分享:
分享到微信朋友圈
X
述评
磁共振灌注成像临床应用及进展
赵斌

赵斌.磁共振灌注成像临床应用及进展.磁共振成像, 2014, 5(S1):46-50. DOI:10.3969/j.issn.1674-8034.2014.05.S1.010.


[摘要] 磁共振灌注成像(PWI)是近年来快速发展的在分子水平反映组织微血管分布和血流灌注情况的一种功能性成像方法。该技术通过相关参数可半定量、定量地反应组织血流动力学信息,具有高空间分辨率和时间分辨率,无放射性且操作相对简单,因此广泛应用于中枢神经系统、体部及骨肌系统疾病的基础及临床研究,表现出积极的临床应用价值。尤其是近些年不断发展的ASL技术,以其完全无创的特性在评价脑血管病、脑肿瘤等病变的诊断、治疗及预后等方面显示了其独特的优势,而在体部及骨肌系统疾病评估中的应用尚处于探索阶段。随着MR软、硬件技术的不断发展,磁共振灌注成像在疾病的诊断、评估及监测治疗方面具有更加广阔的应用前景。
[Abstract] Magnetic resonance perfusion weighted imaging (MR-PWI) is a functional imaging technique that reflects the microvascular distribution and blood flow perfusion in molecular level. It can provide semi-quantitative and quantitative measurements and reflects the hemodynamic information. With the high temporal and spatial resolution, no radioactive and simple operation, MR-PWI has been used in the assessment of a variety of diseases, including the central nervous system abnormalities, body and the skeletal muscle system diseases. It is available for use as a clinical diagnostic tool. As a noninvasive perfusion imaging method, arterial spin labeling (ASL) shows the unique value and advantage in the diagnosis, treatment and prognosis evaluation of cerebrovascular disease and brain tumors, while the application in body and skeletal muscle system diseases is still in the stage of exploration. With the continuous development of MR software and hardware technology, magnetic resonance perfusion imaging has a broad application prospect in the diagnosis, assessment and monitoring treatment.
[关键词] 磁共振灌注成像;临床应用
[Keywords] MR perfusion imaging;Clinical application

赵斌* 山东省医学影像学研究所,济南 250021

通讯作者:赵斌,E-mail: cjr.zhaobin@vip.163.com


收稿日期:2014-08-20
接受日期:2014-09-25
中图分类号:R445.2 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2014.05.S1.010
赵斌.磁共振灌注成像临床应用及进展.磁共振成像, 2014, 5(S1):46-50. DOI:10.3969/j.issn.1674-8034.2014.05.S1.010.

       磁共振灌注加权成像(perfusion-weighted imaging, PWI)是一种反映组织微血管分布和血流灌注情况的MR功能成像技术,其常用序列包括:T2*加权磁敏感动态增强(dynamic susceptibility contrast, DSC)磁共振成像、T1加权动态增强(dynamic contrast enhancement, DCE)磁共振成像和动脉自旋标记增强(arterial spin labeling,ASL)磁共振成像。前两种技术系通过静脉团注对比剂使局部毛细血管内磁敏感性增加致局部磁场不均匀,质子自旋去相位,引起T2、T2*或T1值的明显缩短,获得一系列动态影像,通过定量指标反映局部灌注情况;因为需要注射外源性对比剂,DSC、DCE对于不能配合的病人或难以静脉注射的患者有一定的局限性。ASL则无需注射外源性对比剂,而是以动脉血内氢质子为内源性示踪剂并对其进行标记的无创性灌注成像方法,适应于儿童及不能配合的受试者。ASL和DSC主要应用于脑部灌注研究,而体部器官灌注成像则以DCE和ASL为主。

