分享:
分享到微信朋友圈
X
临床研究
7.0 T MRI对离体乳腺癌组织浸润范围判定的病理对照研究
陈业晞 钟晓平 李志扬 蔡道全 吴仁华 沈智威

CHEN Ye-xi, ZHONG Xiao-ping for common first author陈业晞,钟晓平,李志扬,等. 7.0 T MRI对离体乳腺癌组织浸润范围判定的病理对照研究.磁共振成像, 2015, 6(1): 27-32. DOI:10.3969/j.issn.1674-8034.2015.01.006.


[摘要] 目的 评估MRI技术判定乳腺癌肿瘤边界的准确性,验证MRI技术在手术前判断乳腺癌浸润范围的价值。材料与方法 新鲜乳腺离体标本17个,离体后迅速行MR扫描及病理检查,在7.0 T MR成像仪上采集乳腺癌离体样本的MR T1WI、T2WI和扩散加权成像(DWI)。通过VnmrJ 4.0计算出表观扩散系数像(ADC )及各向异性分数像(FA)。在VnmrJ 4.0软件上对DWI、ADC和FA图通过手工勾绘病变范围,并计算病变面积。在显微镜下标记病理切片的病变范围,通过Photoshop软件计算病变面积,最后比较上述图像的病变范围与病理染色切片的病变范围差异。结果 在送检的乳腺癌标本中,经病理证实14例为乳腺浸润性导管癌,2例为乳头状癌,1例为黏液腺癌。结合不同序列的MRI可观察到乳腺肿瘤边缘的浸润范围。经过spss19.0软件分析,发现MR DWI、ADC及FA像的病变面积与病理标本浸润范围具有显著的相关性;DWI平均面积[(4.32± 1.28) cm2]与病理平均面积[(3.81±1.12) cm2]比较,r=0.966 ,P <0.01;ADC平均面积[(4.68±1.43) cm2]与病理平均面积[(3.81±1.12) cm2]比较,r=0.976 ,P<0.01;FA平均面积[(4.74±1.53) cm2]与病理平均面积[(3.81±1.12) cm2]比较,r=0.964,P<0.01)。结论 7.0 T MRI ADC图和FA图在评估肿瘤浸润范围具有更明显的价值,病变面积与病理结果有很高的相关性,可为乳腺癌术前病变范围评估提供重要的参考信息。
[Abstract] Objectives: To evaluate the accuracy of infiltration range of breast cancer tissue in vitro using 7.0 T magnetic resonance imaging(MRI), and to verify the possible value of determining the breast tumor margin before surgery by MRI.Materials and Methods: Fresh breast cancer tissue in vitro (n=17) were underwent 7.0 T MRI and histological examination. After acquisition of diffusion weighted imaging (DWI)、apparent diffusion coefficient (ADC) and fractional anisotropy (FA) imaging on the 7.0 T MRI machines, the edge of lesion was drawn out manually and the area of tumor was calculated by VnmrJ 4.0. The HE dyeing slice of pathology was observed under a microscope. The edge of lesion was drawn out manually and the area was calculated by Photoshop software. The correlation between the area of tumor from MRI and the histological slice was analyzed using Pearson correlation test of SPSS version 19.0.Results: In all specimens, there were 14 cases of breast infiltrative ductal carcinoma, 2 cases breast papillary carcinoma and 1 case of mucinous breast carcinoma confirmed pathologically. Significant correlation was found between the area of breast tumor on DWI, ADC, FA mapping and histological result (4.32±1.28) cm2 in DWI vs. (3.81±1.12) cm2 in histological slice, Pearson correlation coefficient r=0.966, P=0.00, (4.68±1.43) cm2 in ADC vs. (3.81±1.12) cm2 in histological slice, Pearson correlation coefficient r=0.976, P=0.00, (4.74±1.53) cm2 in FA vs. (3.81±1.12) cm2 in histological slice, Pearson correlation coefficient r=0.964, P=0.00).Conclusions: Although all of the areas acquired by MRI were larger than those by histological results, there was significant correlation between them. Thus, useful information for evaluating the infiltration range of breast tumor may be provided by MRI.
[关键词] 乳腺肿瘤;磁共振成像;病变范围;病理学
[Keywords] Breast neoplasms;Magnetic resonance imaging;Infiltration range;Pthology

