分享:
分享到微信朋友圈
X
RSNA进展
磁共振成像技术在肝细胞癌中的应用进展
蒋涵羽 刘曦娇 宋彬

蒋涵羽,刘曦娇,宋彬.磁共振成像技术在肝细胞癌中的应用进展.磁共振成像, 2015, 6(2): 91-97. DOI:10.3969/j.issn.1674-8034.2015.02.003.


[摘要] 目的 探讨磁共振成像在肝细胞癌诊断、预后评价、治疗方案选择、疗效评估中的应用进展。材料与方法 收集并分析国内外最新相关文献。结果 功能磁共振成像及肝脏特异性对比剂等磁共振新技术的发展与应用使磁共振成像不仅有助于早期诊断肝细胞癌,还可以反映肿瘤的发病机制、生物学行为特点和细胞水平的基因表达异常,为肝细胞癌的预后评价、治疗方案的选择及疗效评估提供了重要信息。结论 磁共振成像是诊断、评估、监测、随访肝细胞癌重要的有效手段。
[Abstract] Objective: To review the recent advances of magnetic resonance imaging (MRI) techniques in the diagnosis, prognosis,treatment decision making and early assessment of therapeutic response of hepatocellular carcinomas (HCC).Materials and Methods: The newest related published literatures about the MR imaging of HCC were collected and analyzed.Results: With recent development and application of the functional MRI and liver-specific MR contrast agents in HCC, MRI is not only able to diagnose HCC in the early stage, but also reveal the tumor pathogenesis, biological behaviors and abnormal gene expressions at cellular level, thus providing significant information for the prognosis evaluation, treatment decision making and response assessment of HCCs.Conclusions: MR imaging plays a vital and effective role in the diagnosis, evaluation, surveillance and follow-up of HCC.
[关键词] 肝细胞癌;磁共振成像
[Keywords] Hepatocellular carcinoma;Magnetic resonance imaging

蒋涵羽 四川大学华西临床医学院2010级8年制研究生,成都 610041

刘曦娇 四川大学华西医院放射科,成都 610041

宋彬* 四川大学华西医院放射科,成都 610041

通信作者:宋彬,E-mail: cjr.songbin@vip.163.com


基金项目: 国家自然科学基金面上项目 编号:81171338,81471658
收稿日期:2015-01-16
接受日期:2015-01-27
中图分类号:R445.2; R735.7 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2015.02.003
蒋涵羽,刘曦娇,宋彬.磁共振成像技术在肝细胞癌中的应用进展.磁共振成像, 2015, 6(2): 91-97. DOI:10.3969/j.issn.1674-8034.2015.02.003.

       原发性肝癌(primary liver cancer, PLC)是全球最常见的恶性肿瘤之一。我国是原发性肝癌的高发国家,其发病率与死亡率均居世界首位[1]。PLC中90%以上的组织学类型是肝细胞癌(hepatocellular carcinoma, HCC)。根据我国国家卫生计生委、美国肝病研究学会、亚太肝脏研究协会、欧洲肝病学会等最新指南[2,3,4,5],磁共振成像(magnetic resonance imaging, MRI)是HCC诊断与监测的重要手段。近年来,随着磁共振功能与代谢成像技术以及肝脏特异性对比剂的发展与应用,MRI不仅有助于早期发现和诊断HCC,并且可以反映HCC的发病机制、生物学行为特点和细胞水平的基因表达异常,为HCC的预后评价、治疗方案的选择及疗效评估提供重要信息。本文结合2014年北美放射学会年会的相关热点,总结了近年来功能与代谢MR成像技术在HCC中应用的研究进展,并讨论了未来的研究方向。

1 MRI与HCC的生物学行为

       大多数HCC是在肝硬化的背景上经再生结节(regenerative nodule, RN)、低级别不典型增生结节(low grade dysplastic nodule, LGDN)、高级别不典型增生结节(high grade dysplastic nodule, HGDN)、含有微小癌灶的HGDN、小肝癌逐步发展而来[6,7,8]。目前多项研究表明,MRI某些与HCC的组织病理分型、生物学行为等密切相关的征象在HCC预后评价、治疗方案选择及疗效评估方面有重要价值。