       DSC的评价参数主要有脑血流容量(cerebral blood volume, CBV)、脑血流量(cerebral blood flow, CBF)和平均通过时间(mean transit time, MTT)、达峰时间(time to peak, TTP)。由于CBV、CBF受MR扫描仪、团注对比剂量和速率、成像序列和参数、受检者的血容量和心排血量等因素影响,实际工作中多采用相对CBV (relative CBV, rCBV)、相对CBF(relative CBF, rCBF)。DCE则根据对比剂引起的信号强度变化与时间的关系,绘制时间-信号强度曲线,经工作站处理可得出反映血流动力状态的各种灌注指标,如容量转移常数(volume transfer constant, Ktrans)、速率常数(rate constant, Kep)、血管外细胞外间隙容积分数(extravascular extracellular volume fraction, Ve)。ASL仅可准确量化CBF,并具有良好的重复性。

1 MR灌注成像在脑部的应用进展及进展

       近年来,磁共振灌注成像技术日臻完善,临床应用也不断拓新。

       新的研究结果显示,PWI与DWI不匹配区域,不仅仅包含了缺血半暗带(ischemicpenumbra, IP),还包括良性灌注减低区;并且DWI高信号并不完全代表梗死核心,IP亦可以存在于DWI及PWI的异常区域内,而良性灌注减低区无需治疗即可自动恢复[1]。由于不需注射对比剂,ASL业已成为MR灌注成像的研究热点,但对其灌注定量的准确性仍有争议[2]。Huck等[3]对亚急性脑缺血的ASL和DSC的对比研究表明,ASL在显示小梗死和不完全性缺血病灶的效果已接近DSC,可以为临床提供有价值的信息,但ASL所测得的CBF值稍低于DSC,容易把部分短暂脑缺血发作误诊为急性脑梗死。

       脑肿瘤的PWI多采用DSC法。研究表明,rCBV值与肿瘤的分级具有显著的相关性[4],高级别胶质瘤瘤体部分的rCBV明显高于低级别胶质瘤,评价胶质瘤的病理分级rCBV明显优于rCBF [5]。有报道认为,通过测量药物及放疗后肿瘤及瘤周组织的rCBV值、rCBF值,PWI可以有效地评价肿瘤的治疗效果。rCBV值下降的程度可以反映药物抗肿瘤的疗效,且与放疗剂量相关[6]。此外,rCBV值能准确区分复发肿瘤的高灌注与坏死组织的低灌注[7]

       ASL在脑肿瘤中的应用也日益广泛,包括肿瘤血供、胶质瘤的术前分级及肿瘤放化疗后的疗效评估等[8]。肿瘤血流量在高、低级别胶质瘤之间有显著性差异,低级别胶质瘤表现为低灌注,高级别胶质瘤为高灌注[9]。ASL在脑肿瘤放化疗后肿瘤坏死或复发的鉴别方面也有很大的优势。放疗后坏死可表现为环状强化的肿块,伴周围脑白质水肿及占位效应,常与肿瘤复发不易鉴别。利用ASL监测治疗前后rCBF的变化,可以区分坏死或复发,间接反映肿瘤的预后情况。

       PWI对中枢神经系统其他疾病的研究,如阿茨海默病(Alzhemer’s disease, AD)、多发性硬化等也日渐增多。DSC研究结果显示,AD患者额顶叶皮质的灌注减低,且有较高的敏感性和特异性。与正常人群相比,AD患者双侧颞顶叶皮质、感觉运动区和海马的rCBV明显降低,且rCBV的降低与脑萎缩无关;轻度认知障碍患者内侧颞叶CBF减低[10]

       ASL对AD患者的研究也日趋增多。AD患者的CBF脑灌注图像上,脑灌注减低多呈对称性分布,以颞叶及颞顶交界灌注减低所占比例最高,其次是顶叶和额叶,枕叶受累者最少。提示AD患者的脑血流减低区首先出现于颞叶和(或)颞顶交界,然后逐渐累及顶叶、额叶和枕叶[11]

       DSC对多发性硬化患者的研究发现各种病灶的MTT显著延长、rCBV减少,且相对正常的脑白质区灌注减低,rCBF减低、MTT延长,而rCBV无明显变化[12]。在多发性硬化患者联合应用PWI和DTI,发现表现正常的胼胝体的CBF、CBV与平均弥散值(MD)明显相关,这种相关性与在脑缺血时观察到的两者的相关性相一致,表明正常脑白质区低灌注为缺血性改变,而非低代谢导致的灌注下降。

