American journal of roentgenology, 2013, 201(4):795-800.
[23]
Liu Z, Araki T, Okajima Y, et al. Pulmonary hyperpolarized noble gas MRI: recent advances and perspectives in clinical application. European journal of radiology, 2014, 83(7):1282-1291.
[24]
Kruger SJ, Niles DJ, Dardzinski B, et al. Hyperpolarized Helium-3MRI of exercise-induced bronchoconstriction during challenge and therapy. J Magn Reson Imaging, 2014, 39(5):1230-1237.
[25]
Hughes-Riley T, Six JS, Lilburn DM, et al. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications. J Magn Reson, 2013, 237:23-33.
[26]
Thakor AS, Gambhir SS. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J Clin, 2013, 63(6):395-418.
[27]
Amanlou M, Mahian H, Rad AM, et al. Gadolinium-deferasirox-D-glucosamine: novel anti-tumor and MR molecular (theranostic) imaging agent. Current radiopharmaceuticals, 2013,6(3):124-136.
[28]
Sabach AS, Bruno M, Kim D, et al. Gadofosveset trisodium: abdominal and peripheral vascular applications. AJR American journal of roentgenology, 2013, 200(6):1378-1386.

上一篇 磁共振分子影像学研究进展
下一篇 癫痫多模态磁共振成像研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2