1.1 微血管侵犯(microvascular invasion,MVI)

       MVI是HCC预后不良的重要标志之一。MVI与HCC的组织病理学类型、病灶大小等因素密切相关。研究发现,单结节型、单结节伴结节外生长型、多结节融合型HCC中MVI的发生率依次增高。直径大于4 cm的HCC中,MVI的发生率是直径小于4 cm的HCC的3倍。此外,低分化或未分化的HCC中MVI发生率是高分化HCC的6倍。目前的影像学检查手段还难以直接显示MVI,但一些影像学征象可以间接提示MVI的存在。研究发现,MVI的发生与HCC的多灶性[9]、MR肝胆期HCC病灶周围低信号环、18F-FDG-PET的摄取程度等相关[10]。MVI的早期影像学识别对HCC的评估具有重要意义,是目前HCC影像学研究的热点之一。

1.2 纤维包膜与假包膜

       许多HCC病灶周围存在纤维包膜或假包膜,它们是与HCC预后相关的重要因素。HCC的纤维包膜通常分为内外两层,内层为较致密的纤维组织,在T1WI、T2WI呈稍低信号;外层通常为扩张的血窦和新生小胆管,呈T1WI稍低、T2WI稍高信号。假包膜由扩张的血窦和瘤周纤维组织组成,在增强T1WI的延迟期表现为环状强化[11,12]。研究发现,纤维包膜是进展期结节性HCC的特征性表现,且具有完整纤维包膜的HCC病灶治疗后的复发率低于没有包膜或包膜不完整的病灶,提示纤维包膜可能可以阻止HCC的播散[11,12]

1.3 结节中结节(nodule in nodule)

       许多HCC病灶可以表现为大结节灶(通常是DN,特别是高级别DN,少数可以为早期HCC)中出现进展期HCC小结节灶,这一定程度上反映了HCC特殊的生长方式。其中,小结节灶的MR信号特点与强化方式通常与典型进展期HCC相似;而大结节灶的MR表现则常常接近分化较好的肝脏组织[13,14]。结节中结节在监测、随访肝硬化相关结节及诊断、评估早期HCC中具有重要的应用价值。

1.4 T1WI高信号结节

       肝脏再生结节、DN及部分高分化HCC病灶在T1WI上可以表现为高信号结节,这是由结节内组织出血坏死,伴随铜蛋白等顺磁性物质、淀粉、脂肪或糖蛋白堆积,铁沉着等病理过程所致[13]。研究发现,HCC病灶在T1WI上的信号强度与疾病的预后相关,低信号的HCC结节通常组织学分级较低,而高信号的HCC组织学分级通常较高,提示HCC的预后相对较好[13]

1.5 脂肪成分

       T1加权同/去相位扫描能够明确HCC病灶内是否含脂肪成分。HCC内部是否含有脂肪成分与疾病的预后相关。研究发现,脂肪较常出现在1.5~3 cm大小的肿瘤灶内,而很少出现在较大的肿瘤内[15]。且含有脂肪成分的HCC肿瘤生长和进展较缓慢,较少发生转移,预后相对较好[15]

2 MRI新技术进展

2.1 动态对比增强磁共振成像(dynamic contrast enhanced MRI, DCE-MRI)

       作为一种MRI灌注显像技术,DCE-MRI可以无创地评估组织及肿瘤的血流动力学特点。在肝脏病变的应用中,DCE-MRI能够显示不同扫描时间顺磁性对比剂在肝脏中的分布变化并测量容积转运参数(volume transfer coefficient,Ktrans)、速率常数(Kep)、血管外细胞外容积分数(Ve)等参数,从而定量地反映正常肝脏组织及病灶区域的血流动力学变化。

       目前,多期DCE-MRI与动态对比增强多排电子计算机断层扫描(multiple detector row computed tomography, MDCT)是HCC诊断、分期的影像学标准[2,3,4,5]。动脉期快速不均质血管强化(arterial hypervascularity)及静脉期或延迟期的快速洗脱(venous or delayed phase wash-out)是诊断HCC的可靠征象。由于DCE-MRI能够定量反映正常肝组织及HCC病灶的血流动力学特点,故DCE-MRI不仅有助于早期识别和评估HCC结节,还能够描绘出HCC病灶周围微血管的浸润情况、预测患者的预后及评估不同疗法的疗效[16,17,18,19,20,21,22,23,24,25,26,27]