       ASL作为一种非侵袭性脑功能研究技术,可以通过神经血管联接来评价脑组织功能活动。ASL对磁敏感效应不敏感,更适用于脑功能活动灌注改变长时间实时追踪研究[13]。有研究者更将ASL应用于抑郁症、癫痫、偏头痛等神经系统疾病并取得了很好的效果。

2 MR灌注成像在体部的应用及进展

       PWI在体部的应用,随着扫描速度、时间分辨率的不断提升也较以往明显增多。数据处理和分析方面,从原始的非模型法到模型法的单输入和双输入、单室和双室及常规室(conventional compartment, CC)和分布参数(distributed parameter, DP)模型,算法越来越复杂,对软件的要求越来越高,但也同时更加接近供血的生理状态。

       目前,MR肺灌注的量化研究均建立在较多假设的基础上,仍处于半量化研究水平,绝对量化仍有很多困难。MR灌注成像在检测肺组织灌注缺损方面与SPECT有很高的相关性(叶、段、段以下水平Kappa value分别是0.98,0.83,0.69),可以发现细微的灌注异常[14,15,16]。但由于肺内气体/组织界面较大,磁敏感性不均匀,ASL对肺灌注的绝对定量研究受到了更大的限制[17]

       DCE定量分析对乳腺病变的术前诊断、预测非常有帮助,其敏感度与特异度分别达到90%和75%[18]。Ktrans、Kep对乳腺疾病的良恶性的鉴别有较高的价值,但对浸润性癌与导管原位癌鉴别效能较低;而Ve在良恶性病变间的均值差异无统计学意义,可能与病变发展过程中组织内血管外细胞外容积的相对比例变化较慢有关,使良恶性病变间的Ve值范围存在一定重叠性[19]

       时间-信号强度曲线在肝脏病变的诊断及鉴别中有重要意义,已经成为肝脏疾病诊断的必备手段[20]。除此之外,肝脏动态强化对于评价射频消融、经动脉化疗栓塞、经皮乙醇注射等治疗肝疾病的疗效亦有较大价值。动脉期如有肿瘤治疗区域的异常强化,则提示肿瘤残存或复发。肝细胞癌经动脉化疗栓塞后肝血流灌注图显示灌注值下降,时间-信号强度曲线波动幅度较动脉化疗栓塞前减小[21],Ktrans值与肝细胞癌治疗后的肿瘤应答和生存期有很好的相关性[22]

       Tajima等[23]利用脂肪抑制三维快速自旋梯度回波序列对胰腺进行动态增强扫描,根据达峰值时间将胰腺的时间-信号曲线分为4型,快速(25 s)达峰值为I型,1 min达峰值为Ⅱ型,2 min达峰值为Ⅲ型,最晚达峰值为Ⅳ型。结果发现肿块型慢性胰腺炎表现为Ⅱ型和Ⅲ型,而胰腺癌TIC为Ⅲ型和Ⅳ型,只有胰腺癌表现为Ⅳ型,即最晚达峰值。胰腺癌的灌注要低于周围正常胰腺组织。另外,良恶性胰腺肿瘤和非肿瘤性胰腺组织的药代动力学模型的DCE表现与胰腺纤维化程度和微血管密度明显相关[24, 25]

       肾实质的信号强度与所注射对比剂的浓度有关,故而可以根据示踪剂首过动力学原理将所测的浓度-时间曲线与各种生理学参数对应起来。最常用的灌注参数包括肾血流量(renal blood flow, RBF),平均通过时间(mean transit time, MTT),最大上升斜率(maximal up-slope, MUS)和到达峰值时间(time to peak, TTP)等。然而,由于血管外对比剂在首次通过会迅速弥散至血管周间隙及通过肾小球滤过,在评价肾血流灌注时难以避免误差,故采用大分子量的血管内对比剂理论上将获得更为准确的结果[26]