陈业晞 汕头大学医学院第二附属医院普外科,汕头 515041

钟晓平 汕头大学医学院第二附属医院普外科,汕头 515041

李志扬 汕头大学医学院第二附属医院普外科,汕头 515041

蔡道全 汕头大学医学院第二附属医院普外科,汕头 515041

吴仁华* 汕头大学医学院第二附属医院影像科,汕头 515041

沈智威* 汕头大学医学院第二附属医院影像科,汕头 515041

通讯作者:吴仁华,E-mail:rhwu@stu.edu.cn; 沈智威,E-mail:zwshen@stu.edu.cn


基金项目: 广东省科技计划项目基金项目 编号:2012B031800425
收稿日期:2014-09-01
接受日期:2014-11-06
中图分类号:R445.2; R737.9 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2015.01.006
陈业晞,钟晓平,李志扬,等. 7.0 T MRI对离体乳腺癌组织浸润范围判定的病理对照研究.磁共振成像, 2015, 6(1): 27-32. DOI:10.3969/j.issn.1674-8034.2015.01.006.

       在世界范围内,乳腺癌的发病率明显上升,且发病年龄呈现年轻化的趋势,乳腺癌已成为女性恶性肿瘤病死率的首位病因[1]。据国外研究预测,到2021年我国在35~49年龄段中的女性将有250万例乳腺癌病例。但目前存在乳腺癌保乳术后复发问题。笔者认为造成上述问题的主要原因之一是,无法准确确定乳腺癌浸润范围,导致不能确定客观准确的手术切缘。

       MRI对软组织具有较高的分辨率,目前已逐渐重视其在乳腺疾病诊断中的应用价值[2],具有准确诊断乳腺癌浸润范围的潜力[3]。已有研究证实,动态增强、扩散加权像(diffusion weighted imaging ,DWI)以及表观扩散系数(apparent diffusion coefficient,ADC)、各向异性分数(fractional anisotropy,FA)[4,5]可提高乳腺癌鉴别诊断的准确性[6,7,8],可较准确评估乳腺肿瘤体积的大小[9,10]。但据我们所知,尚缺少在体病变范围与病理的对比研究。高场MRI比低磁场具有更高的分辨率,因此显示的病变范围更加准确[11]。本研究将在7.0 T MR成像仪上采集乳腺新鲜离体标本的T1WI、T2WI、DWI,并计算其ADC图及FA图,然后与病理大体标本肿瘤浸润范围的比较,验证上述MRI技术在评估乳腺癌浸润范围的价值。

1 材料与方法

1.1 一般资料

       选取本院2014年3~8月17例新鲜乳腺离体标本,患者年龄29~72岁,平均(42.1 ± 8.9)岁,中位年龄53岁,患者均为女性。根据X线钼靶、乳腺彩超及临床经验,选取乳腺癌可能性大的乳腺标本进行病理和7.0 T MRI检查。后经病理证实全部是恶性肿瘤,其中浸润性导管癌14例、乳头状癌2例,黏液腺癌1例。将所有离体标本分成两部分,一部分立即行7.0 T MR扫描(扫描最贴近切面的层次)及另一部分进行病理学检测(主要检测切面大体标本的肿瘤浸润情况)。