2.2 肝脏特异性对比剂

       自20世纪80年代末期以来,第一代磁共振非特异性对比剂钆类螯合物(Gadolinium chelates)已经广泛运用于临床肝脏MRI之中,并且明显提高了MRI对肝脏病变的诊断能力。病理学研究证实,肝脏大多数RN及DN主要由门静脉供血,而HCC的血供则主要来源于肿瘤动脉,这使得典型的肝脏良、恶性结节在动态钆增强MRI上具有不同的增强模式。然而,大多数早期HCC结节在动态钆增强MRI上缺乏典型的HCC增强表现,多难以早期诊断。近年来,新型肝脏特异性对比剂已经逐渐应用于临床,它们不仅可以明显提高MRI对早期HCC的诊断能力,还能够帮助预测HCC的分化程度,从而为疾病的预后、治疗及疗效评估提供重要信息。目前常用的肝脏特异性对比剂主要包括肝细胞特异性对比剂及网状内皮系统(reticuloendothelial system, RES)特异性超顺磁性氧化铁(superparamagnetic iron oxid, SPIO)颗粒。

       肝细胞特异性对比剂可被肝细胞摄取,并在T1WI上产生明显的高信号,之后经胆管排泄,故能够特异性显示肝细胞功能和组织微血管形成情况。目前常用的肝细胞特异性对比剂包括钆-多贝酸二葡甲胺(Gadobenate dimeglumine, Gd-BOPTA)和钆喷替酸葡甲胺(Gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid, Gd-EOB-DTPA)两种类型。但研究发现,Gd-EOB-DTPA的安全性及对病灶的显示均显著优于Gd-BOPTA[28]。大多数HCC表现为动脉晚期快速的明显强化、均衡期洗脱及肝细胞特异期呈明显低信号[29,30],故可与一些肝胆期表现为高信号的肝脏结节相鉴别[31,32,33]。不仅如此,Gd-EOB-DTPA增强的MRI还可以反映HCC的分化程度[30,31],分化程度高的HCC,肿瘤保留了部分肝细胞的功能,可摄取一定量的对比剂,因而在肝细胞特异期表现为等或高信号,反之分化差者则无强化而呈低信号改变。

       SPIO可被肝脏RES内的Kupffer细胞特异性摄取,并使正常肝组织在T2WI上呈明显的均匀低信号。然而,HCC组织内一般没有或仅有少量Kupffer细胞[34],故肿瘤组织信号强度明显高于周围肝脏组织。由于SPIO-MRI中组织的强化程度与Kupffer细胞的数量密切相关,SPIO-MRI可以有效鉴别早期HCC与其他良性肝脏结节,此外,该技术还有助于预测HCC的分化程度[35,36,37,38]

2.3 磁共振弥散加权成像(diffusion weighted imaging, DWI)

       基于组织细胞间水分子的布朗运动,DWI可以定量地反映水分子在组织中的弥散情况,从而无创地展现不同组织的结构特点及其微循环的灌注情况[39]。其中,表观弥散系数(apparent diffusion coefficient, ADC)可以定量地表现组织水分子的活动能力。大多数HCC病灶的组织密度高于周围正常肝组织,因此水分的自由弥散受到限制,故HCC病灶在DWI图像上呈现为高信号,且ADC值低于周围组织[40,41,42,43]

       首先,通过定量分析组织中水分子弥散情况及计算相应的ADC值,DWI能够帮助鉴别肝脏的良性结节(如RN、DN等)以及HCC结节[44,45,46,47]。因此,DWI能够显著提高微小HCC病灶的检出率,增加HCC早期诊断的敏感性与准确率,还可用于肿瘤局部复发的监测与随访[18, 47,48,49,50]。其次,DWI可以预测HCC的病理分级[51,52,53],从而为患者预后评估提供重要信息。第三,DWI有助于指导HCC患者治疗方案的选择及评估抗肿瘤治疗的疗效。研究发现,DWI能够定量评价HCC患者接受TACE等局部消融治疗[54]及系统性治疗[55]后肿瘤细胞坏死情况。此外,DWI还具有扫描时间短[17],且不需要使用钆造影剂[39]等优点。