       大部分ASL序列采用的是EPI技术,具有较高的信噪比及时间分辨率,但对静磁场的不均匀性非常敏感,且EPI序列需要使用较长的TE,短T2的组织如肾髓质信号将很低。FAIR True-FISP序列[27, 28]克服了前述EPI序列的缺陷,将其应用于临床研究,结果表明重度肾动脉狭窄(管腔狭窄> 70%)与无或轻中度肾动脉狭窄(管腔狭窄<70%)的灌注成像存在显著性差异,FAIR灌注结果与狭窄程度及SPECT灌注结果有明显的相关性。

       女性盆腔的磁共振灌注研究集中于子宫肌层和内膜,是评估子宫内膜癌术前肌层浸润程度的有效途径。PWI能够测量子宫肌层微循环变化,有助于识别子宫肌层的生理功能和生理周期,并在辅助生殖治疗方面有一定的应用潜能[29]

       男性盆腔的磁共振灌注研究则以前列腺疾病为主。Rouviere等认为注药后36~ 66 s为外周带癌的最佳观察时间窗[30],但中央腺良、恶性组织的强化类型存在较大的重叠。前列腺癌Ktrans值显著高于正常外周带组织,差异有统计学意义;而前列腺癌与中央腺组织良性增生的Ktrans值是否存在差异,以及Kep和Ve值是否有助于鉴别前列腺癌与正常前列腺组织,仍存在争议。甚至有学者认为,与半定量分析比较,定量分析优势不显著。有学者应用ASL对前列腺进行灌注研究[31],结果显示前列腺外围叶、中央带与与相应位置的肿瘤的平均灌注值亦分别存在显著性差异。

       MR心肌灌注成像因对心肌缺血的敏感性和特异性均较高(87%和85%)而受到人们的广泛关注,心肌负荷灌注对存活心肌的评估也已应用于临床。冠状动脉微血栓引起的心肌局灶性梗死对冠状动脉造影和临床诊断都十分困难,心肌灌注成像和DCE成像在这方面有极大的应用潜力。

       对骨骼肌肉系统而言,某些肿瘤的强化曲线有一定特点,可辅助诊断[32]。ASL在肌骨系统肿瘤评价中的应用报道不多。国内吴仁华等[33]曾用ASL对兔软组织VX2肿瘤模型进行研究,结果显示ASL可区别肿瘤的存活区和坏死区。张朝晖等[34]则认为ASL可用于软组织肿瘤血管生成的评价及肿瘤组织活性的评估,进而可分析肿瘤的生物学特性,指导治疗、监测治疗效果。总之,磁共振灌注成像在骨肌系统的研究尚处于起步阶段,有待于进一步的开发。