1.2 MR图像采集

       采用Aglient 7.0 T/160/AS动物MR成像仪(安捷伦科技,美国)和2通道95/63体线圈扫描。将样本切面向前,用胶带适当加压固定。首先采集三平面定位图,确定样本位于线圈中心位置。然后对线圈进行调谐,使用3D shim匀场。最后选取最贴近切面的层面为研究对象,分别采集T1WI、T2WI、DWI图像。T1WI采用多层面快速自旋回波序列(fast spin echo multi-slice,FSEMS),扫描参数:TR 500 ms,TE 7.3 ms,矩阵256×192,FOV 50 mm×40 mm,激发次数为4,层厚1 mm ,平均采集次数8,扫描时间1 min 34 s。T2WI也使用FSEMS序列,扫描参数:TR 1500 ms,TE 40 ms,矩阵256×192,FOV 50 mm×40 mm,激发次数为4,层厚1 mm,平均采集次数1,扫描时间1 min 39 s。DWI使用基于快速自旋回波扩散序列,扩散选项使用dual模式(fsemsdw_dual) ,扫描参数:扩散敏感系数b值为1000 s/mm2,TR 2000 ms,TE 36 ms,回波链长8,采集带宽为1500 Hz/像素,FOV 50 mm×40 mm,矩阵128×96,平均采集次数1,层厚1 mm,层间距0.1mm,扫描时间2 min 52 s。然后在后处理软件Vnmrj 4.0上构建ADC图、FA图。

1.3 ADC值、FA值及肿瘤范围的测量

       扫描完成后将图像原始数据传送至后处理工作站,应用VnmrJ 4.0软件对数据进行分析处理,工作站自动生成DWI、ADC图及FA图。取肿瘤标本切面作为范围测定层面,比较标本T1WI、T2WI、DWI、ADC和FA图后,在DWI、ADC及FA图上作初步范围确定。沿肿瘤边缘经过VnmrJ 4.0测量工具手工勾绘出肿瘤形状,计算肿瘤浸润区域并计算其面积。如果ADC值不显著,结合DWI、T2WI、T1WI及FA图结果,勾画出肿瘤浸润的面积。所有测量结果与手术病理大体及组织学进行对照以保证实验数据更加确切。

1.4 病理学检查及分析

       17例标本均有本院病理科专业技师取材,制作病理切片,其切取层面为最接近标本切面的一层,确保病理与MR扫描层面为相邻的两个层面。将采集的组织平展于可固定的平片上,经10%甲醛溶液固定,组织脱水,石蜡包埋后,应用切片机将蜡块切片,切片厚度约为5μm,制成病理大切片后,行HE染色,使用中高倍镜(100~400倍)进行全层或多层"地毯式"地观察病灶并搜寻病灶。根据细胞形态判断肿瘤和正常细胞:肿瘤细胞染色深,细胞较大,形态不一,核浆比较高,细胞核异型性高,核分裂象常见且多为病理性或异常核分裂,核膜增厚,核仁形态不规则,数目增多。在肿瘤浸润边缘将浸润范围勾画出来。再按照一定比例尺,将图片导入Photoshop CS5软件,通过计算病变范围的像素占总面积像素比计算出病变范围的面积。比较病理巨检异常区域与影像上观察异常区域的相关性,进一步评估肿瘤的浸润范围,并根据病理和(或)影像异常区域行组织病理学检查,结果与MRI检查一对一比较。比较ADC图及FA图上肿瘤的浸润面积及病理浸润范围的面积。

1.5 统计学分析

       采用SPSS 19.0统计学软件,对所有数据进行分析,计算MRI上各方式获得的肿瘤浸润面积及病理结果浸润范围,计量资料均以均数±标准差(±s)表示,采用Pearson相关系数分析判断DWI、ADC图及FA图结果肿瘤面积与病理结果的相关性。相关系数0.8~1.0为极强相关,0.6~0.8为强相关,0.4~0.6为中等程度相关,0.2~0.4为弱相关,0.0~0.2为极弱相关或无相关