       然而,DWI图像较容易受相邻脏器运动及气体伪影的干扰,有时难以确切识别靠近膈肌的肝脏病变。不仅如此,虽然DWI对小肝癌的敏感性已明显高于其他传统影像学检查手段,但由于广泛纤维化的肝脏组织也可限制水分子的弥散,因此在此背景下HCC病灶与周围组织的对比度可有所降低,从而造成部分微小病灶的漏诊。

2.4 体素内不相干运动成像(intravoxel incoherent motion imaging, IVIM)

       IVIM是一种特殊的新兴磁共振DWI方法。与传统利用单指数模型对组织中水分子扩散运动状态作定量分析的DWI相比,IVIM能够通过双指数模型分别获取反映组织中水分子扩散情况以及微循环毛细血管灌注效应的参数,从而将来自于组织中水分子布朗运动的弥散信号和来自于毛细血管微循环的灌注信号区分开,从而更好地描述生物体内复杂的信号衰减方式[39, 56]。如前所述,传统DWI在HCC中容易受到邻近脏器运动及呼吸伪影的干扰,且对纤维化背景下的微小病灶的检出率较低。不仅如此,利用ADC值鉴别良、恶性肝脏结节的准确性极大地依赖于b值的选择,但b值受到组织灌注的影像较大[57]。因此,IVIM与传统DWI相比能够显著提高对微小HCC病灶的检出率及准确性。此外,近年来也有研究表明,高级别HCC的IVIM成像中D及ADC值均明显高于低级别HCC,且f值与动脉期增强分数有很好的相关性,其结果表明IVIM鉴别高级别HCC与低级别HCC的能力显著优于DWI,说明IVIM可用于预测HCC的组织学分级[58]

       然而,目前针对IVIM在HCC中的研究较有限,未来仍需要大量大样本、高质量的研究来证实IVIM在HCC诊断、监测中的确切地位。

2.5 动脉自旋标记(arterial spin labeling,ASL)

       ASL是一种利用磁性标记的动脉血作为内源性标记物定量反映组织灌注情况的磁共振灌注成像方法。目前常用的ASL脉冲方式主要包括脉冲式动脉自旋标记(pulsed arterial spin labeling, PASL)及连续动脉自旋标记(continuous arterial spin labeling, CASL)两种。ASL不需要使用对比剂,可以无创、可重复地反映组织器官的血流灌注情况,目前已经广泛应用于脑、肺、肾、心脏等器官中。近年来的研究发现,ASL可以很好地显示肠系膜上静脉及肝内门静脉的结构及血流灌注情况[59,60],表明ASL可以用于显示正常肝脏及肝脏良、恶性病变的微血管结构及评估其血流动力学特征。目前虽尚无ASL在HCC中的相关研究,但ASL可以在不使用对比剂的情况下无创地反映出HCC及周围正常肝组织的灌注情况,并且具有早期评价HCC微血管侵犯情况的潜力,因此可能具有较好的应用前景。

2.6 磁共振弹性成像(magnetic resonance elastography, MRE)

       MRE是基于弹性成像技术的磁共振成像手段,通过定量分析对组织施加一个正应力或剪切应力后组织产生的反作用响应的大小及性质可以判断组织的弹性程度。如前所述,肝脏纤维化在HCC的发病中扮演了非常重要的角色,而MRE可以定量无创、定量地检测并评估肝脏纤维化程度[61,62]。不仅如此,HCC等肝脏恶性肿瘤的平均剪切弹性明显高于正常肝组织、纤维化的肝组织或肝脏良性肿瘤[63,64],表明MRE能够鉴别肝脏良、恶性肿瘤。尽管如此,目前针对MRE在HCC中的研究仍十分有限,未来仍需要大量的研究来证实MRE在HCC中的确切地位。

2.7 磁共振波谱成像(magnetic resonance spectroscopy, MRS)