[1]
Kidwell CS, Wintermark M, De Silva DA, et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke. Stroke, 2013, 44(1): 73-79.
[2]
Bokkers RP, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke, 2012, 43(5):1290-1294.
[3]
Huck S, Kerl HU, Al-Zghloul M, et al. Arterial spin labeling at 3.0 T in subacute ischemia: comparison to dynamic susceptibility perfusion. ClinNeuroradiol, 2012, 22(1):29-37.
[4]
Wang FF, Cheng JL, Zhao YL, et al. Dynamic susceptibility contrast perfusion weighted MR imaging in grading of meningioma. Chin J Magn Reson Imaging , 2011, 2(1):55-59.
王斐斐,程敬亮,赵艺蕾,等.动态磁敏感对比MR灌注成像对脑膜瘤分级的临床价值.磁共振成像,2011, 2(1):55-59.
[5]
Server A, Graff BA, Orheim TE, et al. Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3 T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumorgrading. Neuroradiology, 2011, 53(6):435-447.
[6]
Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, et al. Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy.Folia Neuropathol, 2010, 48(2):81-92.
[7]
Bai XF, Niu GM, Han XD, et al. Differentiation between recurrent glioma and radiation-induced brain injuries using perfusion weighted imaging and diffusion weighted imaging. Chin J Magn Reson Imaging, 2014, 5(1):7-10.
白雪菲,牛广明,韩晓东,等.PWI和DWI技术在鉴别脑胶质瘤复发与放射性脑损伤中的价值.磁共振成像,2014, 5(1):7-10.
[8]
Xiao HF, Yi Y, An WM, et al. A preliminary study of 3-dimensional pseudocontinous arterial spin labeling in WHO grade II gliomas subtyping. Chin J Magn Reson Imaging, 2014, 5(3):161-165.
肖华锋,衣岩,安维民,等.三维准连续动脉自旋标记灌注成像对WHO Ⅱ级胶质瘤分型临床应用价值初探.磁共振成像, 2014, 5(3): 161-165.
[9]
Cebeci H, Aydin O, Ozturk-Isik E,et al. Assesment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method. Eur J Radiol, 2014, 83(10):1914-1919.
[10]
Zimny A, Szewczyk P, Trypka E, et al. Multimodal imaging in diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region. J Alzheimers Dis, 2011, 27(3): 591-601.
[11]
Wierenga CE, Hays CC, Zlatar ZZ. Cerebral Blood Flow Measured by Arterial Spin Labeling MRI as a Preclinical Marker of Alzheimer’s Disease. J Alzheimers Dis, DOI:
[12]
Miao YW, Cai ZC, Zhang Q, et al. Longitudinal study of multiple sclerosis plaques by using susceptibility weighted imaging and dynamical susceptibility contrasted MR perfusion imaging. Zhong Hua Fang She Xue Za Zhi, 2011, 45(5): 426-431.
苗延巍,蔡兆诚,张清,等.多发性硬化白质脱髓鞘斑块的磁敏感加权成像及动态磁敏感增强灌注成像研究.中华放射学杂志, 2011, 45(5): 426-431.
[13]
Server A1, Graff BA, Orheim TE, et al. Quantitative functional magnetic resonance imaging of brain activity using bolus-tracking arterial spin labeling. J Cereb Blood Flow Metab, 2010, 30(5):913-922.
[14]
Kluge A, Gerriets T, Stolz E, et al. Pulmonary perfusion in acute pulmonary embolism:agreement of MIU and SPECT for lobar, segmental and subsegmental perfusion defects. ActaRadiol, 2006, 47(9):933-940.
[15]
Weidner M, Zöllner FG, Hagelstein C, et al. High temporal versus high spatial resolution in MR quantitative pulmonary perfusion imaging of two-year old children after congenital diaphragmatic hernia repair. Eur Radiol, 2014, 24(10):2427-2434.
[16]
Kohlmann P, Strehlow J, Jobst B, et a1. Automatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease. Int J Comput Assist Radiol Surg, DOI:
[17]
Martirosian P, Boss A, Fenchel M, et al. Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI. MagnReson Med, 2006, 55(5): 1065-1074.
[18]
Medeiros LR, Duarte CS, Rosa DD, et al. Accuracy of magnetic resonance in suspicious breast lesions:a systematic quantitative review and meta-analysis. Breast Cancer Res Treat, 2011, 126(2):273-285.
[19]