2 结果

       图1为乳腺癌离体标本,图中可见肿瘤组织(箭头)。通过7.0 T MRI,标本的T1WI、T2WI如图2所示,图中低信号的为肿瘤浸润范围。图3中A~C分别为DWI图、ADC图、FA图,图3D为手工勾绘出的肿瘤浸润范围图,图3E为VnmrJ 4.0软件所计算出的面积结果,图中病变范围为框内区域,DWI中肿瘤面积范围为(4.32±1.28) cm2,变化范围为2.77~6.92 cm2;ADC图中肿瘤面积从3.05 cm2到7.52 cm2不等,平均为(4.68±FA图中肿瘤面积从2.807 cm2到7.924 cm2不等,平均为(4.74±1.53) cm2。病理检查结果如图4所示,图4A为乳腺大体切片,图4B为显微镜下通过手工勾绘乳腺癌浸润区域,病变范围面积由2.19 cm2到6.07 cm2不等,平均为(3.81± 1.12) cm2。病理组织学情况见图4C,根据病理组织学结果,所有标本均为乳腺癌,其中浸润性导管癌14例,乳头状癌2例,黏液腺癌1例。通过SPSS 19.0统计分析及Pearson相关系数研究,结果如图5所示,DWI平均面积[(4.32±1.28) cm2]与病理面积[(3.81±1.12) cm2]比较,r=0.966 ,P=0.00 <0.01 ;ADC平均面积[(4.68±1.43) cm2]与病理[(3.81± 1.12) cm2]比较,r=0.976,P=0.00 <0.01 ;FA平均面积[(4.74±1.53) cm2]与病理平均面积[(3.81±1.12) cm2]比较,r=0.964 ,P=0.00 <0.01。

       观察离体乳腺癌组织和MR图像上的肿瘤信号特征可以发现:(1)离体乳腺癌组织具有质地较硬,包膜不完整,边缘不整齐,部分可见点片状出血等特点,肿瘤组织周围仍可见少量正常乳腺组织;(2)在MRI中,乳腺癌组织信号与正常乳腺组织信号差异较大,在T1WI和T2WI中,正常脂肪信号呈均匀高信号,但肿瘤组织信号呈不均匀低信号,肿瘤组织内可见出血点,位置与离体组织样本一致;(3)在DWI中,肿瘤组织呈现低信号而正常乳腺组织信号较高,ADC图谱中,肿瘤组织信号比正常乳腺组织高,在FA图谱中,肿瘤组织信号较低而正常组织信号相对较高。

       观察肿瘤和正常组织边缘可发现:(1)在乳腺MR T1WI和T2WI上,可观察到肿瘤组织与正常组织上具有大体明显的边界,在T1WI和T2WI左上部分可见伪足征,做下部分可见肿瘤边界模糊,因此可以明确肿瘤浸润;(2)在ADC像和FA像中,左上部分肿瘤边缘毛糙模糊,其位置与T1WI和T2WI基本对应。右边部分边缘相对清晰。综上所述,结合不同序列的MR图像,基本可以确定肿瘤浸润边界,上述结果在其他标本中也得到证实。

图1  乳腺新鲜离体大体标本,箭头所指为肿瘤组织,质地较硬,无包膜,边缘不清,周围可见少量乳腺正常组织
图2  A、B分别为离体肿瘤标本的T1WI及T2WI,图中所示低信号为肿瘤病变组织,高信号为正常乳腺组织及脂肪组织
图3  A~C分别为DWI图、ADC图及FA图,A中低信号区为病变区域,使用VnmrJ 4.0软件测量工具手工勾绘出肿瘤浸润范围如D所示,框内为肿瘤病变区域,并通过测量工具计算出肿瘤浸润范围的面积如E所示,浸润范围面积为3.479 cm2。B、C箭头标识区为病变边界模糊范围,可能为浸润较严重
图4  A:乳腺大体标本切片;B:在通过显微镜中高倍镜观察下,判断肿瘤的浸润范围,通过手工勾绘出的肿瘤浸润范围的结果,图中圈内即为肿瘤浸润范围;C:为图B方框内放大的肿瘤病理组织学结果(HE ×400),图中可见肿瘤细胞染色深,大小形态不一,异型性明显,部分可见病理性核分裂象,少量可见核仁的存在。该标本诊断为浸润性导管癌
图5  DWI、ADC、FA及病理结果的箱线图,图中展现了各个方式所测得的结果的均值、中位数及标准差,可说明DWI、ADC及FA结果与病理结果有一定的一致性
Fig. 1  The arrow showed the fresh breast cancer tissue in vitro. It was a hard tissue without an envelope and clear edge, while there was normal tissue around it.
Fig. 2  A and B showed T1 weighted imaging and T2 weighted imaging of in vitro breast cancer respectively. There were lower signals of the lesions, while the normal breast tissue and lip had greater signals.
Fig. 3  A, B and C were the DWI map, ADC map and FA map. The area of lower signal was the lesion of cancer, which was outlined manually in D by VnmrJ 4.0 program. E showed the area of the invasion. According to the results, the area of invasion was 3.479 cm2. The fuzzy area pointed by the arrow was the edge of invasion with a more severe infiltration in B and C.
Fig. 4  A showed the slice of breast cancer. B showed the invasive area of the slice, which was outlined manually at high magnification. C showed the amplification of the histological result (HE ×400). The cells in the view had a deep stain, different size and shape and polymorphism. There were part of irregular mitosis and nucleoli in the cells. According to the histological result, the above slice was diagnosed with breast infiltrative ductal carcinoma.
Fig. 5  The box plot of DWI, ADC, FA and histological result exhibited the mean, median and standard deviation of the results. It accounted for the coherence of DWI, ADC, FA and histological results.