       MRS是评估组织器官生化代谢的无创影像学手段。目前,应用于临床及科研之中常用的MRS波谱包括1H、31P及23Na谱等,其中H质子在所有射频激励的原子核中敏感性最高,故最适用于MRS的研究[65]。目前,在肝脏领域MRS主要用于弥漫性肝脏疾病(如肝脏脂肪化程度的定量评估[66])及局灶性肝脏疾病的研究。然而,MRS在肝脏恶性肿瘤的诊断上敏感性与特异性均较低[67],在HCC中的应用仍处于探索阶段。MRS易受到邻近脏器运动伪影的干扰,故其诊断价值的提高很大程度上依赖于设备及仪器的改进。但MRS可以无创地反映出HCC及周围肝组织的代谢及生化情况,在HCC的早期诊断、预后评估中的应用价值及前景不可忽视。

2.8 磁敏感成像(susceptibility-weighted imaging, SWI)

       SWI是一种以T2*加权梯度回波序列作为序列基础,根据不同组织间的磁敏感性差异提供对比增强机制的MRI新技术[4]。SWI对组织中的血液或铁十分敏感。SWI可以反映HCC的组织病理特点,评估HCC假包膜、肿瘤内部微出血、HCC镶嵌征等微观征象。虽然目前有关SWI在HCC中应用的研究非常有限,但其在HCC中具有一定的应用前景。

2.9 血氧水平依赖(blood oxygenation level-dependent,BOLD)

       BOLD是通过评估组织血红蛋白含氧量,定量反映组织的氧代谢情况的新兴磁共振成像技术。BOLD具有无创、可重复性强且无需注入对比剂等优点,目前已经运用于中枢神经系统、肾脏、肝脏等领域。BOLD的主要参数包括自旋-自旋弛豫时间(spin-spin relaxation time, T2*)、表观自旋-自旋弛豫率(apparent spin-spin relaxation ratio, R2*)等。近期的研究发现[68,69],正常肝组织在氧气的刺激下R2*明显增强,而纤维化的肝组织R2*无明显变化,后者的ΔR2*明显小于前者,表明ΔR2*可以作为反映肝脏血流动力学及纤维化程度的良好指标。不仅如此,BOLD还有助于鉴别肝脏良恶性结节和反映肝脏肿瘤的血管生成情况[70,71],并且能够反映栓塞化疗在HCC中的疗效[72]

       然而,BOLD较易受到运动伪影的干扰,目前有关肝脏领域BOLD的研究十分有限,且其中大多为动物实验。但BOLD在肝脏良、恶性病灶的诊断与评估中拥有广阔的应用前景,因此尚需大量高质量研究来证实其在HCC中的应用价值。

3 小结

       HCC是肝脏组织最常见的恶性肿瘤,具有起病隐匿、诊断时多数患者已经为局部晚期或出现远处转移、治疗难度大等特点,严重威胁着我国及全球人民的健康。根据最新指南[2,3,4,5],多期DCE-MRI与动态MDCT已成为目前HCC诊断、分期首选的影像学手段,肝穿刺活检仅用于无法凭借影像学及血清学检查确诊的少数HCC病例。近年来,随着MRI技术的不断发展,DWI、IVIM、MRE、MRA、SWI、ASL、BOLD等多种磁共振功能成像技术及新的肝脏特异性对比剂等已经可以运用于HCC的影像检查,并显著提高了MRI对HCC的早期诊断与监测能力,在HCC的早期诊断、预后评价、治疗方案选择、疗效评估及复发转移监测中拥有广阔的应用前景。