Li RM, Gu YJ, Mao J, et al. Evaluation of quantitative dynamic contrast enhanced MRI in differential diagnosis of breast lesions, Zhong Hua Fang She Xue Za Zhi, 2011, 45(2):164-169.
李瑞敏,顾雅佳,毛健,等.定量动态增强MRI鉴别乳腺良恶性病变的研究.中华放射学杂志, 2011, 45(2):164-169.
[20]
Sourbron S, Sommer WH, Reiser MF, et al. Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology, 2012, 263(3):874-83.
[21]
Tsui EY, Chan JH, Cheung YK, et al. Evaluation of therapeutic sectiveness of transarterial chemoembolization for hepatocellular carcinoma:correlation of dynamic susceptibility contrast enhanced echo planar imaging and hepatic angiography. Clin Imaging, 2000, 24(4):210-216.
[22]
Hsu C-Y, Shen Y-C, Yu C-W, et al. Dynamic contrast-enhanced magnetic resonance imaging biomarkers predict survival and response in hepatocellular carcinoma patients treated with sorafenib and metronomic tegafur/uracil. J Hepatol, 2011, 55(4):858-865.
[23]
Tajima Y, Kumki T, TsutSumi R, et al. Pancreatic carcinoma coexisting with chronic pancreatitis versus tumor-forming pancreatitis:diagnostic utility of the time-signal intensity curve from dynamic contrast-enhanced MR imaging. World J Gastroenterol, 2007, 13(6):858-865.
[24]
Bali MA, Metens T, Denolin V, et al. Tumoral and nontumoral pancreas: correlation between quantitative dynamic contrast-enhanced MR imaging and histopathologic parameters. Radiology, 2011, 261(2): 456-466.
[25]
Kim JH, Lee JM, Park JH, et al. Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment--a preliminary study. Radiology, 2013, 266(1): 185-196.
[26]
Zöllner FG1, Zimmer F2, Klotz S, et al. Renal perfusion in acute kidney injury with DCE-MRI: deconvolution analysis versus twocom partment filtration model. Magn Reson Imaging, 2014, 32(6):781-785.
[27]
Martirosian P, Klose U, Mader I, et al. FAIR true-FISP perfusion imaging of the kidneys. MagnReson Med, 2004, 51(2):353-361.
[28]
Gao Y, Goodnough CL, Erokw BO, et al. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): arapid and quantitative perfusiontechnique for high-field MRI. NMR Biomed, 2014, 27(8): 996-1004.
[29]
Ernest HY, Ng MD, Carina CW, et al. Relationship between uterine blood flow and endometrial and subendometrial blood flows during stimulated and natural cycles. FertilSteril, 2006, 85(3): 721-727.
[30]
Rouviere O, Raudrant A, Ecochard R, et al. Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic MR imaging. EurRadiol, 2003, 13(5):931-942.
[31]
Zhang HB, HU DY, ZHANG J, et al. Diagnosis of prostate cancer using arterial spin labeling with 3.0 T MR. Radiol Practice, 2012, 27(6):645-651.
张海彬,胡道予,张娟,等. 3.0 T磁共振动脉自旋标记(ASL)技术诊断前列腺癌. 放射学实践, 2012, 27(6):645-651.
[32]
Zhang J, Liang W, Li XS, et al. The time-intensity curve of dynamic MR imaging for discrimination of benign and malignancy of musculoskeletal tumors. Chin J Radiol, 2009, 43(6):575-578.
张晶,梁伟,李晓松,等.MR动态增强扫描时间-信号强度曲线在骨骼肌肉系统肿瘤定性诊断中的价值.中华放射学杂志,2009,43(6):575-578.
[33]
Wu RH, Vu Mai, Chen XK, et al, Noninvasive measurement of perfusion in rabbit VX2 tumors using flow-sensitive alternating-inversion recovery with an extra radiofrequency pulse. Zhong Hua Fang She Xue Za Zhi, 2005, 39(3):313-316.
吴仁华,Vu Mai,陈小轲,等.附加射频的流敏交替反转回波序列无损伤地测定兔VX2肿瘤的血流灌注.中华放射学杂志, 2005, 39(3): 313-316.
[34]
Zhang ZH, Meng QF, Gao ZH, et al. Evaluation of anglogenesis of VX2 soft tissue tumor by arterial spin labeling perfusion imaging. Zhong Hua Fang She Xue Za Zhi, 2010,44(10):1084-1088.
张朝晖,孟悛非,高振华,等.动脉自旋标记灌注成像对软组织VX2肿瘤血管生成的评价.中华放射学杂志, 2010, 44(10):1084-1088.

上一篇 癫痫多模态磁共振成像研究进展
下一篇 磁共振成像在骨关节系统疾病应用及进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2