3 讨论

       MRI技术具有极好的软组织分辨率和无射线辐射特点,在乳腺癌的诊断和病变范围的评估有独特的优势[12,13],已有的大量研究结果表明,与乳腺X线和超声检查相比,乳腺MRI检查对于乳腺良恶性肿瘤的鉴别和诊断、乳腺癌分期、疗效评估以及评估肿瘤血管生成和肿瘤生物学行为等方面可获得更准确的信息[14,15]。中国抗癌协会乳腺癌诊治指南与规范(2011版)指出,MRI对浸润性乳腺癌的高敏感性,有助于发现其他影像学检查所不能发现的多灶病变和多中心病变。《美国NCCN肿瘤临床指南》 (2010)也认为,MRI可能有助于在组织致密乳房中寻找其他病灶,有助于评估在新辅助治疗前后的肿瘤范围以及是否可行保乳治疗。

       自从DWI应用于乳腺病变诊断以来,已有较多学者探讨乳腺病变在DWI中的变化情况,并认为其在评估乳腺癌浸润范围方面的重大意义[16,17]。利用恶性肿瘤的细胞增殖速度快、核浆比例高和细胞外间隙少等扩散受限的特点,通过检测水分子的微观运动情况来反映人体组织的空间组成信息和病理生理状态下各组织成分水分子的功能变化,从而为良恶性肿瘤的诊断和鉴别诊断提供必要的信息,并有潜力区分肿瘤的浸润边界[18,19];并且通过测定ADC值可得到定量结果,比较明确地区分乳腺正常组织与病变组织[20,21,22,23]。乳腺肿瘤ADC值与细胞密度的相关性很好,恶性肿瘤生长活跃、细胞密度高、ADC值小,良性肿瘤细胞密度低、ADC值大[24]。有学者认为DWI结合ADC对乳腺癌范围的确定有较明确的意义[25],可进一步指导临床治疗方案的选择[26],甚至可评估乳腺癌腋窝淋巴结转移情况[27],对乳腺癌患者的早发现,早诊断及早治疗有着极其重要的作用[28,29]

       扩散张量成像(diffusion tensor imaging,DTI)及FA技术最初应用于中枢神经系统[7],近年来随着MR扫描设备以及成像技术的不断发展,DTI及FA在中枢神经系统外的器官如心脏、肝脏、肾脏、前列腺、乳腺等的应用研究具有了可行性,成为了国内外研究的热点[5]。FA作为最常用的反映组织内水分子扩散各向异性的定量指标,表示水分子扩散各向异性成分在整个扩散张量中所占的比例,FA值越接近于1说明扩散各向异性越强,间接反映组织内水分子扩散的快慢[30]

       本研究中,笔者发现离体乳腺癌样本的DWI、ADC和FA图面积基本一致。与T1WI和T2WI比较,ADC和FA图能更好的显示病变和正常脂肪组织的边界,显示浸润范围。这部分ADC呈高信号,FA低信号,且边界模糊,说明恶性肿瘤生长活跃,组织内水分子扩散加速,提示术前制定手术范围时需加大该区的切除面积。但上述结果也可能受磁场不均匀影响,还需进一步深入研究。就MRI结果的病变范围均大于病理结果范围,笔者认为可能是制作病理切片时石蜡包埋等环节造成的组织脱水,导致组织整体体积缩小,也可能由于手工编绘时出现的误差或者由于MRI与病理切片的切面不一致造成。另外,在DWI下的病变,其周围产生的局限性水肿常被怀疑成恶性病变,无形中增加了测量病灶的范围使产生的测量结果偏大,同时也改变了病灶边缘的实际形态。在今后研究中,将加大样本量,进一步验证本研究结论,并使用计算机自动计算病变范围,减少手动的误差。并改进病理切片染色方法,更好的显示病变范围。