[1]
World Health Organization. Liver cancer,estimated incidence,mortality and prevalence worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.
[2]
Ministry of Health, Government of China. The guideline for then diagnosis and treatment of primary liver cancer. Chinese Clinical Oncology, 2011, 16(10): 929-946.
中华人民共和国卫生部.原发性肝癌诊疗规范(2011年版).临床肿瘤学杂志, 2011, 16(10): 929-946.
[3]
Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology, 2011, 53(3): 1020-1022.
[4]
Omata M, Lesmana LA, Tateishi R, et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int, 2010, 4(2): 439-474.
[5]
Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol, 2001, 35(3): 421-430.
[6]
Coleman WB.Mechanisms of human hepatocarcinogenesis. Curr Mol Med, 2003, 3(6): 573-588.
[7]
Shah TU, Semelka RC, Pamuklar E, et al. The risk of hepatocellular carcinoma in cirrhotic patients with small liver nodules on MRI. Am J Gastroeneterol, 2006, 101(3): 533-540.
[8]
Li YF, Li HJ, Zhang YY. Study of multi-modality MRI on dysplastic nodule with cirrhosis. Chin J Magn Reson Imaging, 2014, 5(1): 45-53.
李云芳,李宏军,张岩岩.肝硬化不典型增生结节的多模态MRI研究.磁共振成像, 2014, 5(1): 45-53.
[9]
Chandarana H, Robinson E, Hajdu CH, et al. Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI. AJR Am J Roentgenol, 2011, 196(5): 1083-1089.
[10]
Kornberg A, Freesmeyer M, Bärthel E, et al. 18F-FDG-uptake of hepatocellular carcinoma on PET predicts microvascular tumor invasion in liver transplant patients. Am J Transplant, 2009, 9(3): 592-600.
[11]
Kojiro M. Best Practice & Research. Clinical Gastroenterology, 2005, 19(1): 39.
[12]
Ishigami K, Yoshimitsu K, Nishihara Y, et al. Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images:correlation with histopathologic findings. Radiology, 2009, 250(2): 435-443.
[13]
Kadoya M, Matsui O, Takashima T, et al. Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology, 1992, 183(3): 819-825.
[14]
Kojiro M. 'Nodule-in-nodule' appearance in hepatocellular carcinoma: its significance as a morphologic marker of dedifferentiation. Intervirology, 2004, 47(3-5): 179-183.
[15]
Surachate S, Jeong KL, Steven SR, et al. MRI detection of intratumoral fat in hepatocellular carcinoma: potential biomarker for a more favorable prognosis. AJR, 2012, 199(5): 1018-1025.
[16]
Choi BI, Lee JM. Advancement in HCC imaging:diagnosis, staging and treatment efficacy assessments: imaging diagnosis and staging of hepatocellular carcinoma. Journal of hepato-biliary-pancreatic sciences, 2010, 17(4): 369-373.
[17]
Lee JM, Choi BI. Hepatocellular nodules in liver cirrhosis:MR evaluation. Abdom Imaging, 2011, 36(3): 282-289.
[18]
Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology, 2012, 56(1): 140-148.
[19]
Jarnagin WR, Schwartz LH, Gultekin DH, et al. Regional chemotherapy for unresectable primary liver cancer:results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol, 2009, 20(9): 1589-1595.
[20]
Braren R, Altomonte J, Settles M, et al. Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization. J Hepatol, 2011, 55(5): 1034-1040.
[21]
O' Connor JP, Jackson A, Parker GJ, et al. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer, 2007, 96(2): 189-195.
[22]
Koh TS, Thng CH, Hartono S, et al. A comparative study of dynamic contrast-enhanced MRI parameters as biomarkers for anti-angiogenic drug therapy. NMR Biomed, 2011, 24(9): 1169-1180.
[23]
Kelly RJ, Rajan A, Force J, et al. Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin Cancer Res, 2011, 17(5): 1190-1199.
[24]
Hahn OM, Yang C, Medved M, et al. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol, 2008, 26(28): 4572-4578.
[25]
Mita MM, Spear MA, Yee LK, et al. Phase 1 first-in-human trial of the vascular disrupting agent plinabulin (NPI-2358) in patients with solid tumors or lymphomas. Clin Cancer Res, 2010, 16(23): 5892-5899.
[26]
Ricart AD, Ashton EA, Cooney MM, et al. A phase I study of MN-029 (denibulin), a novel vascular-disrupting agent, in patients with advanced solid tumors. Cancer Chemother Pharmacol, 2011, 68(4): 959-970.
[27]
Baar J, Silverman P, Lyons J, et al. A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers. Clin Cancer Res, 2009, 15(10): 3583-3590.
[28]
Seale MK, Catalano OA, Saini S, et al. Continuing medical education:hepatobiliary-specific mr contrast agents: role in imaging the liver and biliary tree. Radiographics, 2009, 29(6): 1725-1748.
[29]
Nasu K, Kuroki Y, Tsukamoto T, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma:imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. AJR Am J Roentgenol, 2009, 193(2): 438-444.
[30]
Frericks BB, Loddenkemper C, Huppertz A, et al. Qualitative and quantitative evaluation of hepatocellular carcinoma and cirrhotic liver enhancement using Gd-EOB-DTPA. AJR, 2009, 193(4): 1053-1060.
[31]
Kogita S, Imai Y, Okada M, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol, 2010, 20(10): 2405-2413.
[32]
Sano K, Ichikawa T, Motosugi U, et al. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic-acid-enhanced MR imaging. Radiology, 2011, 261(3): 834-844.
[33]
Lee JM, Zech CJ, Bolondi L, et al. Consensus report of the 4th international forum for gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging. Korean J Radiol, 2011, 12(4): 403-415.
[34]
Tanaka M, Nakashima O, Wada Y, et al. Pathomorphological study of Kupffer cells in hepatocellular carcinoma and hyperplastic nodular lesions in the liver. Hepatology, 1996, 24(4): 807-812.
[35]
Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging, 2009, 29(2): 328-335.
[36]
Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol, 2006, 58(2): 200-216.
[37]
Yoo HJ, Lee JM, Lee JY, et al. Additional value of SPIO-enhanced MR imaging for the noninvasive imaging diagnosis of hepatocellular carcinoma in cirrhotic liver. Invest Radiol, 2009, 44(12): 800-807.
[38]
Yoon MA, Kim SH, Park HS, et al. Value of dual contrast liver MRI at 3.0 T in differentiating well-differentiated hepatocellular carcinomas from dysplastic nodules: preliminary results of multivariate analysis. Invest Radiol, 2009, 44(10): 641-649.
[39]
Taouli B, Ehman RL, Reeder SB. Advanced MRI methods for assessment of chronic liver disease. AJR Am J Roentgenol, 2009, 193(1): 14-27.
[40]
Kamel IR, Liapi E, Reyes DK, et al. Unresectable hepatocellular carcinoma:serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology, 2009, 250(2): 466-473.
[41]
Naganawa S, Kawai H, Fukatsu H, et al. Diffusion-weighted imaging of the liver:technical challenges and prospects for the future. Magn Reson Med Sci, 2005, 4(4): 175-186.
[42]
Piana G, Trinquart L, Meskine N, et al. New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol, 2011, 55(1): 126-132.
[43]
Vandecaveye V, De Keyzer F, Verslype C, et al. Diffusionweighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol, 2009, 19(10): 2456-2466.
[44]
Taouli B, Sandberg A, Stemmer A, et al. Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging, 2009, 30(3): 561-568.
[45]
Bruegel M, Holzapfel K, Gaa J, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol, 2008, 18(3): 477-485.
[46]
Miller FH, Hammond N, Siddiqi AJ. Utility of diffusionweighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging, 2010, 32(1): 138-147.
[47]
Liu W, Yang J, Shao KW, et al. B value selection of diffusion-weighted MR imaging in differentiating malignant from benign liver lesions. Chin J Magn Reson Imaging, 2011, 2(4): 283-289.
刘伟,杨军,邵康伟,等.扩散加权成像b值大小对肝脏良恶性病变的鉴别诊断价值.磁共振成像, 2011, 2(4): 283-289.
[48]
Yu JS, Chung JJ, Kim JH, et al. Detection of small intrahepatic metastases of hepatocellular carcinomas using diffusion-weighted imaging:comparison with conventional dynamic MRI. Magn Reson Imaging, 2011, 29(7): 985-992.
[49]
Bonekamp S, Jolepalem P, Lazo M, et al. Hepatocellular carcinoma: response to TACE assessed with semiautomated volumetric and functional analysis of diffusion-weighted and contrast-enhanced MR imaging data. Radiology, 2011, 260(3):752-761.