       总之,结合7.0 T MRI发现,与T1WI和T2WI比较,ADC和FA图在评估肿瘤浸润范围具有更明显的价值,其结果与病理结果有很强的相关性。对乳腺癌患者术前肿瘤浸润范围的评估,指导乳腺癌手术术式的选择及手术切缘的判断有着重要的参考价值。

[1]
Yang L, Li LD, Chen YD,et al. Time trends, estimates and projects for breast cancer incidence and mortality in China. Chin J Oncol, 2006, 28(6): 438-440.
杨玲,李连弟,陈育德,等.中国乳腺癌发病死亡趋势的估计与预测.中华肿瘤杂志, 2006, 28(6): 438-440.
[2]
Smith RA. The evolving role of MRI in the detection and evaluation of breast cancer. N Engl J Med, 2007, 356(13): 1362-1364.
[3]
Alsharif S, Daghistani R, Kamberoğlu EA, et al. Mammographic, sonographic and MR imaging features of invasive micropapillary breast cancer. Eur J Radiol, 2014, 83(8): 1375-1380.
[4]
Baltzer PA, Schafer A, Dietzel M, et al. Diffusion tensor magnetic resonance imaging of the breast: a pilot study. Eur Radiol, 2011, 21(1): 1-10.
[5]
Cakir O, Arslan A, Inan N, et al. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. Eur J Radiol, 2013, 82(12): e801-806.
[6]
Woodhams R, Ramadan S, Stanwell P, et al. Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics, 2011, 31(4): 1059-1084.
[7]
Zhao LY, Zhou CW, Li J. Progress of breast imaging in Radiological Society of North America 2012. Chin J Magn Reson Imaging, 2013, (02): 156-160.
赵莉芸,周纯武,李静. 2012年北美放射学年会乳腺影像学研究进展.磁共振成像, 2013, (02): 156-160.
[8]
Chen DM, Wang QS, Wang J, et al. MR imaging analysis of phyllodes tumors of the breast. Chin J Magn Reson Imaging, 2013, (01): 24-28.
陈对梅,汪青山,王峻,等.乳腺叶状肿瘤的MRI表现分析.磁共振成像, 2013, (01): 24-28.
[9]
Zhai G, Kim H, Sarver D, et al. Early therapy assessment of combined anti-DR5 antibody and carboplatin in triple-negative breast cancer xenografts in mice using diffusion-weighted imaging and (1)H MR spectroscopy. J Magn Reson Imaging, 2014, 39(6): 1588-1594.
[10]
Yoo H, Shin HJ, Baek S, et al. Diagnostic performance of apparent diffusion coefficient and quantitative kinetic parameters for predicting additional malignancy in patients with newly diagnosed breast cancer. Magn Reson Imaging, 2014, 32(7): 867-874.
[11]
Schnall MD, Blume J, Bluemke DA, et al. Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology, 2006, 238(1): 42-53.
[12]
Tan SL, Rahmat K, Rozalli FI, et al. Differentiation between benign and malignant breast lesions using quantitative diffusion-weighted sequence on 3 T MRI. Clin Radiol, 2014, 69(1): 63-71.
[13]
Pinker K, Helbich TH, Magometschnigg H, et al. Molecular breast imaging: an update. Radiologe, 2014, 54(3): 241-253.
[14]
Gutierrez RL, Demartini WB, Silbergeld JJ, et al. High cancer yield and positive predictive value: outcomes at a center routinely using preoperative breast MRI for staging. AJR Am J Roentgenol, 2011, 196(1): W93-99.
[15]
Biglia N, Bounous VE, Martincich L, et al. Role of MRI (magnetic resonance imaging) versus conventional imaging for breast cancer presurgical staging in young women or with dense breast. Eur J Surg Oncol, 2011, 37(3): 199-204.
[16]
Trimboli RM, Verardi N, Cartia F, et al. Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR, and diffusion-weighted imaging: a proof of concept study. Am J Roentgenol, 2014, 203(3): 674-681.