[50]
Babsky AM, Ju S, George B, et al. Predicting response to benzamide riboside chemotherapy in hepatocellular carcinoma using apparent diffusion coefficient of water. Anticancer Res, 2011, 31(6):2045-2051.
[51]
Lee MH, Kim SH, Park MJ, et al. Gadoxetic acid-enhanced hepatobiliary phase MRI and highb-value diffusion-weighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. AJR Am J Roentgenol, 2011, 197(5): 868-875.
[52]
Nakanishi M, Chuma M, Hige S, et al. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma. Ann Surg Oncol, 2012, 19(4): 1302-1309.
[53]
Nishie A, Tajima T, Asayama Y, et al. Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma. Eur J Radiol, 2011, 80(2): 29-33.
[54]
Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusionweighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol, 2003, 181(3): 708-710.
[55]
Dudeck O, Zeile M, Wybranski C, et al. Early prediction of anticancer effects with diffusion-weighted MR imaging in patients with colorectal liver metastases following selective internal radiotherapy. Eur Radiol, 2010, 20(11): 2699-2706.
[56]
Koh DM, Collins DJ, Orton MR. Intravoxel Incoherent Motion in Body Diffusion-Weighted MRI: Reality and Challenges. AJR, 2011, 196(6): 1351-1361.
[57]
Onur MR, Çiçekçi M, Kayalı A, et al. The role of ADC measurement in differential diagnosis of focal hepatic lesions. Eur J Radiol, 2012, 81(3): 171-176.
[58]
Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma:correlation with enhancement degree and histologic grade. Radiology, 2014, 270(3): 758-767.
[59]
Hwang J, Kim YK, Lee WJ, et al. Unenhanced magnetic resonance portography using repetitive arterial or vein labeling method at 3.0-T. J Comput Assist Tomogr, 2013, 37(6):856-861.
[60]
Katada Y, Shukuya T, Kawashima M, et al. A comparative study between arterial spin labeling and CT perfusion methods on hepatic portal venous flow. Jpn J Radiol, 2012, 30(10):863-869.
[61]
Rouviere O, Yin M, Dresner MA, et al. MR elastography of the liver: preliminary results. Radiology, 2006, 240(2):440-448.
[62]
Huwart L, van Beers BE. MR elastography.Gastroenterol Clin Biol, 2008, 32(Suppl 1): 68-72.
[63]
Venkatesh SK, Yin M, Glockner JF, et al. MR elastography of liver tumours: preliminary results. AJR Am J Roentgenol, 2008, 190(6): 1534-1540.
[64]
Doblas S, Garteiser P, Haddad N, et al. Magnetic resonance elastography measurements of viscosity: a novel biomarker for human hepatic tumor malignancy?. Proc Intl Soc Mag Reson Med, 2011, 19(3): 389.
[65]
Sijens PE. Parametric exploration of the liver by magnetic resonance methods. Eur Radiol, 2009, 19(11): 2594-2607.
[66]
Reeder SB, Cruite I, Hamilton G, et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging, 2011, 34(4): 729-749.
[67]
Soper R, Himmerlreich U, Painter D, et al. Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology, 2002, 34(5): 417-422.
[68]
Barash H, Gross E, Edrei Y, et al. Functional magnetic resonance imaging monitoring of pathological changes in rodent livers during hyperoxia and hypercapnia. Hepatology, 2008, 48(4):1232-1241.
[69]
Barash H, Gross E, Matot I, et al. Functional MR imaging during hypercapnia and hyperoxia:noninvasive tool for monitoring changes in liver perfusion and hemodynamics in a rat model. Radiology, 2007, 243(3):727-735.
[70]
Park HJ, Kim YK, Min JH, et al. Feasibility of blood oxygenation level-dependent MRI at 3 T in the characterization of hepatic tumors. Abdom Imaging, 2014, 39(1): 142-152.
[71]
Robinson SP, Rijken PF, Howe FA, et al. Tumor vascular architecture and function evaluated by non-Invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imaging, 2003, 17(4): 445-454.
[72]
Choi JW, Kim H, Kim HC, et al. Blood oxygen level-dependent MRI for evaluation of early response of liver tumors to chemoembolization:an animal study. Anticancer Res, 2013, 33(5): 1887-1892.

上一篇 心血管磁共振临床应用及进展
下一篇 短期戒断的海洛因成瘾者大脑白质完整性的DTI研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2