[17]
Ouyang Z, Ouyang Y, Zhu M. et al. Diffusion-weighted imaging with fat suppression using short-tau inversion recovery: clinical utility for diagnosis of breast lesions. Clin Radiol, 2014, 69(8): 337-344.
[18]
Kang BJ, Lipson JA, Planey KR, et al. Rim sign in breast lesions on diffusion-weighted magnetic resonance imaging: diagnostic accuracy and clinical usefulness. J Magn Reson Imaging, 2014. DOI:
[19]
Janka R, Hammon M, Geppert C, et al. Diffusion-weighted MR imaging of benign and malignant breast lesions before and after contrast enhancement. Rofo, 2014, 186(2): 130-135.
[20]
Nogueira L, Brandao S, Matos E, et al. Diffusion-weighted breast imaging at 3 T: preliminary experience. Clin Radiol, 2014, 69(4): 378-384.
[21]
Zhai G, Grubbs CJ, Stockard CR, et al. Diffusion weighted imaging evaluated the early therapy effect of tamoxifen in an MNU-induced mammary cancer rat model. PLoS One, 2013, 8(5): e64445.
[22]
Wei W, Huang ZK, Long LL, et al. Diagnosis in 3.0 T MRI of infiltrating ductal carcinoma of breast. Chin J Magn Reson Imaging, 2012, 3(6): 434-439.
韦苇,黄仲奎,龙莉玲,等.乳腺浸润性导管癌的3.0 T MRI诊断.磁共振成像, 2012, (6): 434-439.
[23]
Wang DB. Sequence and scanning parameter optimization for breast MRI. Chin J Magn Reson Imaging, 2011, 2(3): 177-181.
汪登斌.乳腺MRI检查最佳序列选择及扫描参数优化.磁共振成像, 2011, 2(3): 177-181.
[24]
De Felice C, Cipolla V, Guerrieri D, et al. Apparent diffusion coefficient on 3.0 Tesla magnetic resonance imaging and prognostic factors in breast cancer. Eur J Gynaecol Oncol, 2014, 35(4): 408-414.
[25]
Mcdonald ES, Schopp JG, Peacock S, et al. Diffusion-weighted MRI: association between patient characteristics and apparent diffusion coefficients of normal breast fibroglandular tissue at 3 T. AJR Am J Roentgenol, 2014, 202(5): W496-502.
[26]
Mclaughlin RL, Newitt DC, Wilmes LJ, et al. High resolution in vivo characterization of apparent diffusion coefficient at the tumor-stromal boundary of breast carcinomas: a pilot study to assess treatment response using proximity-dependent diffusion-weighted imaging. J Magn Reson Imaging, 2014, 39(5): 1308-1313.
[27]
Kim EJ, Kim SH, Kang BJ, et al. Diagnostic value of breast MRI for predicting metastatic axillary lymph nodes in breast cancer patients: diffusion-weighted MRI and conventional MRI. Magn Reson Imaging, 2014, 32(10): 1230-1236.
[28]
Iwasa H, Kubota K, Hamada N, et al. Early prediction of response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and gray-scale ultrasonography. Oncol Rep, 2014, 31(4): 1555-1560.
[29]
Hahn SY, Ko EY, Han BK, et al. Role of diffusion-weighted imaging as an adjunct to contrast-enhanced breast MRI in evaluating residual breast cancer following neoadjuvant chemotherapy. Eur J Radiol, 2014, 83(2): 283-288.
[30]
Hagmann P, Jonasson L, Maeder P, et al. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 2006, 26(Suppl 1): 205-223.

上一篇 慢性梗阻性肺部病变患者脑皮质MRI形态学初步研究
下一篇 常规MRI、DWI和动态增强扫描在肝脏局灶性病变诊断中的应用
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2